
To appear in ACM Multimedia 1996

CU-SeeMe VR
Immersive Desktop Teleconferencing

Jefferson Han, Brian Smith
Department of Computer Science

Cornell University
Ithaca, NY 14853

{ jyh4,bsmith}@cornell.edu

ABSTRACT
Current video-conferencing systems provide a “video-in-
a-window” user interface. This paper presents a
distributed video-conferencing system called CU-SeeMe
VR that embeds live video and audio conferencing in a
virtual space. This paper describes a prototype
implementation of CU-SeeMe VR, including the user
interface, system architecture, and a detailed look at the
enabling technologies. Future directions and the
implications of the virtual reality metaphor are
discussed.

KEYWORDS
video-conferencing, virtual reality, cyberspace, ray-
casting, spatial audio, segmentation

INTRODUCTION
CU-SeeMe VR merges the CU-SeeMe video
teleconferencing application [2] with a fast 3D graphics
engine to create an immersive 3D chat environment.
Live video feeds from conference participants are
projected onto 3D walls that roam around in a virtual
conference room. The user freely navigate around the
3D world. The interface draws on user intuition: the
interaction metaphors in a physical conference room
carry over to the virtual world. If you want to talk to
someone, you walk up to them. If someone is offensive
or boring, you can move away. And as in reality, they can
follow you around. This conference room is virtual- two
people next to each other in virtual space could be
thousands of miles away in reality.

Figure 1 shows the CU-SeeMe VR user interface. The
interface consists of 7 regions: the 3D view window, the
chat dialogue, the map view window, the navigation
panel, the local video window, the audio control window,
and the visibility control. The local video window shows
the output of the local camera. The audio control window
shows the level of the microphone and speaker volume.

These controls, which are standard on most video
conferencing systems, are used to tune the parameters of
the audio/video capture modules. The chat dialogue is
used to transmit textual information. The visibility
control sets a threshold for the video segmentation
algorithm, described later.

The 3D view, map view, and navigation panel are at the
heart of CU-SeeMe VR. The 3D view shows a projection
of the 3D world from the user’s perspective. The engine
used to generate this view is described below. The map
view window shows a schematic, bird’s-eye view of the
3D world. It helps the user to understand his position in,
and navigate through, the virtual world. Finally, the
navigation panel allows the user to move around in the
3D world. Holding a mouse button down on the upper
arrow moves forward, on the lower arrow moves
backwards, on the left arrow turns the user’s view to the
left, and on the right arrow turns the user ‘s view to the
right. Keyboard accelerators are also provided for these
functions. The map and 3D view are updated in real-time
to reflect the changed positions.

This interface provides users with a 3D presence in, and
ability to navigate through, a virtual world. Other users
in the world are shown as flat planes texture-mapped
with that user’s video stream. As other users move
through the virtual world, the position of their plane is
changed. Simultaneously, the texture map is updated
with incoming video data. These two mechanisms give
the effect of a user “walking” (maybe more like
“sliding”) through the virtual space. Though primitive,
the mechanism works rather well. It works even better
when foreground segmentation (discussed later in the
paper) is used to “cut out” the user’s head from the
quadrilateral (you can see a segmented user on the right
side of the 3D view, about the middle of the window).

In addition to providing 3D graphics, the user interface
also spatializes the audio streams of the participants.
People closer to you in the virtual world are louder than
those far away, left and right stereo channels reflect the
speaker’s relative azimuth (left or right), and a speaker’s
voice gets louder when they face you.

Figure 1: The CU-SeeMe VR User Interface

The system is backwards compatible with vanilla CU-
SeeMe. Regular CU-SeeMe clients are immobile, so we
map them onto a fixed, rotating multi-faceted cylinder in
the environment. Regular CU-SeeMe permits the
participation of users without video (“lurkers”) that
communicate through audio and text. For these users, we
use a default bitmap as a texture map. We also use this
bitmap for a normal video client’s “backside.” Without
this mechanism, it is hard to figure out which side of a
client you are seeing from a distance.

