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Abstract

Building a policy-based, fine-grained, flexible and trustworthy Java security architecture to facilitate "real", complex web applications is right on the agenda. Several underlying approaches have been proposed and among them, capability excels in terms of simplicity, granularity and efficiency. The introduction of J-Kernel as a capability-based security system microkernel makes the idea of building such a security architecture on capability abstraction even more attractive. The paper describes the design of such a security architecture on top of J-Kernel. With the careful design of its building blocks, it exploits the underlying capability mechanism and presents satisfied security architecture features. To meet the security requirements of web applications using web browser as desktop interface, we need to impose a security architecture on web browsers. The issue of integrating such an architecture with web browser is also addressed here.

1. Introduction


The introduction of Java applets and Java-enabled Web browser is galvanizing the development of World Wide Web and Internet applications. Before Java, HTML could only provide static contents and World Wide Web was a read-only interface. With the new HTML extension of executable applets, people can download program to run in browser when browsing web pages, which makes the browser well on the way to becoming the universal computer interface. 


Serious security issues arise when executing mobile code such as applets. A browser user should be protected against malicious side-effects from visiting a web page. Basically, in order to be secure, browser systems must be built on a memory-safe language preventing forged pointers and memory leakage, limit applets' access to system resources and the browser's internal state, and provide system calls and other methods for applets to communicate with each other without maliciously affecting each other [5].

[1] 
There is a lot of complexity behind these security requirements due to the diverse roles an applet can play [13]. Intrinsically, applets has no less functionality than stand-alone Java applications. As mobile code running on the client CPU, they are true realization of distributed processing. Moreover, web browser provides an automatic multimedia framework for applets. And their platform-independence due to Java is a boon to software developers and users alike. With the booming of web applications, applets are no longer just simple animations for commercial, educational, and entertainment purpose. They are desirable to serve as complex front-end to services in distributed applications
, such as audio/video conferencing, real-time multi-player games and even vast distributed computations
. Various applets have different application-dependent resource needs, hence security requirements. Applets in games require access to high-speed graphics libraries and measuring real time. Teleconferencing applets need access to network and local video camera and microphone. Therefore, security policies must be flexible enough to not unduly limit applets, while still preserving integrity and privacy of each part involved (applets, local system, browser). And a flexible and effective security architecture must be provided to specify and enforce these policies. 


However, state-of-the-art browsers (Netscape Navigator, Microsoft Internet Explorer, Sun HotJava) primarily use JDK security models based on Java's safe language feature. Due to lack of structure, they tend to put excessive restrictions on applets which want to share resource with the local system and between each other. To address this problem, we put forth a new security architecture based on J-Kernel, a capability-based security system microkernel built in Java language. As a microkernel for security architecture, J-Kernel provides all the advantages of capability system in terms of simplicity, fail-safe property, least privilege, accountability, runtime cost, granularity, and flexibility [6]. In addition, it addresses the problematic issues of general capability systems, i.e. rights revocation, thread protection, resource accounting, and domain termination. Our security architecture built on it exploits all these advantages to provide a mechanism for flexible sharing and protection of different levels of granularity in a variety of scenarios from simple browsing to complicated distributed web applications. 


Section 2 discusses pros and cons of several underlying security mechanisms based on Java safe-language features. Also, it describes current Java security architecture, exposing their deficiency in meeting the security requirements of complex web applications. Section 3 introduces our security architecture based on J-Kernel, focusing on the authorization mechanism. The description of the whole picture will show how the advantages of a capability system can be exploited to build a policy-based, fine-grained, efficient security architecture. Section 4 discusses the integration of this security architecture into Mozilla Navigator 5.0 web browser. Section 5 introduces related work in the literature. At last we present the future work and summarize the paper.

2. Java Security Architecture

Java security architecture [4] is a group of integrated security services implemented in Java to provide Java as a secure, ready-built platform for Java-based applications.

2.1 Java Language Feature and Sandbox Security Model

As a type-safe language
, Java provides many security features such as bounds checking on arrays, legal type conversions only, no pointer arithmetic, access modifiers and static access control, automatic memory management and garbage collection [10]. In addition, in a Java platform, 

· System classes are loaded platform-dependently by the default mechanism. Custom classes can be loaded by user-defined class loaders. Each class loader defines a unique namespace. Once a class is loaded through a class loader, all other classes that it references are also loaded through that class loader.

· At run-time, a class loader resolves a class name only if a reference to the class is provided. The Java interpreter loads only those class files that are needed for the execution of a program. 

