
Day 1: Introduction to MATLAB and Colorizing Images
CURIE Academy 2015: Computational Photography

Sign-Off Sheet

NAME:

NAME:

Sign-Off Milestone TA Initials
Part 1.1 Introductory Math Problems

Part 1.2 Function Calls

Part 1.3 Hailstone Sequence
Part 2.1 turtleForwardDashed

Part 2.2 turtleNgon
Part 3.1 Negative

Part 3.2 Horizontal Flip

1





1 MATLAB basics

We’ll be programming in MATLAB. To open up MATLAB, go to Start, then type MATLAB. Select MATLAB
R2015a.

MATLAB has a default “working directory” on your computer. We want you to be able to load and save
work from your USB drive instead. To do this, plug in the USB, then click the triangle next to the C: at the
top of the screen and select your USB drive instead.

To download the files for the day, go to the official CURIE webpage at
http://www.cs.cornell.edu/workshop/curie2015

then click handouts, and select the starter files link next to Lab 1. Download the ZIP file and save it
to your USB, then unzip the file. You should be able to see these files in the left panel of your MATLAB
window.

1.1 Introductory math problems

Refer to the MATLAB reference sheet for help figuring out how to solve the problems in the MATLAB
command window. Make sure to switch the driver and navigator after every question. At the end of each
mini-section, get a TA to check off that you’ve done the assignment before moving on to the next part.

Exercise 1 Set foo to be 2.37. What is 10 ∗ foo+ foofoo - 1? Write the answer below.

Exercise 2 Set a variable x with value 2. Set y to be x raised to the fourth power. Set z to be y raised to the
fourth power. Write the value of z below.

Exercise 3 Write a script that uses a “for” loop to find the product of all even numbers between 2 and 20. Write
the product below.

Checkpoint: get a TA to sign off for your answers in this section.

3



1.2 Function calls

Again, use the MATLAB reference sheet to help you in solving the following problems. Remember that you
can find information on how to use any function by typing help functionname.

Exercise 4 Write a script in ex4.m that finds the sum of the square roots of 1 through 10. What is that sum?

Consider the following code:

if x < 0
y = 0;

else
y = x;

end

Exercise 5 Write a single line of code that accomplishes the same thing as the if/else statement above.
Hint: remember the min and max functions.

Checkpoint: get a TA to sign off for your answers in this section.

1.3 Hailstone Sequence

The Hailstone sequence is a way of generating a list of numbers following a strange pattern. To generate a
Hailstone sequence, you start with a number, x. The next number in the sequence depends on the current
one:

1. If x is even, the next number is x/2.

2. If x is odd, the next number is 3x+ 1.

So if we start with x = 10, the hailstone sequence is looks like this:

10, 5, 16, 8, 4, 2, 1, 4, 2, 1 . . .

We’ll call each of the numbers in the sequence an element; the index of each element is just its numerical
position in the sequence - the first element has index 1, the tenth element has index 10, and so on.

A useful function for computing elements of the Hailstone sequence is the mod() function, short for the
modulus or remainder operator. So, for instance, mod(10, 3) is 1, as 10 divided by 3 is 3 with remainder
1. More generally, (mod(a, b) finds remainder when a is divided by b, or the difference between the a
and the biggest multiple of b that is less than or equal to a. Here, it’s useful to notice that when divided by
2, an even number has remainder 0 whereas an odd number has remainder 1.

4



Exercise 6 In ex6.m, write a script to print the first 10 numbers in the Hailstone sequence starting with 14.
You can leave off the semicolon when computing the number, or you can use the disp function to print out each
number a little more cleanly. Verify on paper (or in your head) that your code is printing the first few elements
correctly and write the 10th element below.

Exercise 7 Find the first 200 numbers in the Hailstone sequence for 54. What is the index of the first 1 to appear
in the sequence? Write your answer below.

Checkpoint: get a TA to sign off for your answers in this section.

A “conjecture” (something observed but not proven to be true in all possible cases) is that the Hailstone
sequence for any positive integer will eventually reach 1. This is often called the Collatz conjecture. We’re
not going to try to prove anything about this, but we can write a program to test an individual case.

Exercise 8 (Bonus Challenge) Write a script in ex8.m that will print the index of the first 1 in the Hailstone
sequence for some variable start. See if you can get your script to stop after you find the first 1. Hint: look up
the help for the break statement. Try out different starting numbers; what’s the largest number you can get
your program to output?

5



2 Turtle Graphics and Functions

2.1 Drawing with Turtles

The next exercises simulate you drawing out the path of a turtle walking around a blank canvas with a pen
attached to its belly. (No actual turtles will be harmed in this exercise). We can give this turtle programmatic
instructions to have it draw things!