The rest of this paper describes the design and
implementation of CU-SeeMe VR. We first briefly
review related work (section 2) and CU-SeeMe, the
video-conferencing software on which our prototype is
based (section 3). We then describe the system
architecture, key algorithms, and performance of the
system are described (section 4), Finally, we discuss
limitations, applications, and implications of both the
technology and the virtual reality metaphor (section 5).

RELATED WORK
CU-SeeMe VR combines elements of both computer
graphics and video-conferencing. Both these subjects
have a long and rich history.

The MBONE suite of video conferencing tools (vic, vat,
nv) are among the most well-known [5][9]. Hewitt [4]
provides an exhaustive review of current video
conferencing products and standards. These tools provide
“video in a window” as the primary mode of interaction.
They are patterned after broadcast or telephone
technology: users rendezvous by listening to a broadcast
or calling each other explicitly. Fish, Kraut, and
Chalfonte have experimented with a video wall installed
in two parts of the same laboratory [8] to provide an
environment more conducive to informal interactions
than other tools. CU-SeeMe VR also provides an
environment that encourages informal, chance meetings.

The Virtual Reality Modeling Language (VRML) is an
Internet specification for 3D environments [3]. Models
can be downloaded and viewed interactively using

VRML browsers. Black Sun Interactive [7] is among the
companies that has used VRML as a basis for an
interactive environment similar to CU-SeeMe VR. These
product include support for audio, but conference
participants are represented by cartoon characters called
avatars, which leads to fairly unrealistic and awkward
interactions (e.g., a user presses F3 to smile). Many
vendors believe that such products will become more
widespread in the near future as operating system
vendors include support for 3D graphics. Examples of
such support is OpenGL, QuickDraw 3D, and Direct3D.
Third party vendors are expected to include hardware
support for these primitives in the near future.

More advanced research has explored the integration of
video-conferencing into CAVE virtual reality
environments [12]. Such environment allow
geographically remote scientists to explore a virtual
space together. The usage of such environments is
limited by the equipment required (high end graphics
workstations and an expensive, dedicated VR facility).
Recent work on interactive building walk-throughs [6]
shows that for real-time rendering of very complex
spaces (millions of polygons) is possible.

CU-SEEME OVERVIEW
This section briefly reviews the architecture of CU-
SeeMe, the video conferencing engine on which CU-
SeeMe VR is based.

CU-SeeMe is a desktop video-conferencing system
developed at Cornell University that was designed to
accommodate multiparty conferences over the Internet
on low-cost personal computers [2]. It is available for
both Macintosh and Windows, and is designed to run on
as many computers as possible to allow for as much
interaction as possible. Because CU-SeeMe can run on
low-end PC machines with minimal network
connectivity, it has enjoyed extremely widespread

usage1. Its audio/video transport engine at the heart of
CU-SeeMe VR. Although our current implementation
uses CU-SeeMe, the ideas in this paper can be applied to
other video conferencing systems as well.

CU-SeeMe clients can be connected in a point-to-point
fashion or through a central reflector. The reflector
multiplexes multiple video streams over a single
connection and gives the conference a star topology. For
multiparty conferences, connecting to a reflector reduces
the number of independent connections from n2 to 2n,
where n is the number of clients in the conference. Over
the years, the reflector has grown to include other

1 The CU-SeeMe software is downloaded by about 1,000
users per week from the Cornell FTP site.

operations, such as unwanted data pruning, bandwidth
management, and transcoding. The reflector model also
imposes limitations on the scaleability of the system.
These limitations are discussion in section 5.

The reflector serves another purpose: it promotes social
interaction by providing a common place to which users
may connect. Users rendezvous at well-known reflector
sites to meet other people. This support for casual
interaction has made the program very popular.

CU-SeeMe’s transport mechanism is a best-effort
protocol built on top of UDP. It includes a robust
auxiliary transport mechanism that allows data types
other than audio and video (e.g. text) to be used in a
conference. The protocol provides two modes of
operation for auxiliary data: best-effort streaming and
reliable transport. In CU-SeeMe VR, position data is
sent over this auxiliary data stream using best-effort
transport.

