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Abstract

We survey three examples of large-scale scientific work-
flows that we are working with at Cornell: the Arecibo sky
survey, the CLEO high-energy particle physics experiment,
and the Web Lab project for enabling social science stud-
ies of the Internet. All three projects face the same general
challenges: massive amounts of raw data, expensive pro-
cessing steps, and the requirement to make raw data or data
products available to users nation- or world-wide. How-
ever, there are several differences that prevent a one-size-
fits-all approach to handling their data flows. Instead, cur-
rent implementations are heavily tuned by domain and data
management experts. We describe the three projects, and we
outline research issues and opportunities to integrate Grid
technology into these workflows.

1 Introduction

The Grid, with its associated tools, holds great promise
for simplifying the development and deployment of large-
scale data-driven workflows. At Cornell, domain scien-
tists from astronomy and physics are working together with
computer scientists on three large-scale workflows: the
Arecibo sky survey, the CLEO high-energy particle physics
experiment, and the Web Lab project for studying the evo-
lution of the World Wide Web. All three projects have mas-
sive amounts of data which are growing rapidly; they all
have sophisticated data processing pipelines that meld raw
data through expensive processing steps into finished data
products. For all projects, the consumers of both the raw
data and the data products is a distributed community of
scientists, located all over the globe.

However, despite these similarities, there are also strik-
ing differences between the workflows. Therefore at this
point, each group has built its own custom solution but

with overlapping use of common hardware resources. In
this paper, we survey the existing solutions and our expe-
rience with the three workflows, and we outline research
challenges derived from these problems. In particular, it is
the goal of this paper to stimulate discussions at the work-
shop about novel research directions motivated by real ap-
plications.

The remainder of this paper is organized as follows.
We first survey the workflows associated with the three
projects: The Arecibo Sky Survey (Section 2), the CLEO
High-Energy Particle Research (Section 3), and the WebLab
(Section 4). We conclude with a summary and next steps
(Section 5).

2 The Arecibo Sky Survey for Neutron Stars

This project makes use of the Arecibo Telescope in
Puerto Rico [8], the world’s largest radio aperture, as the
source of data for several astronomical surveys [17]. The
upgrade of the telescope and installation of a 7-feed ar-
ray mounted at the focus (the Arecibo L-band Feed Array,
ALFA), operating at 1.4 GHz, makes the pulsar survey the
most sensitive ever done. The survey commenced in early
2005 and will continue for at least five years, producing
about a Petabyte of raw data. Processing to identify pul-
sars and transients yields data products about one to a few
percent the size of the raw data. These data products are
subjected to a meta-analysis that discriminates and classi-
fies terrestrial interference and astrophysical signals. Inter-
esting pulsars have already been discovered, including one
in a 4-hr orbit with another compact object [19].

2.1 Arecibo Data Flow and Challenges

The Arecibo data flow consists of several major data ac-
quisition, transport, and processing steps:



1. Acquisition of dynamic spectra at the telescope and
recording to local disks.

2. Initial local processing for quality monitoring and for
making preliminary discoveries.

3. Transport of raw data to the Cornell Theory Center
(CTC) for archiving, processing and dissemination to
other processing sites.

4. Further processing of the data using proprietary al-
gorithms at several member institutions of the “Pul-
sar ALFA” (PALFA) Consortium (including Cornell);
member institutions are distributed all over the world.

5. Consolidation of processing data products at the CTC
for meta analysis.

6. Incorporation of data products into a database that fa-
cilitates the meta analysis.

7. Long term archiving of raw data and data products for
reprocessing, which is common for pulsar surveys, and
for cross wavelength studies now and in the indefinite
future. This involves connection with the National Vir-
tual Observatory.

Figure 1 summarizes the important steps of the current data
flow. Approximately five years of telescope time is needed
to acquire the data, but the plan is to keep the raw data
and data products indefinitely. Web access to the database
at the CTC includes linkage to the National Virtual Ob-
servatory [14]. Follow-up observations on discovered ob-
jects will take many years after the survey, using telescopes
across the electromagnetic spectrum and also using gravita-
tional wave detectors.

