Scalable Certification of Native Code: Experience from Compiling to TALx86

Dan Grossman Greg Morrisett *

Department of Computer Science
Cornell University

Abstract

Certifying compilation allows a compiler to produce annota-
tions that prove that target code abides by a specified safety
policy. An independent verifier can check the code without
needing to trust the compiler. For such a system to be gen-
erally useful, the safety policy should be expressive enough
to allow different compilers to effectively produce certifiable
code.

In this work, we use our experience in writing a certify-
ing compiler to suggest general design principles that should
allow concise yet expressive certificates. As an extended ex-
ample, we present our compiler’s translation of the control
flow of Popcorn, a high-level language with function point-
ers and exception handlers, to TALx86, a typed assembly
language with registers, a stack, memory, and code blocks.
This example motivates techniques for controlling certificate
size and verification time.

We quantify the effectiveness of techniques for reducing
the overhead of certifying compilation by measuring the ef-
fects their use has on a real Popcorn application, the com-
piler itself. The selective use of these techniques, which in-
clude common-subexpression elimination of types, higher-
order type abbreviations, and selective re-verification, can
change certificate size and verification time by well over an
order of magnitude. We consider this report to be the first
quantitative study on the practicality of certifying a real
program using a type system not specifically designed for
the compiler or source language.

1 Background

A certifying compiler takes high-level source code and pro-
duces target code with a certificate that ensures that the
target code respects a desired safety or security policy. To
date, certifying compilers have primarily concentrated on
producing certificates of type safety. For example, Sun’s
javac compiler maps Java source code to statically typed
Java Virtual Machine Language (JVML) code. The JVML
code includes typing annotations that a dataflow analysis-
based verifier can use to ensure that the code is type safe.
However, both the instructions and the type system of
JVML are relatively high-level and are specifically tailored

*This material is based on work supported in part by the AFOSR
grant F49620-97-1-0013, ARPA/RADC grant F30602-1-0317, and a
National Science Foundation Graduate Fellowship. Any opinions,
findings, and conclusions or recommendations expressed in this pub-
lication are those of the authors and do not reflect the views of these
agencies.

to Java. Consequently, JVML is ill-suited for compiling
a variety of source-level programming languages to high-
performance code. For example, JVML provides only high-
level method-call and method-return operations. Also, it
provides no provision for performing general tail-calls on
methods. Therefore, JVML cannot be used as a target for
certifying compilers of functional programming languages
such as Scheme that require tail-call elimination.

In addition, current platforms for JVML either interpret
programs or compile them further to native code. Achieving
acceptable performance seems to demand compilation with a
good deal of optimization. To avoid security or safety holes,
the translation from JVML to native code should also be
certifying. That way we can verify the safety of the resulting
code instead of trusting a large optimizing compiler.

Another example of a certifying compiler is Necula and
Lee’s Touchstone compiler [18]. Touchstone compiles a
small, type-safe subset of C to high-performance DEC Al-
pha assembly language. The key novelty of Touchstone is
that the certificate it produces is a formal “proof” that the
code is type-correct. Checking the proof for type-correctness
is relatively easy, especially when compared to the ad hoc
verification process of the JVML. As such, the Touchstone
certificates provide a higher degree of trustworthiness.

The proofs of the Touchstone system are represented us-
ing the general-purpose logical framework LF [8]. The ad-
vantage of using LF to encode the proofs is that, from an im-
plementation perspective, it is easy to change the type sys-
tem of the target language. In particular, the proof checker
is parameterized by a set of primitive axioms and inference
rules that effectively define the type system. The checker
itself does not need to change if these rules are changed.
Consequently, the use of LF makes it easy to change type
systems to adapt to different source languages or different
compilation strategies.

Although changing the type system is easy for the imple-
mentor, doing so obligates one to an enormous proof burden:
Every change requires a proof of the soundness of the type
system with respect to the underlying machine’s semantics.
Constructing such proofs is an extremely difficult task.

1.1 An Alternative Approach

Our goal is to make it easy for certifying compilers to pro-
duce provably type-correct code without having to change
the type system of the target language. That way, it suffices
to write and trust one verifier for one type system. Toward
this end, we have been studying the design and implementa-

tion of general-purpose type systems suitable for assembly
language [15, 16, 14]. Ultimately, we hope to discover typ-
ing constructs that support certifying compilation of many
orthogonal programming language features.