The CU-SeeMe codec utilizes lossless intra-frame
compression on 8x8 pixel blocks of 4-bit, 160x120 gray-
scale video. It also uses conditional replenishment: only
blocks that have changed beyond a specified threshold
value are sent as part of a frame update. Standard codecs
(e.g., Intel DVI) are utilized for 8 bit, 8kHz-sampled
audio.

VR CLIENT IMPLEMENTATION
This section describes the implementation of the CU-
SeeMe VR system. Our architecture has three parts, the
reflector, whose role was discussed above, the sender,
which captures, compresses, and sends audio, video, and
auxiliary data to the reflector, and the receiver, which
decodes and displays audio, video, and auxiliary data
from the reflector. We use an unmodified reflector. Our
sender uses the capture, compression, and transport
protocols of CU-SeeMe. The only modification we made
to the sender was to add an auxiliary data stream
containing the user’s position in the virtual space. This
design allows unmodified CU-SeeMe clients to receive
and decode data sent by a CU-SeeMe VR application,
since they ignore the auxiliary data stream.

The receiver’s software architecture is more complex,
and is shown in figure 2. The receiver splits the video
stream into audio, video, and 3D position streams (other
auxiliary data, such as textual “chat” data, is not shown).
3D position data consists of two triples. One triple
specifies the user’s position (x, y, z), and the other thriple
specifies a normal vector (nx, ny, nz) that gives the
direction the user is facing. These triples are recorded in
a table, indexed by user id. Video data is decoded by the
CU-SeeMe video codec and saved in a video buffer. A
separate video buffer is maintained for each user. The 3D

Video Demux
& Decode

Audio Demux
& Decode

user position

Demux

Graphics Engine

To Display

World
Model

Mixer and
Spatializer

To Speaker

Video Stream
(from reflector)

Video
Data

Audio
Data

Position
Data

Video
Buffers

Audio
Buffers

Figure 2: Receiver Architecture

graphics engine combines the decoded video data with
the model of the virtual world and the 3D position of
each user to render the image on the user’s display. To
the codec, the video buffers are target images. To the
graphics engine, they are texture maps. The graphics
engine is discussed below.

The audio decoding pipeline is analogous. The audio
decoder places decompressed audio data into an audio
buffer, one per user. The audio mixer and spatializer uses
the user position information to attenuate and mix the
audio data to create a single audio output stream that is
sent to the speaker. The spatializing and mixing
algorithms are discussed below.

Graphics Engine
The 3D graphics engine renders the virtual world on the
user’s display. Although full-scale VR is still not
practical on today’s machines, we can provide a
reasonable approximation using a technique called ray-
casting. Since ray-casting is described in detail
elsewhere [1], we will only sketch the algorithm here.

Ray-casting is a technique for extremely fast rendering
of so-called “first-person” 3D scenes. First-person scenes
are mostly-static environments viewed through a single
camera that is free to move about in 3-space, but cannot
pitch or roll. This constraint is acceptable because
people generally can not fly and rarely tilt their heads.
Ray casting places additional constraints on the
environment: polygons (walls) in the scene must be
orthogonal to the floor and non-intersecting. Despite

these restrictions, such environments can appear rather
realistic by suitable use of texture maps on the walls. The
popular PC video game “Doom,” for example, uses ray-
casting techniques. A sample image generated by our
ray-casting engine is shown in figure 3.

Ray-casting is based on the principle of forward-ray-
tracing, where the visibility of each pixel in the rendered
image is determined by intersecting a view ray with the
primitives of the environment. However, instead of
computing this intersection for every pixel in the image,
which is very expensive, it is computed only once for
every vertical column of pixels. This is sufficient
because the environment is constrained to have only
vertical, non-intersecting walls.