Data are obtained during observing sessions of 3 hours,
once or twice a day for periods of one to two weeks, yield-
ing about ten Terabytes of raw data. To ensure data quality
against spectrometer functionality, proper signal levels, and
interference that contaminates signals to highly-varying de-
gree, data are analyzed locally at the Arecibo Observatory.
There is some interest to perform full pulsar-search process-
ing at Arecibo on some of the data. Primary reasons are (a)
one or more pulsar astronomers involved with the project
will be in residence at Arecibo who have an interest in being
involved with the processing; (b) local processing reduces
demands on observatory staff to ship all data promptly and
(c) any initial pulsar candidates found can be confirmed dur-
ing the same telescope session. For the most part, however,
processing of raw data will require off-island resources, pri-
marily because the resource demands are high.

Processing consists of data unpacking, dedispersion,
Fourier analysis, harmonic summing, threshold tests to
identify candidates, reprocessing of dedispersed time series
to signal average at the spin period of a candidate signal,
and investigation of the time series for transient signals that
may be associated with astrophysical objects other than pul-
sars. In addition, interference from terrestrial sources needs

to be at least identified and most likely removed from the
data. This requires development of new algorithms that si-
multaneously investigate dynamic spectra for each of the
7 ALFA beams and apply tests of different kinds. Overall
about 50 to 200 processors would be needed to keep up with
the flow of data. However, these numbers are only for the
basic analysis and do not include additional, possibly sub-
stantial, overhead from Radio Frequency Interference (RFI)
excision. Finally, another level of complexity comes from
addressing pulsars that are in binary systems, for which an
acceleration search algorithm also needs to be applied.

To further refine pulsar candidate signals, usually about
0.1% of the raw data volume, before they are confirmed on
the telescope, a meta-analysis is needed to cull those candi-
dates that appear in multiple directions on the sky. With past
experience, we find that spurious signals take a wide range
of forms, from those that are obvious and easy to recognize
in the first stages of the analysis, to subtle cases that ap-
pear very sporadically and can mimic astrophysical signals
uncannily well.

Storage requirements during the different processing
steps are even more challenging. A useful data block con-
sists of∼ 400 telescope pointings obtained in one week, or
about 35 hours of telescope time. The corresponding raw
data require 14 Terabytes of storage. Dedispersion entails
summing over the frequency channels with about 1000 dif-
ferent trial values of the “dispersion measure,” each yielding
a time series of length equal to the original number of time
samples. These time series require storage about equal to
that of the original raw data. The processing is iterative, re-
quiring operations on both the dedispersed time series and
the raw data, so a minimum of 30 Terabytes of storage is
required instantaneously.

2.2 Current Solutions and Future Challenges

As discussed in the previous section, most of the pro-
cessing has to happen off-site. Unfortunately, because of
Arecibo’s limited network bandwidth to the outside world,
for the foreseeable future, network transport of raw data is
infeasible. We therefore have developed a system based on
transport of physical ATA disks with raw data. The main is-
sues of data transport are: personnel requirements; assess-
ment and maintenance of data integrity; tracking and log-
ging; ensuring no data loss; and developing a database of
utility into the indefinite future.

The raw data disks are transported to the CTC, where
their contents are archived to a robotic tape system and
retrieved for processing. Some of the raw data and data
products are also distributed to participating PALFA mem-
ber organizations. The large number of data products (data
diagnostics and plots, test statistics, candidate lists, confir-
mation analyses, etc.) that are created for each telescope



Figure 1. Arecibo data flow

pointing, are loaded into a MS SQLServer database system
at the CTC [1]. The database is accessed through a Web-
based server and will provide the tools for meta-analyses.
It currently supports interactive groupings of candidate sig-
nals, tests for correlation or uniqueness of the candidates,
and generation of appropriate plots for accomplishing the

combination of pattern recognition and statistical analysis
required. Eventually, the entire processing pipeline will be
controllable from the Web-based system.