Our current work focuses on the design of an extremely
expressive type system for the Intel IA32 assembly language
and a verifier that we call TALx86 [13]. Where possible,
we have avoided baking in high-level language abstractions
like procedures, exception handlers, or objects. In fact, the
only high-level operation that is a TALx86 primitive is mem-
ory allocation. We also have not baked in compiler-specific
abstractions such as activation records or calling conven-
tions. Rather, the type system of TALx86 provides a num-
ber of primitive type constructors, such as parametric poly-
morphism, label types, existential types, products, recursive
types, etc., that we can use to encode language features and
compiler invariants. These type constructors have either
been well studied in other contexts or modeled and proven
sound by our group.

In addition, we and others have shown how to encode a
number of important language and compiler features using
our type constructors. For example, our encoding of pro-
cedures easily supports tail-call optimizations because the
control-flow transfers are achieved through simple machine-
level jumps. In other words, we did not have to change the
type system of TALx86 to support these optimizations. In
this respect, TALx86 provides an attractive target for certi-
fying compilers.

1.2 The Problem

Unfortunately, there is a particularly difficult engineering
tradeoff that arises when a certifying compiler targets a
general-purpose type system like TALx86: Encoding high-
level language features, compiler invariants, and optimiza-
tions into primitive type constructors results in extremely
large types and typing annotations — often orders of mag-
nitude larger than the code itself. Thus, there is a very real
danger that our noble goal of using one general-purpose type
system will be defeated by practical considerations of space
and time.

Some researchers, such as Appel and Felty [1], suggest
going even further than we do with respect to minimizing
potential soundness errors. In particular, they have recently
proposed formally specifying the type system in terms that
relate directly to the underlying machine semantics. By em-
bedding the policy in a higher-order logical framework, they
hope that compilers may define their own type systems and
formally prove them sound with respect to the underlying
semantics. This work is a promising direction for developing
an infrastructure that is truly independent of the source lan-
guage and compiler. However, it is clear that an even more
primitive approach than ours will only exacerbate the prob-
lems with respect to certificate size and verification time.

The work presented here is essentially a case study
in writing a certifying compiler that targets the general-
purpose typed assembly language TALx86. The source lan-
guage for our compiler, called Popcorn, shares much of its
syntax with C, but it has a number of advanced language
features including first-class parametric polymorphism, non-
regular algebraic datatypes with limited pattern matching,
function pointers, exceptions, first-class abstract data types,
modules, etc. Indeed, the language is suitably high-level
that we have easily ported various ML libraries to Popcorn

and constructed the certifying compiler for Popcorn in Pop-
corn itself.

Although the TALx86 type system is very expressive, it
is far from a universal typed assembly language. However,
we have found that it is expressive enough to allow a rea-
sonable translation of Popcorn’s linguistic features. Because
the compiler’s invariants are encoded in the primitive typ-
ing constructs of TALx86, the most difficult aspect of effi-
cient, scalable verification is handling the potentially enor-
mous size of the target-level types. We use our experience
to suggest general techniques for controlling this overhead
that we believe transcend the specifics of our system. The
efficacy of these techniques is demonstrated quantitatively
for the libraries and compiler itself. In particular, the size
of the type annotations and the time needed to verify the
code are essentially linear in the size of the object code.

In the next section, we give a taxonomy for general ap-
proaches to reducing typing annotation overhead and fur-
ther discuss other projects related to certifying compilation.
Then in Section 3 we summarize relevant aspects of the
TALx86 type system, annotations, and verification process.
We then show how these features are used to encode the
provably safe compilation of the control-flow aspects of Pop-
corn, including procedures and exceptions. This extended
example demonstrates that an expressive type system can
permit reasonable compilation of a language for which it is
not specifically designed. It also shows qualitatively that if
handled naively, type annotation size becomes unwieldy. In
Section 4, we use the example to analyze several approaches
that we have examined for reducing type annotation over-
head. Section 5 presents the quantitative results of our in-
vestigation, where we conclude that the TALx86 approach
scales to a medium-size application and that almost all of
the techniques contribute significantly to reducing the over-
heads of certifying compilation. Finally, we summarize our
conclusions as a collection of guidelines for designers of low-
level safety policies.