The intersection list is then sorted by depth, and the
vertical span in screen space representing each wall is
computed using the traditional perspective-divide
transformation. Rasterization proceeds in reverse depth
order (from back to front), so that nearer walls are drawn
over and occlude farther walls. This approach is called
the Painter’s Algorithm [10] and is sub-optimal. Two
better ways would be to render front to back, keeping
track of spans that have been written and masking those
sections out, or to use a pre-computed data structure such
as BSP trees [11].

Because all walls are orthogonal to the ground plane, and
the viewer has zero pitch, every pixel in a vertical span
has the same distance from the viewpoint. Thus, there is
no need for a time-consuming perspective divide per

Figure 3: Ray-Casting Engine Output

pixel -- one divide suffices for the entire vertical span.
Each span is then rendered with a texture map into the
frame buffer. The rasterization of the texture-map is
also extremely fast because the portion of the texture
copied to the screen is a simple scaling of the texture
image. Floors (planes which are parallel to the ground
plane) take advantage of similar optimizations. A user’s
video is integrated into scene by texture mapping it onto
a plane whose position is determined from the 3D table
information.

Audio Mixer/Spatializer
Sound directionality provides a strong cue for localizing
sources of sound, or in this case, the voices of
participants in cyberspace, especially when multiple
sources are active at the same time. Thus, our
conferencing engine includes and audio spatializer.

A complete solution to the spatial audio problem uses
real-time convolutions to simulate the diffractive effects
of the environment and the pinnae of our ears [13].
Implementations utilizing this approach require
dedicated hardware for real-time performance and are
not suitable for our application. We therefore explored
the use of other cues to spatialize audio. We
experimented with amplitude and phase differentials
(i.e., differing volumes and arrival times of a sound to
each ear), atmospheric/distance attenuation, and voice
directionality.

In our first experiment, we modified the relative phase of
the left and right audio channels to simulate the phase
differential of a sound arriving to each ear. This phase
differential is obtained by calculating the arrival times as
a function of the angle of the sound source from the
forward-facing direction, the source distance, and the
inter-ear distance. We found that this cue is not
significant, unless the phase distance is exaggerated so
greatly that the sound is perceived as two distinct sounds,
which is then interpreted as an echo.

Similarly, we tried incorporating the inverse-square

attenuation due to the differing distance between a sound
source and each ear, which creates a small amplitude
differential. Again, we found this model gave no
perceptible cue, since most of the amplitude differential
is overwhelmed by the cross-talk between the left and
right channels of the speakers.

We found that the best way to make a sound appear to
come from the left, using external speakers, is to simply
play it through only the left speaker. We proceed to pan
a sound from left to right by increasing the right channel
volume and decreasing the left using a sinusoidal
function of the sounds angle from the forward facing
direction. This

function is then composited with a distance attenuation
factor to achieve the final effect. The following
formulas give the attenuation of the left and right
channels.

VL = (1+sin(θ))/(2d
2
)

VR = (1-sin(θ))/ (2d
2
)

where θ is the angle between the direction the receiver is
facing and the sound source, and d is the distance
between the source and receiver.

Our final consideration is transmitter directionality.
People often direct their voice at a specific person or
audience, since their voice is louder in that direction. To
simulate this effect, the receiver attenuates audio as a
function of the angle between the source’s normal vector
and the vector between the source and destination. We
have found that a cardioid function of this angle works
well:

attenuation= a+ cos(θ) +1()•
(1− a)

2
where a is the minimum amplitude received (from
directly behind). Figure 4 graphs this function.

Figure 4: Cardioid Attenuation

Figure 5: Goal of Segmentation

These techniques provide source attenuation, but do not
create a convincing environment. A more complete
solution would include other effects, such as echo and
reverberation. It would consider absorption and
reflection from each object in the environment. A
limited form of acoustical ray tracing may be possible to
do in real-time for a simple model [14]. We are
experimenting with this approach.

Foreground Segmentation
In a 3D environment, we would like to see participants
visualized not as rigid planes of pixels, but as
silhouettes. For this effect, a background-foreground
segmentation step is required, which outputs a binary
opacity mask that the graphics engine can use, as shown
in figure 5.