The current transport and processing pipeline, as de-
scribed above, is adequate but requires a great deal of in-
tervention by personnel at Arecibo, in the Astronomy De-



partment at Cornell, and at the CTC. We need to continue
to automate more of the steps. The largest challenge is
to evolve the entire system into a sustainable structure that
will allow (a) room for growth when data rates using a new
spectrometer will increase; (b) provision of tools for the di-
verse analyses that PALFA Consortium members will want
to conduct over the duration of the survey; and (c) devel-
opment of infrastructure for linking the PALFA data sets to
the National Virtual Observatory (NVO) [14]. Connecting
the CTC database system with the NVO requires particu-
lar XML-based protocols that have been developed by the
NVO Consortium. We are currently developing tools that
use these protocols.

The raw data and data products will be valuable for the
indefinite future, providing tremendous opportunities for
multi-disciplinary astrophysical studies that will link satel-
lite telescope data with the Arecibo data. For example,
the next generation gamma-ray telescope (the Gamma-ray
Large Aperture Space Telescope, GLAST), to be launched
in 2007, will be a discovery and analysis instrument that is
of direct interest for the Arecibo project. We must ensure
flexibility and transparency of the tools for use by a broad
constituency of researchers.

Archiving raw data and data products for future stud-
ies makes it imperative to track the provenance of these
data. For example, data products might be updated in the
future, based on then available better noise elimination al-
gorithms. To ensure repeatability of scientific analysis and
consistency of results, we will tag all data products with a
version number indicating processing code and processing
site. These versioning issues are similar to the ones faced
by the CLEO project (see discussion in Section 3).

Another aspect of the large Arecibo data sets is the
prospect for discovering entirely new classes of signals and
thus astrophysical objects. Exotica, such as evaporating
black holes, transient emissions from extrasolar planets,
and signals from other civilizations, are examples of poten-
tial serendipitous discoveries that may be made if adequate
tools for exploration exist.

A key issue for these and other considerations is the
migration of the data to new storage technologies as they
emerge. Storage media costs undoubtedly will decrease, but
manpower requirements for migrating the data are signifi-
cant and care is needed to avoid loss of data.

3 The CLEO High-Energy Particle Research
Project

CLEO is a high-energy particle physics (HEP) research
experiment at Cornell University [12, 18]. The CLEO col-
laboration includes over 150 physicists from more than 20
universities, studying the production and decay of beauty
and charm quarks and tau leptons produced in the Cor-

nell Electron Storage Ring (CESR) [3, 15]. The collabo-
ration makes some of the most sensitive tests of the Stan-
dard Model of elementary particles, key to understanding
the forces of nature and the fundamental structure of matter
[10].

The primary goal of CLEO software is to produce
physics analysis results of the electron-positron collision
events detected by the CLEO detector. Delivery of physics
analysis products follows complex work and data flows that
have evolved over the past 30 years.

3.1 CLEO Data Flow and Challenges

CLEO has accumulated more than 90 Terabytes of
data, including data products like reconstruction and post-
reconstruction data. This is a massive data collection, but
nowhere near Arecibo’s Petabyte-size storage requirements.
The biggest challenge in CLEO lies in its complex data pro-
cessing workflow, as summarized in Figure 2 (red arrows
indicate data flow). Due to space constraints, it is not pos-
sible to explain it in detail, but we will highlight important
aspects.

The current data analysis software comprises several
million lines of C++ code. The processing steps include

1. Acquisition of runs of particle collision measurements
and initial analysis.

2. Reconstruction of the runs; followed by computation
of post-reconstruction data for each run.

3. Generation of Monte-Carlo simulation data for each
run.

4. Physics analysis, performed either locally or remotely.

These steps are explained below. They produce many dif-
ferent data products: raw data of the detector response
to electron-positron particle collisions, detector calibration
data, data from Monte Carlo simulations of the detector re-
sponse, centrally produced derived data (known as recon-
struction), and the output of the physics analysis that de-
pends on all of the other data types.

Raw data are the detector response to the particle col-
lision events measured by the CLEO detector. They are
stored in units known as runs. A run is the set of records
collected continuously over a period of time (typically be-
tween 45 and 60 minutes), under (nominally) constant de-
tector conditions. A run worth analyzing typically com-
prises between 15K and 300K particle collision events.