To make a new turtle, run t = Turtle(). This will create a new Turtle object that we store as the
variable t, that starts in the center of the canvas at 0, 0, facing up.

We have given you the following commands for controlling Turtles, each of which returns a modified
Turtle.

• t = turtleForward(t, x): Move the Turtle x pixels in whatever direction it’s facing.

• t = turtleTurn(t, r): Turn the direction of the Turtle r degrees clockwise.

• t = turtleDown(t): Start having the Turtle draw its path.

• t = turtleUp(t): Stop having the Turtle draw its path.

Here’s the code we saw in the demo for a function that takes in a Turtle object and a sidelength and uses
the Turtle to draw a square with the given side length and the first corner where the Turtle begins.

function t = turtleSquare(t, sidelength)
% For each of the four sides
for i = 1:4

% We draw the side, then turn to prepare for the next one
t = turtleForward(t, sidelength);
t = turtleTurn(t, 90);

end
end

If we make a new Turtle t = Turtle() and then run t = turtleSquare(t, 100) after writing
this code, we see a square of side length 100 on our canvas.

Using these instructions and the MATLAB reference sheet again, try out the following Turtle exercises.
Remember that you always need to pass the turtle into the function, and assign the returned turtle back to your turtle
variable, or the turtle won’t remember where it went!

6



Exercise 9 Use the provided turtle functions to draw an image that looks like the figure below in a script in
ex9.m.

Exercise 10 Fill in the turtleNgon(t, n, sidelength) function in turtleNgon.m, a function that
takes in Turtle t, the number of sides for a polygon n, and the length of each side sidelength, and draws a regular
polygon with that many sides. For instance, turtleNgon(t, 5, 100) should draw a regular pentagon
with sides of length 100 pixels.

Exercise 11 Fill in the turtleForwardDashed(t, dist) function in turtleForwardDashed.m, a func-
tion that moves the Turtle t forward dist pixels (just like turtleForward but makes it draw a dashed line
as it goes. Use turtleUp and turtleDown to draw dashes. We start with code that goes a fixed 100 pixels
and draws one dash; modify it to move dist pixels forward with five dashes. Hint: you might find it easiest to
write this with a for loop.

Checkpoint: get a TA to sign off for your answers in this section.

Exercise 12 Make a copy of turtleNgon.m, and save it as turtleNgonDashed.m. Change this file to implement
a function turtleNgonDashed(t, n, sidelength) that does the same thing but draws the n-gon with
a dashed line. Remember that you can re-use functions you’ve already written!

Exercise 13 (Extra Bonus) Make a new Turtle function in ex13.m that draws something cool! Feel free to use
any of the functions we’ve given you as well as any of the ones you’ve written yourself.

7



2.2 (Bonus Challenge) State and Properties

For each of these instructions, it’s important to save the new state of the Turtle, or the information needed
to specify where the Turtle is right now and whether or not it’s drawing. So, rather than just running
turtleForward(t, x), we need to run t = turtleForward(t, x) so that t can keep track of where
the Turtle is and what direction it’s facing after each action. We can access specific parts of the state of a
Turtle, or its properties, using the format t.property to mean “the value of property property for the Turtle
t”. Turtles have several properties:

• t.x: The x coordinate of the Turtle,

• t.y: The y coordinate of the Turtle,

• t.angle: The current angle of the Turtle (where 0 means directly up),

• t.draw: Whether the Turtle will draw when moved (pen is down) or not (pen is up). draw is 0 if the
pen is up and 1 if the pen is down.

• t.fig: Which figure window the Turtle is drawing in (1 for Figure 1, etc.).

You can see these values when you create a new Turtle, or anytime you enter your Turtle variable
without a semicolon at the Matlab prompt:

>> t = Turtle()
t =

x: 0
y: 0

angle: 0
draw: 1
fig: 1

Exercise 14 (Super Extra Bonus Challenge!) Fill in turtleTeleport(t, x, y) function in turtleTele-
port.m that takes in an x and y coordinate and moves Turtle t to those coordinates. If the Turtle had the pen
down before teleporting, it should have the pen down after; otherwise, the pen should be up. It should also be
facing the same direction as it was before teleporting. You’ll need to access properties of the Turtle to do this.

8



3 Image Transformations

Use the MATLAB reference to load one or more of your favorite pictures from your phone or the internet
(or any of the provided images) into MATLAB with the imread function. For instance, if you want to load
the llama we use in our tests, you can type machu = imread(’images/machu.jpg’);.

Let’s try transforming some images!