Segmentation is performed by the sending client. Our
segmentation algorithm is based on the following
simplifying assumptions, which are reasonable for our
application:

• The camera is fixed and stationary.
• The background is static.
• Anything that is not the background is the

foreground

With these assumptions, we can use a simple
thresholded-difference approach to segmentation. First,
the user captures an image of the unobstructed
background. Then, for each image we encode, we
compute the absolute difference between the background
image and the current image. This difference image is
the converted to a binary image using a manually set
threshold: all difference values above the threshold value
are set to 1, all others are set to 0. The binary image is
filtered using a 3x3 median filter to remove noise and
gaps. To compute the median of a binary image, we tally
up the number of white and black pixels in the window of
interest. The larger of the two is the median value. This
process is further sped up using lookup-tables on 8 or 16
pixels at time. Figure 6 shows sample output from this
algorithm, along with the intermediate images.

The slowest step in this process is the median filter. We
have tried approximating the 2D median filter operation
as 2 1D operations. Of course, this decomposition is
invalid, but the result is similar to the desired effect and
is faster to compute.

a) Background

c) Absolute Difference

b) Captured Image

d) Thresholded difference

e) After median filter f) Final composite

Figure 6: Steps in Segmentation

The segmented image is encoded in the final bitstream
by defining pixel value 0 to be background (i.e.,
transparent), and by changing foreground pixels with

value 0 to 11. A flag in the auxiliary data stream
indicates that the stream is segmented. This encoding
gives us backwards compatibility with regular CU-
SeeMe clients. Figure 7 shows a sample screen shot with
segmentation active.

The segmentation algorithm can be further improved by
using a color video input source. Although the CU-
SeeMe video codec discards color information, we can
use color information to discriminate between the
foreground and background. We have experimented with
several color distance metrics, such as distance in UV
space and normalized chroma (U/Y, V/Y). We are also
exploring the use of multiresolution techniques to
segmentation. Evaluating differences at coarser
resolutions should help remove artifacts as well as
improve performance.

Performance Optimizations
The current implementation renders the 3D scene at
about 22 frames/second on a 66MHz PPC601 machine
(the lowest end PowerPC). This performance is obtained
through standard code-level tricks, such as appropriate
use of look-up tables (LUTs) and bit-twiddling
operations, and processor specific optimizations, such as

1 This approach works because CU-SeeMe’s uses lossless
compression. With lossy compression, a different
approach, such as sending the matte image explicitly, must
be used.

Figure 7: Screen Shot with Segmentation Active

instruction scheduling to keep the execution units of the
processor busy. We also use several tricks to improve
cache performance.

For instance, large LUTs and large environmental texture
bitmaps can hurt cache performance. To address the
latter problem, we precompute scaled-down copies of
such textures at power of 2 reductions in size, and access
the nearest resolution version when rendering. This
technique both improves cache performance and
provides limited anti-aliasing of the texture.

Another performance optimization is interlacing.
Instead of updating the entire 3D window every frame
when the viewer is moving, we only update every other
row in an alternating, interlacing manner. This method
utilizes the eye’s decreased sensitivity to detail in
motion and increased sensitivity to frame rate. It
doubles the rendering speed and also provides a degree
of motion blur.

In addition to performance optimizations in the renderer,
the VR environment allows us to employ optimizations
that reduce the required network bandwidth and the load
introduced by video decoding. While a space may be
inhabited by many users, a given user only interacts with
those in his/her immediate vicinity. Thus, for all users
outside of a certain “visibility” radius, the system
removes the request for their AV streams from the
reflector. This pruning technique conserves both
network and CPU resources. However, we do not shut
off the AV streams for those participants that are within
the radius, but out of the field of view, or have their
“backs” towards us, because the user can pan faster than
the time it takes for the conferencing mechanism to
reestablish a video stream.