A reconstructed run is produced by processing the raw
data for a run. A typical example is the identification of
particle trajectories from the energy levels recorded by mea-
sure wires. Each event in a reconstructed run comprises
many sub-objects like particle trajectories, which may in
turn have sub-sub-objects. An atomic storage unit (ASU) is



Figure 2. CLEO data flow

the smallest storable sub-object of an event. An ASU will
never be split into component objects for storage purposes.

In addition to the reconstructed data files, post-
reconstruction values are also produced and stored. These
values depend on statistics gathered from the reconstructed
data, and so cannot be calculated until after reconstruc-
tion. There are typically a dozen ASUs per event in the
post-reconstruction data. For each version of the recon-
structed data, there may be several versions of the post-
reconstruction data.

The processes for reconstruction and physics analysis re-
quire iterative refinement. With each iteration, the knowl-
edge about the measured collision event increases, e.g.,
which particles were produced during the collision, and
hence another iteration might be triggered. When starting
a new analysis, a physicist normally wishes to use the most
recently produced version of the analysis software and the
corresponding version of the reconstructed data. For repro-
ducibility, it is critical that in each iteration, the physicist’s
analysis job makes consistent use of software versions and
accesses the same information as previous iterations (unless
explicitly told to do otherwise).

The tradition at CLEO has been to continue to use the
version of the data with which an analysis was started
throughout the lifetime of that analysis, rather than period-
ically updating the entire analysis to newer versions (un-
less there is a compelling reason to repeat the analysis with
a newer version of the reconstructed data). With multiple
newer versions of the reconstructed data appearing during
the lifetimes of some analyses, this can impose a substan-
tial burden on the physicist to track which versions of the
data were used, particularly as data collected after the anal-
ysis began are added. Ideally the system should automat-
ically keep track of the provenance of reconstruction and
post-reconstruction data. For the centrally managed recon-
struction processes this is not too difficult. Since it always
processes a run as a unit, all events in a run have identical
provenance. However, keeping track of provenance for the
later physics analysis is much more challenging, because
it can process individual ASUs differently. Keeping track
of provenance at this level is infeasible (see also discussion
below).

Similarly, physicists need reliable access not only to
provenance information, but to other metadata as well. For
instance, often a researcher is only interested in certain
types of collision events. The challenges in handling meta-
data are how to efficiently manage this evolving information
and how to provide fast access to it.

In addition to these provenance and metadata manage-
ment challenges, there is a need for making each iteration of
reconstruction and analysis as fast as possible. The physi-
cists have designed sophisticated caching and partitioning
schemes to achieve this goal. For example, CLEO data are



partitioned into hot, warm and cold storage units. This is a
column-wise split of the event into groups of ASUs, based
on usage patterns. The hot data are those components of
an event most frequently accessed during physics analysis.
These ASUs are typically small compared with the less fre-
quently accessed ASUs. Discussing all these optimizations
in detail is beyond the scope of this paper. Each one is based
on a careful analysis of typical workloads and cannot be
easily achieved by general-purpose data management tools.

3.2 Current Solutions and Future Challenges

CLEO recently implemented a new data management
system, called EventStore [18]. EventStore is primarily
a metadata and provenance system, designed to simplify
many common tasks of data analysis by relieving physi-
cists of the burden of data versioning and file management,
while supporting legacy data formats. Data stored in the
various formats are managed such that physicists conduct-
ing analyses are always presented with a consistent set of
data and can recover exactly the versions of the data used
previously. EventStore is accessed via a plug-in module to
the data analysis software.

In order to support a variety of use cases, the CLEO
EventStore comes in three sizes, tailored to the scale of
the application: personal, group and collaboration. The
only user interface differences between the three sizes is
the name of the software module loaded, which is also the
first word of all EventStore commands. Provenance data
are stored in the data files using a simple extension to the
standard CLEO data storage system. Other metadata about
the data are stored in a relational database supporting the
standard SQL query language. All but the lowest layers of
the database interface code are independent of the database
implementation, allowing transparent use of an embedded
database (SQLite [11]) in the standalone versions and a
standard relational database system (currently MySQL [7]
or MS SQL Server [6]) in the larger scale systems.