· Compiler and a bytecode verifier ensure that only legitimate Java code is executed. The bytecode verifier
, together with the JVM, guarantees language safety at run time.

· A custom SecurityManager class can be provided to control the access to various system resources. It is a system-wide unique manager and can only be set once. 


The simplest security model directly built on these language features is JDK1.0.2 sandbox model. It provides a very restricted environment to run untrusted applets obtained from the open network. Local code is trusted and have full access to all system resources while downloaded applets are not trusted and can access only the limited resources provided inside the sandbox. For instance, they are prevented from writing files of the client file system, and from making network connections except to the originating host. The model exploits Java language features. The class loader enforces the Java namespace hierarchy. It guarantees that a unique namespace exists for classes that come from the local file system, and that a unique name space exists for each untrusted network source. Access to crucial system resources is mediated by the Java runtime and is checked by a SecurityManager class that enforces security restrictions. Security policy and mechanism are mixed in this "binary" trust model, which doesn't allow sharing of system resources between local applications and remote applets, nor sharing between applets.

   
The second-generation sandbox model --- JDK1.1 security model uses authentication through digital signature to further divide applets into two categories --- trusted and untrusted. A trusted applet has the same access rights as local applications. It still defeats sharing requirements of real applications. 

2.2 Security Mechanisms for Java


In the sandbox model, the same restricted policy is applied to all applets, making it impossible to implement many desirable real applications --- an obvious case when you want applets to use the local file system and contact multiple network servers in an intranet application. To provide a model which can distinguish between different "sources" of applets and provide appropriate policy for each of them, we need several important concepts and building blocks of system security. First of all, the notions of principal and protection domain. A principal is an entity in the system to which permissions and accountability are granted. A domain is a set of objects that are directly accessible by a principal and are granted the same set of permissions. A security mechanism must provide three elements:

· Authentication: To identify a principal, authentication mechanism must be used. The popular approach is using digital signature and third-party certificates.

· Authorization:  Allow or deny a principal to access certain resources according to a security policy. It includes two parts: how to generate the policy and how to enforce the policy. 

· Auditing of actions: We must selectively record access history so that actions compromising security can be traced to the responsible party.

· Among these three elements, authorization is the crucial one. What kind of authorization mechanism to use will greatly affect the flexibility, trustworthiness, and efficiency of the whole security system, and determine the appropriate auditing mechanism. Basically, there are three approaches for authorization in Java security system [6]:

· Capabilities

A capability is an unforgeable pointer to a controlled system resource. To use a capability, a principal must have been first explicitly given that capability. Once a capability has been given, the principal can use the capability freely, including passing it to others. 

Since Java's type safety ensures object references can not be forged, Java provides a very natural way to implement per-object based protection using capabilities. A capability of class Foo to be given to class Boo is simply a reference to an interface object which groups all the methods Foo allows Boo to invoke. 

· The capability generating and granting mechanism can be designed in different ways. All capabilities for a protection domain could be generated according to the security policy and be granted to the domain when it is initialized. In a more dynamic way, a well-known, centralized policy engine can generate and grant capabilities upon request of the domain. Moreover, applications can arrange capabilities to be passed around through cross-domain method invocations, which is highly dynamic and distinctive to capability-based systems.

· Extended stack introspection

· It is a special implementation of capability system which passes capability through call stack. When a method wishes to access a resource, we must wrap it with a new method which explicitly request the access right (capability) from a policy engine before the callee method. If the policy engine permits the access, it will annotate the capability on the call stack. Inside the callee method, access controlling code of the resource will examine the call stack for the capability. When the wrapping call returns, the capability is automatically discarded along with the rest of the stack frame. 

· type hiding

We can exploit Java's dynamic loading mechanism and enforce a given policy by controlling how class names in a program are resolved at runtime into class files. When a domain is initiated, the policy engine will set a name space configuration according to the policy for this domain. The configuration is a mapping from class names to class files. If the domain is totally denied the access to some class, there will be no entry for this class. If the domain is granted modified access to some class, the class name will be mapped into a subclass or interface. Java's class loading mechanism is modified to use such a configuration as guidance when resolving classes for a domain.

 
Comparing the three mechanisms above, the best thing of type hiding and stack introspection may be their compatibility with existing Java API. In both approaches, we only need to modify the implementation of Java runtime. Type hiding is simple and doesn't incur runtime overhead except for implementing interposition layers. But the static enforcement of policy through configuration fails to provide per-object basis protection. And the sharing of common classes in the Java class hierarchy make it difficult to construct this configuration. Also, auditing actions is hard using type hiding. Stack introspection is complex to implement and suffers highest runtime cost among the three. And relying on call stack inspection makes it specific to Java virtual machine implementation. Also, it has a problem of potential security leak. Once granted and annotated in the stack, a capability is not revoked until the caller returns. Subsequent method calls from this caller are granted the capability incidentally. On the other hand, enforcing explicit reclamation of the capability puts the burden on users.