Backwards Compatibility
While the VR client presents a departure from the native
user interface of CU-SeeMe, we maintain compatibility

with regular CU-SeeMe users. We consider this
compatibility important, since it gives us access to the
large installed base of CU-SeeMe users. The
compatibility is bi-directional: regular CU-SeeMe clients
can connect to VR clients, and vice-versa. To the non-
VR client, a VR client behaves like a regular, non-VR
client. The additional data stream which conveys 3D
positional information is ignored by that client. A VR
client maps non-VR clients onto a rotating, multif aceted
cylinder. This scheme conserves network bandwidth,
since at any point in time, only a maximum of half of the
non-VR users are visible.

CU-SeeMe permits the participation of users without
video (“lurkers”) that communicate through audio and
text. For these users, using both types of clients, we use a
default bitmap as a texture map. We also use this bitmap
(mirrored) for a normal video client’s “backside”.
Without this mechanism, it is difficult to determine
which side of a client you are seeing.

LIMITATIONS, ISSUES, AND APPLICATIONS
Technical Limitations
CU-SeeMe VR has several limitations. Some limitations
can be overcome by adding features; others will require
changes in the system architecture. Here, we list the
major limitations and our plans to overcome them.

One limitation is that the current system does not allow a
large number of users. If more than 10-20 users are in a
virtual space, the client will be overwhelmed with video
data. To create a virtual world with thousands of users,
perhaps in different rooms, new mechanisms to prune
unwanted video data must be developed. One solution to
this problem is to use IP-multicast to truncate the video
broadcast. This can be accomplished by mapping rooms
in virtual space to distinct IP-multicast addresses. As a
user walks into a new room, they will connect to the IP-
multicast address associated with the room. They will
see, and be seen by, other users in the room.

Another limitation of the current system is that it uses a
fixed file to define the virtual environment. We plan to
use scene servers to store the virtual environment
associated with a location. Clients can download 3D
scene descriptions (probably as VRML data) from the
scene servers. Since the scene can be changed by other
users (another extension we plan to implement), updates
to the scene will be coordinated through the scene
servers. These changes will be broadcast on an IP-
multicast channel.

Transfer of scene data on initial connection will suffice
for small, simple environments. However, downloading
large, complex environments with elaborate textures and

detailed polygon lists will cause unacceptable delays.
We can overcome this problem by progressively
transferring scene data and prioritizing the transmission
based on the users visibility and/or field of view.
Because this scene data is relatively permanent, caching
it should be effective.

Aside from storing the state of the environment, scene
servers may eventually perform more sophisticated
computations, such as, computing a global illumination
model for the environment, or generating data for a
procedurally animated 3D object.

A third limitation of the current system is the low quality
rendering of the virtual world. Although expedient,
representing other users as flat video planes is not very
realistic or satisfying. We are investigating mapping a
user’s video onto a three dimensional model of the user
(an avatar). Doing so gives rise to many interesting
problems that we are just beginning to explore. We
would like to compose video captured from multiple
camera angles (e.g., front, sides, and back) onto the
avatar, so the user can be seen from the front, side, and
back. We would also like to adjust the lighting of the
video so it is consistent with the virtual world. And, we
must control the avatar so that if, for example, the user
tilts their head, the head of the avatar also tilts. Two
approaches to this problem are sensors, such as data
gloves, and computer vision techniques that track the
orientation of the person from the video data. A full
discussion of these issues is beyond the scope of this
paper.

Limitations of the VR Metaphor
Aside from the technical limitations and problems
described in the preceding paragraphs, the effect of the
VR metaphor on user interactions is unknown. We have
performed only limited user testing to date, and although
anecdotal evidence indicates that users are enthusiastic
about the new metaphor, the effect of the VR
environment on user communications and productivity
remains to be seen.

Many important interactions are chance – they occur
because one person runs into another in the hall (or at the
coffee machine) and strikes up a conversation. A
limitation of current video conferencing systems is that
they do not encourage such casual interactions. We
hypothesize that the VR environment will facilitate such
chance meetings as users explore and navigate through
the virtual space.