The personalEventStore was originally meant to man-
age user-selected subsets of the data on an external per-
sonal system such as a laptop or desktop. It is de-
signed to provide the versioning and metadata query facil-
ities of the EventStore with minimal overhead. The rela-
tional database is implemented using the embedded SQLite
database, making the personal EventStore self-contained in
the EventStoreModule package and supporting completely
disconnected operation. To support iterative and collabo-
rative analyses, the system is designed so that merging the
results in a personal EventStore into one of the larger scale
systems is a quick and reliable operation. Somewhat to
our surprise, merging became the fundamental operation for
adding results to the group and collaboration stores. Rather
than having long-running jobs hold lengthy open transac-

tions on the main data repository, it proved simpler to cre-
ate a personal EventStore for the operation, which is merged
into the larger store upon successful completion of the oper-
ation. This stratagem allowed the highest degree of integrity
protection for the centrally managed data repositories with
the fewest modifications to the legacy data analysis applica-
tions.

The EventStore organizes consistent sets of data by as-
sociating a list of run ranges and a list of version identifiers
for each run range with a data grade. Assignment of data to
grades, particularly to the “physics” grade, is an administra-
tive procedure performed by the CLEO officers. The evolu-
tion of a grade over time is recorded, so a consistent set of
data is fully identified by the name of a grade and a time at
which to “snapshot” that grade. For an analysis project, a
physicist will usually specify “physics” grade data and use
the date the analysis project started (e.g., 20050501) as the
timestamp, so that the same consistent version will be used
throughout the lifetime of the project. EventStore finds the
most recent snapshot prior to the specified date, so the date
specified is not limited to a set of “magic” values.

To include newer versions of the data in the analysis, the
physicists have to explicitly change the analysis timestamp
to a later date. For practical purposes there is one excep-
tion to the rule that only data belonging to the most recent
snapshot before the analysis timestamp can be used. Data
added for the first time, such as data recently taken and re-
constructed for the first time, or the addition of a new object,
will appear in the snapshot. This is done so that a physicist
can add data collected after the beginning of the analysis
without having to change to a later timestamp.

To address the data versioning and other provenance
issues, EventStore attaches versioning information to the
derived data, identifying how the data were produced.
As an example, the version identifier Recon-20040312-
Feb1304 P2 indicates that the data were produced by the
Feb1304 P2 release of the reconstruction software, and
that March 12, 2004 was the date of the most recent change
to the software or inputs to the reconstruction (e.g., calibra-
tion data) that might affect the results. At each processing
step we record these tags. Similar tags identify later pro-
cessing steps, and these tags are accumulated at each pro-
cessing step, along with enough additional information to
fully specify the sequence of processing steps and data in-
puts.

For full functionality, we need to store provenance at
the granularity of single ASUs, and track exact inputs and
all software parameters. However, the effort to retrofit this
functionality would require major changes to the core of our
analysis software. We therefore opted for slightly limited
functionality, which could be achieved with minor modifi-
cations at the data format level. More precisely, we collect,
as strings, all the software module names, their parameters,



plus all the input file information and make an MD5 hash
of the strings. The version strings and hash are stored in
the output stream of each file written using a simple exten-
sion to the CLEO data storage system, so that every derived
data file carries a summary of its provenance. We can de-
tect the majority of usage discrepancies by comparing the
hashes. In the event of a discrepancy, the physicists can
view the strings to see what has changed. Clearly, this does
not provide the full semantics of tracking at the ASU level.
Some inputs may not have been used in the production of
some parts of the data. It only tells which ASUs might have
been used in the production of this ASU. But it provides the
physicist with sufficient information to make consistent use
of the data and software.