Capability system is a very promising approach. It can be implemented very naturally in Java. It has low runtime overhead as type hiding. It has good fail-safe and least privilege properties. Accountability can be supported by adding auditing code into capability interposition. The main counter arguments of capability system are its lack of confinement of privileges and incompatibility with the current Java API. Since capabilities can be passed around without mediation of the system, whenever you trust a domain to use the capability, you must also trust it to pass the capability. However, in my opinion, this is a reasonable assumption about trust in web applications. And it's a potential power instead of a security hole since granting access among trusted domains without interference of system will surely enhance performance. As to incompatibility, a capability system would require a new library API, thus old applets can't benefit from the new security mechanism. However, presumably most serious "real" web applications will occur only after a flexible and sound security architecture has been established. So backward compatibility can be achieved without giving new security features to the old applications.

2.3 JDK1.2 Security Architecture


As an example using the security mechanisms discussed above, JDK1.2 security architecture [4] is a true step toward policy-based, easily-configurable, fine-grained access control. For that purpose, it uses appropriate abstractions and building blocks to set up the whole security architecture:

· protection domains and principals

JDK1.2 divides domains into one system domain and multiple application domains. All code in JDK run inside the system domain. An application domain is uniquely identified by the codebase (URL) and a set of public keys corresponding to the private keys that signed all code in this domain. So a principal in JDK1.2 is either the local system or a <codebase, public keys> pair. An application domain is initially created as a result of class loading. A domain also encompasses the permissions granted to code in the domain, as determined by the security policy currently in effect. 

· permissions and policy

Permission classes represent access to resources. To facilitate permission comparison when making access control decisions, each permission class must define a method implies() that represents how the particular permission class relates to other permission classes. Permission groups are also supported. Besides default permission classes for system resources, applications are free to add new categories of permissions to represent access to custom resources. 

· A Policy object represents the system security policy for a Java runtime. Set by the user or by a system administrator, it specifies which new domains should be created and which domain should be granted what permissions. The source location for the policy information utilized by the Policy object is up to the Policy implementation. (Default implementation is static policy configuration files). The Policy object is consulted by a protection domain when the domain initializes its set of permissions.

· assigning domain permissions

· When code from a new signer/location is loaded, an application domain is created "on demand". The security mechanism consults the Policy object currently in effect to evaluate the global policy and return the appropriate Permissions object to the domain.

· access control

The Java runtime maintains a mapping from code to protection domains and then to permissions (Fig. 2.1). During execution, the resource handling code should invoke methods of an AccessController object to check if (according to the security policy currently in effect) the domain has the permission for the requested access, and allow or deny the access based on the result. 
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Figure 2.1  JDK1.2 Access Control

Two modes of right amplification complicate the access control. First, a domain supports inheritance: a callee domain automatically inherits the caller domain's security attributes. Second, applications can call beginPrivileged() and endPrivileged() methods of AccessController to mark a piece of code as being "privileged", thus promote the code to have access to critical system resources. To support these functions, checking methods of AccessController use an extension of stack introspection similar to what we discussed in Section 2.2, inspecting the access control contexts backward along the call chain to search for the permission. 

JDK1.2 provides a promising prototype for a well-structured, powerful and flexible security model. The four building blocks provide a clear interface between its access control mechanism and user-configurable policy, thus facilitate user-dependent, fine-grained security control. Without a formalism for policy, the permission and policy building blocks do their best to bridge the demand of easy, informal policy specification and correct, efficient policy enforcing. Nevertheless, several defective design features make it only half-the-way toward an ideal security architecture:

· Domain Granularity

Without support for explicit domain creation, application can only use domains at the granularity of different code source and the whole local system, which is not enough for applications which requires additional protection of internal resources within its own domain boundary. e.g. a banking application need to support and protect internal concepts such as a checking account, deposit and withdrawal. Also, for better protection, system code should be run in multiple domains, where each domain protects a particular type of resource and is given a special set of rights, thus the risks of an error or security flaw in one domain is more likely to be confined within its own boundary. 