2 Approaches to Efficient Certification

Keeping annotation size small and verification time short
in the presence of optimizations and advanced source lan-
guages is an important requirement for a practical system
that relies on certified code. In this section, we classify some
approaches to managing the overhead of certifying compi-
lation and discuss their relative merits. None of the ap-
proaches are mutually exclusive; any system will probably
have elements of all of them.

The “Bake it in” Approach If the type system only sup-
ports one way of compiling something, then compilers do not
need to write down that they are using that way. For exam-
ple, the type system could fix a calling convention and re-
quire compilers to group code blocks into procedures. Both
the javac and Touchstone compilers use this approach.
Baking in assumptions about procedures eliminates the
need for any annotations describing the interactions between
procedures. However, it inhibits some inter-procedural opti-
mizations, such as inter-procedural register allocation, and
makes it difficult to compile languages with other control
features, such as exception handlers. In general, the “bake
it in” approach reflects particular source features into the
target language rather than providing low-level constructors
suitable for encoding a variety of source constructs.

Even very general frameworks inevitably bake in more
than the underlying machine requires. Although the work
by Appel and Felty aims to remove all such restrictions, do-
ing so soundly is extremely difficult. For example, their cur-
rent system does not allow a memory location to be written
twice. This restriction not only effectively limits the cur-
rent applicability to purely functional source languages, but
it inhibits implementation strategies as common as using a
call stack.

The “Don’t optimize” Approach If a complicated analysis
is necessary to prove an optimization safe, then the rea-
soning involved must be encoded in the annotations. For
example, when compiling dynamically typed languages such
as Scheme, dynamic type tests are in general necessary to
ensure type safety. A simple strategy is simply to perform
the appropriate type test before every operation. With this
approach, a verifier can easily ensure safety with a minimum
of annotations. This strategy is the essence of the verifica-
tion approach suggested by Kozen [10]. Indeed, it results in
relatively small annotations and fast verification, but at the
price of performance and flexibility.

In contrast, an optimizing compiler may attempt to elim-
inate the dynamic checks by performing a “soft-typing”
analysis [24]. However, the optimized code requires a more
sophisticated type system to convince the verifier that type
tests are unnecessary. In general, such type systems require
additional annotations to make verification tractable. For
example, the Touchstone type system supports static elim-
ination of array bounds checks, but requires additional in-
variants and proof terms to support the optimization.

Another common example is record initialization. An
easy way to prove that memory is properly initialized is
to write to the memory in the same basic block in which
the memory is allocated. Proving that other instruction
schedules are safe may require dataflow annotations which
describe the location of uninitialized memory.

Unoptimized code also tends to be more uniform which
in turn makes the annotations more uniform. For example,
if a callee-save register is always pushed onto the stack by
the callee (even when the register is not used), then the
annotations that describe the stack throughout the program
will have more in common. Such techniques can improve the
results of the “Compression” approach (discussed below) at
the expense of efficiency.

The “Reconstruction” Approach If it is easy for the veri-
fier to infer a correct annotation, then such annotations can
be elided. For example, Necula shows how simple techniques
may be used for automatically reconstructing large portions
of the proofs produced by the Touchstone compiler [19].

It is important that verification time not unduly suf-
fer, however. For this reason, code producers should know
the effects that annotation elision can have. Unfortunately,
in expressive systems such as TALx86, many forms of type
reconstruction are intractable or undecidable. The verifier
could provide some simple heuristics or default guesses, but
such maneuvers are weaker forms of the “bake it in” ap-
proach.

The “Compression” Approach Given a collection of anno-
tations, we could create a more concise representation that
contains the same information. One technique for producing
a compact wire format is to run a standard program such

as gzip on a serialized version. If the repetition in the an-
notations manifests itself as repetition in the byte stream,
this technique can be amazingly effective. However, it does
not help improve the time or space required for verification
if the byte stream is uncompressed prior to processing.