Substantial changes to the EventStore and analysis code
will be required to accurately detect exactly which ASUs
were used in the production of an output ASU. The meta-
data volume to track at the ASU level will be large, and it
will be inappropriate to store it in the headers of the data
files. It will have to be stored in a metadata DB and ref-
erences to it placed in the data file. We do not expect
to be able to retrofit this functionality to our running sys-
tems because most of the data are stored in a hierarchical
storage management (HSM) system (which automatically
moves data between tape and disk cache), and we cannot
easily update them. Furthermore, we cannot risk substan-
tial changes to our large software base at this stage of the
CLEO experiment. We believe this work will be relevant
for our involvement in the design of the software frame-
work for the Large Hadron Collider (LHC) Compact Muon
Solenoid (CMS) detector [2, 13], which is designed to use
fine-grained provenance for data selection.

CMS is a collaboration of over 2000 physicists from
around the world. The workflow is very similar to CLEO,
but data volumes are much higher. It is limited to taking
200 MB/s of data to be written to tape, therefore substan-
tial filtering has to take place in real time before writing to
tape. Monte-Carlo simulation is already distributed across
the Grid, and data analysis will likewise be distributed, be-
cause tens of thousands of CPUs are needed to analyze the
data offline.

Currently we generate much of the CLEO simulated
Monte-Carlo data offsite. We are implementing a system
where these data are stored in a ”personal EventStore” as
they are produced, shipped to Cornell on USB disks, and
merged into the collaboration EventStore. This process
could be automated to a much greater extent if we could
use Grid data movement utilities and Web Services inter-
faces to EventStore. We would also like to make a fully
Web-based CLEO analysis environment for the first passes
through the data for physics analyses and for outreach pur-
poses, and the natural way to do that now would be via Web
Services interfaces and Grid tools.

4 The WebLab Project

Since 1996, the Internet Archive has been collecting a
full crawl of the Web every two months [4]. The total vol-
ume of data collected up to August 2005 is 544 Terabytes,
heavily compressed, or about 5 Petabytes uncompressed. In
summer 2005, we began work on transferring a major sub-
set of this data to Cornell and organizing it for researchers,
with a particular emphasis on supporting social science re-
search.

User studies with social science researchers have iden-
tified a number of patterns in the research that they would
like to do on the Web. A common theme is that researchers
wish to extract a portion of the Web to analyze in depth, not
the entire Web. Almost invariably, they wish to have several
time slices, so that they can study how things change over
time. The criteria by which a portion of the Web is chosen
for analysis are extremely varied. Some use conventional
metadata, e.g., specific domains, file type, or date ranges.
Others are empirical. For example, one researcher has com-
bined focused Web crawling with statistical methods of in-
formation retrieval to select materials automatically for an
educational digital library. Others plan to extend research
on burst detection, which can be used to identifying emerg-
ing topics, to highlight portions of the Web that are under-
going rapid change at any point in time, and to provide a
means of structuring the content of emerging media like
Weblogs.

Of the specific tools that researchers want, full text in-
dexes are highly important, but need not cover the entire
Web. The link structure is of great interest because of
its relationship to social networking. There are ambitious
plans by computer scientists and social scientists working
together to use methods of natural language processing to
analyze the content of Web pages, e.g., by extracting types
of opinions.

Many social science research groups are reasonably
strong technically, but they do not wish to program high-
performance, parallel computers. The expectation is that
most researchers will download sets of partially analyzed
data to their own computers for further analysis.

4.1 Data Flow: Current Solutions and Challenges

Transferring the data from the Internet Archive to Cor-
nell and loading it online places heavy demands on three
parts of the system: the network connection, preprocessing
the raw data, and the database load process. In addition,
archiving the raw data, logging, backup, and restore opera-
tions can easily become a burden.

Our recent studies established that a good balance be-
tween the various parts of the system is achieved by setting
an initial target of downloading one complete crawl of the



Web for each year since 1996 at an average speed of 250
GB/day. For this, the network connection uses a dedicated
100 Mb/sec connection from the Internet Archive to Inter-
net2 [5], which can easily be upgraded to 500 Mb/sec. The
Cornell connection will move to the TeraGrid early in 2006.
First versions of the two processing components were de-
veloped during fall 2005. Each has been tested at sustained
rates of approximately 1 TB per day, when given sole use of
the system. Experiments will be carried out during winter
2006 to determine the best mix of jobs to run in production.