· Static Policy Configuration

Though it supports customized permissions, all permissions must be statically added into configuration file to be utilized by the system-wide Policy object at runtime. Once added, a permission can't be revoked during the execution. Though this is not a problem for small web applications when the cross-domain sharing pattern is clear and fixed, it is impossible for applications where cross-domain sharing pattern is complicated and dynamic.

· Stack Introspection

Though its access control is not a complete extended stack introspection implementation (A promoted method can access all system resources instead of a constrained subset), it suffers from the complexity and privilege revocation problem of general stack introspection approach.

With the deployment of Java technology in web applications, rich semantics of resources, sharing and protection is desired in Java security architecture [11]. The granularity of sharing and protection need to be refined and ideally on a per-object basis. Explicit creation of application-level protection domains should be supported besides "on-demand" domain creation. Permissions granted to a protection domain need to be both statically initialized and dynamically generated/changed. And well-defined, flexible communication channels between protection domains should be designed to facilitate frequent cross-domain communications. Based on the observation of three underlying security mechanisms and JDK1.2 security architecture, it makes a lot of sense to build a new Java security architecture for web applications, with all these new requirements in mind at the start, which is the very motivation of our Java security architecture based on J-Kernel. 

3. Security Architecture Based on J-Kernel

3.1 J-Kernel


J-Kernel [7] is a capability-based security system microkernel implemented in Java. Similar to the microkernel approach in operating system design, the goal of J-Kernel is to provide fundamental and flexible abstractions and primitives for customized security system. Based on the merits of capability approach and the intimacy between a capability system and Java object oriented structure, J-Kernel uses capability as the basic abstraction.


Though a reference to an object in Java is potentially an unforgeable capability, and the name space of a class loader is an implicit protection domain, simply building the capability system on these language features will suffer inherent problems, such as "share anything", capability revocation, inter-domain dependencies and side effects, domain termination, thread protection, and resource accounting [11]. All of these are intrinsically due to the lack of distinction between shared and ordinary, non-shared objects. 

To address these problems, J-Kernel adds a real indirection of protection domains and capabilities. It explicitly defines domains as objects of the class Domain. Each domain includes a name space (with its own class loader) and a set of threads. To distinguish objects local to a domain from objects shared between domains, it defines capabilities to be objects of the class Capability and are handles onto objects in other domains. Capabilities can only be created by the domain that owns the corresponding objects. By carefully design of this indirection, J-Kernel provides the following attractive features:

· Capability revocation. A capability can be revoked at any time by the domain that created it. All users of a revoked capability throw an exception, ensuring the fail-safe property.

· Domain termination. When a domain terminates, all of the capabilities that it created are revoked. So all the memory of the domain can be freed.

· Well-defined, efficient cross-domain calls. Cross-domain calls are performed by invoking methods of capabilities obtained from other domains. The J-Kernel class loader interposes a special calling convention that only capability objects are passed by reference, regular objects are passed by deep copy. Therefore only capabilities can be shared between protection domains. J-Kernel borrows the local method - stub class - skeleton class - remote method mechanism from Java Remote Method Invocation, relying heavily on remote interface classes to implement its capabilities and cross-domain calls. Similar to RMI, the stub class of a cross-domain call is automatically generated. Besides switching domains, J-Kernel assigns more responsibilities to local stub. The stub not only marshals arguments and enforces the calling convention, but also supports revocation and switches thread segments to protect threads.

· Thread protection. To protect the caller and callee from each other in the same thread, the generated stubs provide the illusion of switching threads by interposing its own ThreadSegment class, in which all thread methods are exerted on thread segments instead of threads. The caller and callee's thread segments are independent and protected from each other. The problem with this "virtual" thread switching is that it doesn't guarantee that the caller will back out if the callee doesn't return.

· Resource accounting is facilitated by distinction between capabilities and local objects. Whenever the method of a capability object is invoked, i.e. a cross-domain call happens, the capability object can query the current domain it resides and record the caller domain, the callee domain and other information about this call. 

    
Implemented entirely as a Java library, J-Kernel resolves rights revocation, domain termination, thread protection, accountability, the typical problematic issues of a capability-based security system and provides powerful building blocks for ambitious custom security architecture.

3.2 J-Kernel-based Security Architecture


As we discussed in section 2.2, to build a security architecture, we must first instantiate the notion of principal and protection domain, then set up authentication, authorization and action auditing mechanisms. 