3.1 Negatives

We know that each pixel is a mix of red , green , and blue [RGB] with each have a value from 0 to 255
[28 − 1, the biggest number you can represent with 8 bits]. We use these because red [255, 0, 0], green
[0, 255, 0], and blue [0, 0, 255] are the primary colors for light, the same way that red , yellow
and blue are the primary colors for ink. There are also secondary colors: red + green is yellow [255,
255, 0], red + blue is magenta [255, 0, 255], and green + blue is cyan [0, 255, 255].

The negative of an image is the inversion of every single pixel’s color by subtracting each color value
from 255. For instance, the inverse of the color blue is [255 - 0, 255 - 0, 255 - 255], or yellow .

(a) Original image (b) Negative image

Figure 1: Output of the negative function on a test image.

Exercise 15 Fill in the function negative(im) in negative.m so it returns the inverted version of the input
image. Hint: there’s a way to do this in one line!

Checkpoint: get a TA to sign off for your answers in this section.

3.2 Flip

To flip an image horizontally, we simply want to swap the colors of pixels across a line running down the
center of the image. If we have an image of width 100, we know that the pixel in row 25 and column 15
in the new image should be the same color as the pixel in row 25 and column (100 - 15) = 85 from the old
image.

Exercise 16 Fill in the function flipHorizontal(im) in flipHorizontal.m so it returns the horizontally
flipped version of the input image. Remember: im(i, j) is the pixel in the ith row and jth column of the
image.

Checkpoint: get a TA to sign off for your answers in this section.

9



(a) Original image (b) Flipped image

Figure 2: Output of the flipHorizontal function on a test image.

3.3 (Extra Bonus Challenge) #Colorful

Image transformations can be a fun way to play with images. In particular, we’re going to tint images, or
make images appear with a single color. Pretty much every single method for doing this starts from turning
an image to grayscale, which we can do for each pixel by averaging out the intensities of the three colors
for each pixel, and then use that value for each color channel in that pixel. We give you the starting code
for doing this in tint.m.

(a) Greyscale (b) Level 1 (c) Level 2 (d) Level 3

Figure 3: Different outputs of the tint function.

3.3.1 Level 1

The easiest way to tint a black-and-white image is just to scale the three numbers specifying your tint color
by the brightness, or average of the three colors, of each pixel in the original image. A white pixel (one
with brightness 255) will be turned to the color you choose - for instance, if you pick red the resulting pixel
will be (255 / 255) * [255, 0, 0] = [255, 0, 0]. In effect, we’re turning everything white in the
greyscale image to red in our new image. On the other hand, a black pixel (one with brightness 0) will be
transformed to be (0 / 255) * [255, 0, 0] = [0, 0, 0]; it will just be black in the resulting image.
Every shade in between will have the same proportions between RGB values as the color you picked, but
scaled down to be darker according to the brightness of that pixel.

Exercise 17 (Extra Bonus Challenge) Rewrite the function tint(im) to return a black-and-red image (or
whatever color you prefer).

3.3.2 Level 2

A somewhat harder version of this is, instead of making a black-and-your-color image, to make a your-
color-and-white image. Instead of having our brightest pixels be red, we might want them to be white, and
our darkest pixels to be red, giving a cool faded-image look. This takes a bit more math: we want black to

10



map to our starting color (say [255, 0, 0]) and white to map to, well, white. In effect, instead of keeping
the ratios between the three color channels the same, we want to keep the ratio of the difference between 255
and each of our color channels the same. So, a pixel halfway up our grey spectrum (brightness 127) would
be translated to [255, 0, 0] + (127 / 255) * (255 - [255, 0, 0]) = [255, 127, 127].

Exercise 18 (Super Extra Bonus Challenge) Modify the function tint(im) to return a red-and-white image
(or whatever color you prefer). Feel free to comment out your old code with %s or start a new function file so you
can use the Level 1 function later.

3.3.3 Level 3

Both of these images end up being a little bit harder to see clearly than the original black-and-white image.
The reason is that each of the two methods before is only using half of the set of colors that have the same
tint: Level 1 is using from black to red, and Level 2 is using from red to white. What would be really cool
is if we could find a way to make darker pixels (say, those with brightness less than the brightness of your
color) use the strategy from Level 1, and make lighter pixels use the strategy from Level 2. That way, we
can get black and white to show up clearly and see our color.

Exercise 19 (Super Ultra Extra Bonus Challenge) Modify the function tint(im) to return a black-and-
red-and-white image (or whatever color you prefer). Remember that whatever brightness level you switch from
the method in Level 1 to the one in Level 2 should map to your color (e.g. red), so you might have to tweak the
brightness ratio part of the formulas from Level 1 to make sure that you get the full range of different shades of
your color.

11