The Internet Archive stores Web pages in the ARC file
format. The pages are stored in the order received from
the Web crawler and the entire file is compressed with gzip.
Each compressed ARC file is about 100 MB big. Corre-
sponding to an ARC file, there is a metadata file in the DAT
file format, also compressed with gzip. It contains meta-
data for each page, such as URL, IP address, date and time
crawled, and links from the page. The DAT files vary in
length, but average about 15 MB.

The preload subsystem takes the incoming ARC and
DAT files, uncompresses them, parses them to extract rel-
evant information, and generates two types of output files:
metadata for loading into a relational database and the ac-
tual content of the Web pages to be stored separately. The
design of the subsystem does not require the corresponding
ARC and DAT files to be processed together.

As of December 2005, a basic workflow for this design
has been implemented and tested. First indications are that
the performance will comfortably meet the required goals.
Extensive benchmarking is required to tune many parame-
ters, such as batch size, file size, degree of parallelism, and
the index management.

4.2 Data Access Challenges

Access to the WebLab is provided via a Web Services
interface to a dedicated Web server. General services pro-
vided include a ”Retro Browser” to browse the Web as it
was at a certain date, a facility to extract subsets of the
collection and store them as database views, and tools for
common analyses of subsets, such as extraction of the Web
graph and calculations of graph statistics.

The conventional architecture for providing heavily used
services on the Web distributes the data and processing
across a very large number of small commodity comput-
ers. Examples include the Web search services, such as
Google and Yahoo, and the Internet Archive’s Wayback
Machine. While highly successful for production services,
large clusters of commodity computers are inconvenient for
researchers who carry out Web-scale research, either on the
Web itself or on the social phenomena that the Web pro-
vides a record of. For instance, it would be extremely dif-
ficult to extract a stratified sample of Web pages from the

Internet Archive. Researchers studying the Web graph typ-
ically study the links among billions of pages. It is much
easier to study the graph if it is loaded into the memory of a
single large computer than distributed across many smaller
ones, because network latency would be a serious concern.

For these purposes, the decision was made to separate
link information and metadata about pages from their con-
tent, and store the meta-information in a relational database
on a single high-performance computer. The current ma-
chine is a 16-processor Unisys Server ES7000/430 with 64
GB of shared memory. By the end of 2007 it will have 240
TB of RAID disk storage. This is one half of a dual config-
uration. The other half is used by the Arecibo pulsar search
project.

5 Summary and Next Steps

In this paper we have surveyed three projects with large-
scale data flow challenges. Currently these challenges are
met by highly optimized and customized solutions, often re-
quiring considerable domain knowledge, data management
expertise, and human involvement in all steps of the pro-
cessing pipeline. Grid technology holds great promise for
simplifying the development and deployment of such large-
scale data-driven workflows. However, the three surveyed
applications also illustrate that a one-size-fits-all approach
will not suffice. This applies to all steps of the process: raw
data accumulation and archiving, data processing, and data
dissemination.

Raw data accumulation. While all three projects deal
with large amounts of raw data, there is a difference of about
two orders of magnitude between CLEO and the Petabyte-
scale Arecibo and WebLab projects. For both Arecibo and
WebLab the processing resources at the raw data source
(Arecibo telescope and Internet Archive, respectively) are
insufficient and hence they face the problem of moving
large volumes of raw data from a site that is not part of
the academic research infrastructure. The currently avail-
able best solutions are very different in nature, mostly deter-
mined by bandwidth considerations and cost: physical disk
transfer vs. a dedicated link to Internet2. In the long run
WebLab can take advantage of Grid technology (TeraGrid),
but for Arecibo this is not an option.

In contrast to Arecibo and WebLab, CLEO’s lower raw
data rates and its specific processing requirements made
on-site processing the best possible choice. Nevertheless,
the generation of Monte-Carlo simulation data for collision
events is actually done offsite. Because of cost considera-
tions, the simulation data are moved by shipping physical
USB disk drives to Cornell. A Grid-based approach will
only be a viable alternative if it provides faster data transfer
at lower cost.