A brief revisit of applications will make clear what features we should provide in our security architecture. Generally speaking, two camps of web applications need to be supported. One is general browsing, where the main security concern is to protect local system from applets and protect applets from each other, without unduly restriction on coarse-grained sharing among all applets and local system. In this case, generally the granularity of domain according to code source is enough, and static policy suffices. The other is component web application using applets as one level of building block and browser as desktop interface, which requires fine-grained sharing and protection among applets (or domains inside applets), and different resources of local system. In this scenario, since the sharing pattern (when to share what with whom) is known and specific to the application, explicit domain creation and dynamic policy is desirable to achieve high flexibility and performance. To support both camps and especially facilitate the second one (which we believe will leverage the real power of web technology), we design a security architecture based on J-Kernel with the following goals bear in mind:

· per-object basis sharing and protection

· support explicit domain creation, thus the granularity of application internal domains

· Policy can be statically configured, dynamically generated/changed, and efficiently enforced.

3.2.1 Authentication

In our architecture, we allow applets to explicitly create internal domains using J-Kernel functionality. So multiple domains and their principals can have the same code URL and public keys (with certificates) (We assume a programmer will sign his/her code with the same signature). A triple <URL, public keys and certificates, unique domain id local to the URL> may serve as the identification of a domain. However, to authenticate the principal, we can still resort to the ordinary authentication method. When the digital signature and third-party certificates are verified, the principal triple can be attached to the domain as the basis for authorization. 

3.2.2 Authorization


Authorization is the key part of our architecture. It includes policy generation and enforcement (Figure 3.1).
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Figure 3.1 Authorization Mechanism

3.2.2.1 Three Forms of Policy


Policy is a system-wide object specifying the rights information for cross-domain calls. It has three forms: external, middle, and internal. In the external form, policy is expressed at high level as Policy object in JDK1.2 model. Typically, a policy is a list of permissions. Each permission object is a triple <object/object group, method/methods, principal/principal group>, which grants the principal or principal group the right to invoke the method/methods of the specified object/object group. For example,


<saving_account, (deposit, read_balance), (foo,boo)>

where foo,boo are mnemonic names of two principals (mnemonic names can also be used for objects and methods).

The high level specification of policy will be resolved to its middle-ground form, where it is stored as a 3D access matrix specifying the mapping between objects, methods, and domains (Fig. 3.2). To facilitate the mapping, we use internal id to identify the entities. Every object has a unique id in the whole system scope. So is every domain. Every method has a unique id in the scope of its object. From this access matrix, we can easily tell which methods a specific object "open" to a specific domain. This form is mainly used by the system to generate the internal form of policy from its natural form, and serves as a basis for policy querying.


The internal form of policy is the junction of policy specification and policy enforcement. To use J-Kernel capability mechanism to enforce policy, we group all the methods that a specific object "open" to a specific domain into an interface object, create a J-Kernel capability for it, and express the policy internally as a 2D mapping between capabilities and domains (Fig 3.3). This internal form serves as the basis for policy enforcement. 


3.2.2.2 Policy Generation and Modification

To make policy statically configurable and dynamically changeable, we grant the rights to each principal to set up, view, query, and modify the part of global policy object pertaining to the objects in its own domain. Interfaces to serve this purpose are important. 

A variety of user interfaces to external policy form will benefit both browsing applications and component applications: At configuration phase, a principal can use both script or graphics interface to easily set up the initial policy pertaining to objects in its domain. As mentioned in [5], common "profiles" of permissions with intuitive-sounding names, e.g. "typical game permissions" may bring convenience to users; At runtime, if an operation on an object hasn't been granted the permission, the system can optionally consult the owner principal with a pop-up dialog. The principal can either deny the permission, or change the initial policy by granting the permission; A user interface can be provided letting a principal to query and modify permissions relating to its objects at runtime. Programming interface, e.g. permission class can also be provided, thus policy initialization and modification can be done in applications.

In addition, to exploit the knowledge of sharing pattern in component applications, we also provide a direct interface to internal policy form. In other words, all the Capability, Domain, Policy class are made public. So domains in component applications are free to interface their own objects, create their own capabilities, specify the target domains of these capabilities, and submit the <capability, target domains> pair to the Policy object.

Three forms coexist in the Policy object. We define a partial coherence here which is adequate for practical purpose. Each change on the upper level must be reflected on the lower level, while the inverse is not required. As we will see below, we allow generation and modification of policy at the external level and internal level. So once a change is made to the external form, the corresponding change to the middle and internal forms will be made to ensure the policy enforcement (using internal form) and the correctness of policy querying (using middle form). Note that the internal form may need to update a capability object. Since object is immutable, the old capability will be revoked and a new capability will be generated by the system on behalf of the owner principal. By contrast, changes at the internal level will go unnoticed by the middle level. It's not only due to the fact that the inverse transformation from internal mapping to access matrix is hard, but more important, we assume component applications manipulating capabilities at the internal level has full knowledge of the sharing (cross-domain communication) pattern and no runtime querying is necessary. In this case, things happening at the low level will not be reflected on the high level to enhance performance.