Another open question relates to the utility and
limitations of the spatial metaphor. For example, if four
people stand in a circle in the virtual environment, each
will get a good view of the person opposite and

foreshortened or missing views of the people to the left
and right. However, such a limitation is not inherent in
the technology, but rather in the spatial metaphor, since
each client could synthesize a scene that shows the other
3 participants side by side. This solution, however,
breaks the spatial metaphor. The real question is which
is more important: the communication or the metaphor?
We hope to find the answer to such questions with
experience in using the system.

Another issue is the mixing of real and synthetic worlds.
In the prototype, users are embedded in a completely
synthetic world. An interesting question is how to
embed a real world into the synthetic world. For
example, one might build a virtual “department” with a
hallway that has “windows” into offices. Each window
would show video captured by a camera on the wall in a
real office. Thus, to check if Dave is in his office, you
could simply walk down the virtual corridor and look in
Dave’s window. If he is there, you might walk down the
hall to talk to him.

Applications
Several intriguing applications of this technology come
to mind:

• Virtual Museums. Participants can observe
exhibits and converse with others in the gallery. The
exhibits can be static, like paintings, or dynamic,
like animation or kinetic art.

• Shopping Malls. Businesses can setup shop in scene
servers. Users are free to roam around in the mall,
browsing for items of interest. The shopkeeper, also
logged in, can answer customer’s questions.

• • Games. The combination of video conferencing and
virtual reality is a good basis for so-called multi-
user dungeon (MUD) games. Scene servers can acts
as a rendezvous sites and store the state of the game.
Other games, such as “Clue” (where users can search
for items around a complex indoor setting), will also
be richer in this environment.

CONCLUSIONS
We have presented the design and implementation of a
prototype virtual reality conferencing system. Many
open questions and problems are posed by such a system,
and remain to be studied. These problems include
technical problems, such as rendering a more realistic
environment, and questions involving the utility and
limitations of the VR metaphor. We hope to flesh out the
questions and issues raised by this system, and gain some
insight into their answers, in future work.

ACKNOWLEDGEMENTS
We wish to acknowledge the support of Tim Dorcey, and
the rest of the CU-SeeMe development team.

REFERENCES
1. Seminatore, M.. A Ray-Casting Engine in C++, in

Dr. Dobb’s Journal, 232 (July 1995)

2. Dorcey, T. CU-SeeMe Desktop Video Conferencing
Software, in Connexions 9, 3 (March 1995)

3. Raggett D., Extending WWW to Support Platform
Independent Virtual Reality, in Proceedings of the
5th Joint European Networking Conference (JENC5),
464 (June 1994) pp.2

4. Hewitt K., Desktop Video Conferencing Product
Survey, http://www3.ncsu.edu/dox/video

5. Eriksson, H., MBone: the Multicast Backbone,
Communications of the ACM 37, 8 (Aug. 1994), pp.
54-60,

6. Sequin, C. H. and Bukowski, R. W., Interactive
Virtual Building Environments, in Proc. of Pacific
Graphics `95. (Aug. 21-24, 1995) pp. 159-79, 527.

7. Black Sun Interactive, http://www.blacksun.com

8. Fish, R., Kraut, R., and Chalfonte B., The
VideoWindow System in Informal Communications,
CSCW `90, pp. 1-11

9. McCanne, S. and Jacobson, V., vic: A flexible
Framework for Packet Video, in Proc. of Multimedia
95, (San Francisco, Nov, 1995). ACM Press

10. Foley, J., and Van Dam, A., Fundamentals of
Interactive Computer Graphics, Addison-Wesley.

11. H. Fuchs, Z. Kedem, B. Naylor, On Visible Surface
Generation by a Priori Tree Structures, in Computer
Graphics 14, 3 (June 1980), pp. 124-133.

12. Gillilan, R., Cells and Smaller: Exploring the
Machinery of Life, demonstration at
SUPERCOMPUTING '95, (San Diego, Dec. 1995).
http://www.tc.cornell.edu/~ramidon/multimedia.html

13. Begault, D., 3-D Sound for Virtual Reality and
Multimedia, Academic Press, Boston, 1994.

14. Takala, T. and Hahn, J., Sound Rendering, in
Computer Graphics 26, 2 (July 1992)