Data processing and archiving. Arecibo and CLEO



have similar processing requirements. In both projects we
are looking for needles in a haystack. Automating this pro-
cess requires advanced data mining ability that understands
the peculiarities of the data [16]. The problems include (1)
we do not always know what we are looking for, but we will
know it when we see it, and (2) the complexity and volume
of the data. Currently highly iterative workflows produce
a variety of derived products from the raw data, requiring
large amounts of storage for intermediate results. This anal-
ysis is mostly offline and data products are long-lived and
need to be managed for fast access in the future. The analy-
sis software is complex, e.g., for filtering background noise
and detecting peculiarities of the data acquisition system;
and the analysis requires large amounts of CPU and net-
work resources.

This appears like a typical target application of Grid
technology, including the promise to support provenance.
However, the analysis software is very specific for the given
problem and achieves efficiency by making extensive use of
existing domain knowledge. It is not clear how a general-
purpose tool would automatically come up with an efficient
workflow like CLEO’s, as shown in Figure 2. Another ma-
jor challenge is how to modify existing software to take
advantage of Grid technology. CLEO’s software currently
consists of 3 million lines of C++ code, which makes it dif-
ficult to add functionality to collect the required data for
full-scale provenance support.

On the other hand, WebLab spends most processing cy-
cles on organizing the incoming raw data for fast access.
There is comparably little offline processing. The main
challenge is to produce derived dataon-demand, i.e., when
a user requests them. Typical user requests like stratified
samples of the Web graph or link analysis would suffer con-
siderably from network latency even on clusters with fast
network connections. Here the best solution is to use a sin-
gle high-performance machine with large memory, limiting
opportunities for typical Grid approaches.

Despite the differences, all three projects would bene-
fit from reliable low-cost long-term storage solutions for
archiving the raw data and data products. However, the
archives would have to support different data types (time
series, event objects, text and links) and corresponding ac-
cess methods for fast search and retrieval.

Data (product) dissemination.The three projects show
the most commonalities when it comes to making derived
data available. They all have to provide fast access to po-
tentially very large data products, including metadata and
provenance information, to a large and widely distributed
user community. Not surprisingly, the challenge to manage
large amounts of data products created the need to move
away from a flat-file based approach towards a solution
that relies on (relational) database technology. For all three
projects access to databases and some of the data analysis

functionality is provided through Web Services already.
Next steps. The logical next step for all projects is to

extend the functionality of their “dissemination Web Ser-
vices” to enable full access to data and analysis function-
ality. These Web Services can then be integrated with Grid
technology. Arecibo is in the process of contributing its data
to the National Virtual Observatory, federating their data
with other data resources from the Astronomy community.
This will enable queries, which span different datasets from
different contributors, and hence astronomers can leverage
the combined information for their analysis. The CLEO ex-
periment will end within two years, but the Wilson Lab will
participate in the next round of high-energy particle physics
experiments, the Large Hadron Collider. This participation
involves even more collaborators and much larger datasets.
The goal is to take advantage of Grid technology like the
tools developed by the Open Science Grid. How this will
be done is still an open problem.

The WebLab is already in the process of connecting to
TeraGrid for accessing data from the Internet Archive. Cur-
rently, Internet2 is used as a pipe for bulk transfer of data
to the WebLab. However, if the Internet Archive also con-
nects to the TeraGrid, the very high performance of the Ter-
aGrid will allow another level of distributed research. A
social science researcher will be able to analyze data, some
of which is stored at Cornell, some in San Francisco at the
Internet Archive, and some on a local computer. When ex-
tracting subsets for detailed research, a social scientist will
be able to combine relational queries at Cornell with text
searches using the full text indexes being built by the Inter-
net Archive.

All projects have put and are still putting substantial ef-
fort into automating data tracking and monitoring. Cor-
nell University’s involvement in the National LambdaRail
(NLR) [9] represents another important step towards the
ability to move massive amounts of data between institu-
tions that collaborate on these large scientific projects. For
the Arecibo pulsar project, for example, we are considering
to transport raw data from the CTC to some of the other
processing sites. It remains an open challenge to design the
right tools for effectively supporting raw data accumulation
and data processing.
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