3.2.2.3 Policy Enforcement


Once the centralized Policy object has the internal mapping from capabilities to target domains, it must run its enforcing engine to enforce the policy. Using the abstraction of capability makes this enforcement fairly straightforward. We need only to make sure that for every entry in the mapping, any domain in the target domain list can use the capability when needed. To define the enforcement behavior, we need only define the behavior of the enforcing engine when the internal mapping changes. Three types of change can be made to the internal mappings: adding a new entry with a new capability, removing an entry, and change to the target domain list of one entry. Let's look at how the enforcing engine responses to these changes:

(1) add a new entry

A capability is created (either by its principal or by the system on the behalf of its principal) and its target domains are specified. In this case, the engine can take one of the two strategies:

· active forwarding

Using this strategy, the system creates a dummy repository for each domain when the domain is initialized. Whenever a new capability is added to the internal mapping, the enforcing engine forwards the capability to each target domain's repository (Fig. 3.1). After that, any target domain can get the capability from its repository without query to the Policy object. Thus, the repository is served as a cache of capabilities.

Note that a domain only has lookup right for its repository. Only the enforcing engine can deposit and remove capabilities from repositories.

· lazy checking

When a new capability is added, the enforcing engine does nothing. It just sits there, waiting for the request from domains. Once such a request arrives, it will search for the requested capability in the internal mapping. Only when the capability is found, and the domain is one of the target domains, it will return the capability to the requesting domain. Otherwise, return null.

The selection of these two strategies is a trade-off between the forwarding cost plus subsequent lookup time in repository, and the lookup and check in public capability pool each time. Also, a replica capability in repository needs some additional care (not much) when removing the domain from the target list. The rule of thumb is: if the capability will be frequently used, and the target domain list is relatively short, active forwarding will have performance gain. So in the scenario of browsing application, lazy checking may work well. For component applications, we can either let capability creator to choose the appropriate strategy according to its knowledge about the frequency of capability usage, or the system can use lazy checking first, and if the capability is too frequently requested by some target domain, forward it to the repository of that domain.

(2) remove an entry

     A capability is revoked (either by its principal or by the system on the behalf of its principal). J-Kernel guarantees that once a capability is revoked, all references to it will throw an exception. And it's the responsibility of the user of the capability to catch the exception and do appropriate processing. So the enforcing engine in this case just does nothing, hoping every target domain can handle the capability revocation decently.

(3) change the target domain list

     Adding a domain into the list is equal to adding a capability for that domain. Either active forwarding or lazy checking can be used here.

     Deleting a domain from the list is NOT equal to revoking the capability. But it's not harder to handle than capability revocation. If the engine has added a capability into the domain's repository, it should remove the capability from the repository. If lazy checking is used for this capability, nothing needs to be done. The domain will fail to get the capability the next time it requests the capability.


On the domain side, once it need a capability, it will first look it up in its own repository. If it can't find the capability there, or it gets a revoked capability which throws an exception when using, it will request the capability from the global Policy object. The revoked capability case will arise when lazy checking is used. Suppose a capability named C has been added into domain D's repository, and then the entry of C is removed from the internal mapping. The deprecated C will remain in D's repository. When a new C is generated and added into the internal mapping, the engine does nothing. If at this moment D needs C, it will search for C first in its repository and get a deprecated C. And using it will throw an exception. At this time, appropriate behavior of D is looking up C in the central mapping, instead of aborting the intended action. 

3.2.3 Action Auditing


Auditing of action in this security system is facilitated by the accountability of J-Kernel. The interposed code in a capability can be instrumented to query the principal (domain) invoking this capability, log this information with all other useful information of this invocation, e.g. the callee domain, the method invoked and its arguments. All of the recorded information can be used to trace the rogue actions to the responsible party. Moreover, the auditing mechanism can be designed as configurable to allow different levels of supervision --- tradeoff between strong accountability and low overhead.

3.3 Summary of Security Architecture and Beyond


The security architecture we build on a capability-based security system microkernel is policy-based and fine-grained. Using capability as abstraction, sharing and protection is on a per-object basis. Explicit protection domain creation facilitates the implementation of application-specific sharing and protection semantics. Policy is not only easily-configurable, but also dynamically changeable. Capability microkernel makes policy enforcement simple and efficient. All of these make this architecture ideal for both general browsing and component web application. In addition, passing capabilities among mutually trusted domains without the mediation of security system is another useful feature a coorperated application can exploit. 


A comparison of our authorization mechanism with SecurityManager (or AccessController) in JDK security architecture will reveal many interesting discussing points. [5] claimes that SecurityManager in Java is not an efficient reference monitor in that

· It is not always invoked ( no security checking is the default case)

· It is not tamperproof ( because Java is not truely type-safe)

· It is not verifiable. ( It specifies some ad hoc policy without a formal specification)

 Assessing our mechanism using these criteria, we conclude that our access control mechanism

· is almost always invoked 

All capability passing is through policy enforcing engine except mutually trusted applications intentionally avoid that.

· is not tamperproof either (because our mechanism is also based on Java safe language feature)

· is potentially verifiable 

Since we separate policy from mechanism, we can verify the correctness of our authorization as long as the policy is verifiable. 


So it's quite clear that we need to improve our model in two directions. One is to make Java truely type-safe. Work here includes developing a formal semantics for Java type system, addressing the language weaknesses, such as weak module system, liberal scoping rules, and developing a formal definition of bytecode, making it a hierarchical form instead of linear form for ease of the verification, etc. [5]. The other is policy formalization and verification. For this direction, several observations need to be made here:

· The support for application-dependent and special-purpose security policies is critical in web applications. 

· Since informal policy may have incorrect implementations, a sound security architecture should formalize and verify policy. There is formalized mechanism for policy specification and enforcement. [12] argued that a conjunction security  automaton can be used to specify and enforce complex system security policies provided that the security policy belongs to a certain class, including reference monitor as a special case. 

· Formalized policies are easy to enforce. But the gap between informal user security requirements and formalism poses a problem. The translation from the former to the latter should be automatic for practical purpose. And since informal requirements could inherently be inconsistent, there must be a scheme for the translator to resolve this inconsistency (maybe through interaction with user) to build up a consistent formalized policy at the end. Translation like this is still a challenging and active topic in the literature.

4. Integrating Security Architecture into Web Browser


In component web applications using applets as front-end building blocks and web browser as fully multimedia-featured desktop interface, mutually untrusted parties in the whole system (applets, components within applets, building blocks of web browser, and local system) need to run in separate protection domains to share resources in a secure way. To enable this, a security architecture must be integrated into web browsers. Deploying our security architecture on a popular browser is a meaningful work.


The browser we choose is Mozilla Navigator 5.0 (open source code of Netscape Communicator 5.0), which is implemented in C. The problem with open source code is that it is not a full-fledged Java-enabled browser. The Symantec Visual Cafe and Java-related code (code to handle applet) has been extracted out. So besides implementing security mechanism, we also have to make it Java-enabled. 


Our short-term plan is to first integrate J-Kernel into Mozilla. Let applets from different code source run in separate protection domains. Thus untrusted applets can exploit J-Kernel features such as thread protection and communicate with each other through capabilities to enforce protection. The structure of the whole system is shown in Figure 4.1.


Figure 4.1 Structure of J-Kernel Integrated Browser


When Mozilla is initialized, it will launch J-Kernel virtual machine in the top protection domain, which will in turn launch a system-wide applet subsystem in a separate domain. The applet subsystem serves as an applet proxy. It is responsible for downloading the applet from its base URL, launching it into a separate domain, and mediating all calls from Mozilla to the applet. Adding an indirection of subsystem here is necessary and important. It serves three purposes:

· For security reason, methods of untrusted applet domain shouldn't be invoked by unsafe native code, which will bring potential security hole. Instead, the browser's native code can talk to the subsystem which we trust.

· The subsystem will run methods of the applet in J-Kernel thread segment, thus execution of those methods can exploit J-Kernel thread protection feature.

· As a complete mediation between the browser and applets, the subsystem has all information of applets. This can be utilized for communication between applets ( which we will discuss below further).

For the purpose of mediation, the subsystem maintains a global table which records applet management information, including applet capability, code source (base URL, public keys, and class name), user-defined applet name, and unique id. Note that since each applet will be launched in a domain different from the subsystem, a capability must be created for each applet such that the subsystem can manage the applet through that capability.


Whenever Mozilla layout engine encounters applet in HTML file (a applet in HTML file is marked by <APPLET></APPLET> tag pair), it will call LaunchApplet() method of the subsystem, passing the location and authentication information for subsystem to launch the applet. The subsystem then loads the applet, creates a new domain, creates a capability of the applet in this domain as a handle of the applet for the subsystem, and invokes init() and start() methods of the applet. In addition, it will allocate a unique id for this applet, and record information about this new applet in the global table. Finally, it will return the unique id as a handle of this applet to the browser.


Applet is a subclass of java.awt.Panel class and may or may not have windowy look. But it has built-in event-handling mechanism inherited from Panel class. In principle, the browser will supervise the events in its window system and deliver some of them to the applet if the applet has responsibility to handle these events, e.g. the event causing repaint in browser window will be delivered to the applet so that the applet can invoke its own repaint() to redraw its window. In addition, three methods of the applet need to be explicitly called by the browser when needed. When the browser leaves the web page where the applet resides, it must call the stop() method of the applet. When it reenters the page, start() of the applet will be called. When the web page is closed, the browser should call destroy() of the applet to let the applet reclaim some specific resources. All these calls from the browser to the applet in our system are actually mediated by the subsystem. The browser calls the mirror method of the subsystem, passing the uid of the applet. The subsystem will make the real call into the applet through the applet capability.


If in the future the system-wide policy object is implemented, applets can communicate with each other by passing capabilities through the mediation of the policy object. An interesting observation here is, since the applet subsystem has all the applet capabilities in the system, it can serve as an "applet policy object". Applets can submit capability and target domains mapping to the subsystem, which can use active forwarding or lazy checking strategy to enforce the "policy".


We have built applet subsystem on J-Kernel to manage applets. The browser now can launch MS JVM and its layout engine can request the subsystem to launch an applet into a separate domain on its behalf. To achieve the short-term goal, we still need to glue the browser's windows event handling and the applet's AWT event handling and implement the interaction between the browser and the applet.

5. Related Work


Several major vendors have proposed extensions to the sandbox model [1,2,3,4]. But they all focus on protecting local system resources from untrusted applets, without addressing sharing and protection between applets, leaving alone between internal domains of an applet. Therefore they cannot serve as a general security model. However, their pioneering work toward a policy-based, fine-grained security architecture benefit us a lot when we extend these ideas in our model.


The work of Drew Dean, Dan S. Wallach, et.al. focuses on extensible Java security architecture. They analyzed the security issues in deploying Java technology, especially in web browsers [5]. And they compared and experimented the three basic approaches in state-of-the-art web browsers [6], providing instructive guidance to the research in this area.


J-Kernel [7] enforces a structure similar to traditional capability systems [8] using language safety. Thus it removes the address space boundaries and achieves fast cross-domain communication similar to single-address operating systems. Also, it takes a software microkernel design philosophy analogous to microkernel approach in operating system design [9], to facilitate customized complex security services building on its top. An example of using this security microkernel is integrating it into Microsoft IIS server to manage uploaded servlets and server system resources, which bears a lot of similarity to our integration work with browser.

6. Conclusions and Future Work


To utilize Java mobile code, real complex web applications should be built on top of a flexible and trustworthy security architecture. Both the security requirements from web applications, and the trend from the simplest sandbox model to policy-based, refined security model make us believe a security architecture supporting object-sharing, explicit domain creation, flexible and efficient policy generation and enforcement will be a win. Based on the comparison of underlying security mechanisms, we proposed a design of such a security architecture based on J-Kernel, a capability-based security system microkernel. To support applications using web browser as desktop interface, integrating this architecture into web browser is the foremost step to applying our security architecture and is the work under way.


Besides applying this security architecture, which is one direction of our work, another direction is to improve the security model itself. To improve the soundness of the model, we need to make Java a true type-safe language. And though hard, the issue of policy formalization and verification needs to be addressed.
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Figure 3.2 middle form of policy





corresponding permissions:


<O1, (M2,M3), D1>


<O1, (M1,M3), D2>


<O1, (M1,M3), D3>





Capabilities of object O1:


C1: interface of methods M2, M3


C2: interface of methods M1, M3





Figure 3.3 internal form of policy
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� Imagine on a web page, applet A queries the real-time database for the latest information of your stock portfolio and render the curves and bars of your favorite technical measures on screen. Applet B using the computed technical measures as input, interacts with you and help you to figure out the most profitable trade you can make. And applet C receives the final decision from applet B and sends it to the server.


� They are unfortunately and unfairly regarded as only "toys" at present because the "sandbox" security model ties their arms and legs.


� Java language definition has neither a formal semantics nor a formal description of its type system. And its type system has weakness. So it's not a strict type-safe language. See [5]. 


� The bytecode has no formal semantics so far. And it has weakness. See [5].