A slightly more domain-specific technique is to create
a binary encoding that shares common subterms between
annotations. This approach is effectively common subex-
pression elimination on types. Since the verifier is aware of
this sharing, it can exploit it to consume less space. There
is an interesting trade-off with respect to in-place modifi-
cation, however. If a simplification (such as converting an
annotation to a canonical form for internal use) is sound in
all contexts, then it can be performed once on the shared
term. However, if a transformation is context-dependent,
the verifier must make a copy in the presence of sharing.

Work on reducing the size of JVML annotations has
largely followed the compression approach[20, 2]. For exam-
ple, these projects have found ways to exploit similarities
across an entire archive of class files. Also, they carefully
design the wire format so that downloading and verification
may be pipelined. The TALx86 encoding does not currently
have this property, but there is nothing essential to the lan-
guage that prevents it.

Shao and associates [21] have investigated the engineer-
ing tradeoffs of sharing in the context of typed intermediate
languages. They suggest a consistent use of hash-consing
(essentially on-line common subexpression elimination) and
suspension-based lambda encoding [17] as a solution. The
problem of managing low-level types during compilation, is
quite similar to the problem of managing them during ver-
ification, but in the case of type-directed compilation, it is
appropriate to specialize the task to the compiler.

The “Abbreviation” Approach The next step beyond sim-
ple sharing is to use higher-order annotations to factor out
common portions. Such annotations are essentially func-
tions at the level of types. Tarditi and others used this
approach in their TIL compiler [23]. As we show in Sec-
tion 3, this approach can exploit similarities that sharing
cannot. Furthermore, higher-order annotations make it rel-
atively easy for a compiler writer to express high-level ab-
stractions within the type system of the target language.
In our experience, using abbreviations places no additional
burden on the compiler writer since she is already reason-
ing in terms of these abstractions. However, if the verifier
must expand the abbreviations in order to verify the code,
no gain in verification space is achieved and verification time
may suffer.

In our system, we use all of these approaches to reduce
annotation size and verification time. However, we have at-
tempted to minimize the “bake it in” and “don’t optimize”
approaches in favor of the other techniques. Unlike javac,
Kozen’s ECC, or Touchstone, TALx86 makes no commit-
ment to calling convention or data representation. In fact,
it has no built-in notion of functions; all control flow is just
between blocks of code. The design challenge for TALx86,
then, is to provide generally useful constructors that com-
pilers can use in novel ways to encode the safety of their
compilation strategies.

As a type system, TALx86 does “bake in” more than a
primitive logical description of the machine. For example, it
builds in a distinction between integers and pointers. Also,
memory locations are statically divided into code and data

(although extensions support run-time code generation[9]).
In order to investigate the practicality of expressive low-level
safety policies, we have relied on a rigorous, informal proof
of type soundness and a procedural implementation of the
verifier.

This approach has allowed us to examine the feasibility
of compiler-independent safety policies on a far larger scale
than has been previously possible. At the time of this writ-
ing, no compiler has targeted the independent safety policies
of Appel and Felty. The published results of the Touch-
stone project, which does not have a compiler-independent
safety policy, do not include object files larger than four
kilobytes [18]. More recent work on a Java-specific safety
policy has so far compiled only very small programs [11]. In
contrast, the data we present in Section 5 is the result of
compiling all 39 modules of a real program. The result of
compilation is hundreds of kilobytes of object code that link
together to form an executable program.

3 Compiling to TALx86: An Extended Example

In this section, we briefly review the structure of the TALx86
type system, its annotations, and the process of verification.
More thorough discussions of the underlying formalism may
be found elsewhere [16, 14]. Here, we concentrate on the
details relevant to our study.

A TALx86 object file consists of Intel IA32 assembly lan-
guage instructions and data. As in a conventional assembly
language, the instructions and data are organized into la-
beled sequences. Unlike conventional assembly language,
some labels are equipped with a typing annotation. The
typing annotations on the labels of instruction sequences,
called code types, specify a typing pre-condition that must be
satisfied before control may be transferred to the label. The
pre-condition specifies, among other things, the types of reg-
isters and stack slots. For example, if the code type annotat-
ing a label L is {eax:int4, ebx:S(3), ecx: *[int4,int4]
}, then control may only be transferred to the address de-
noted by L when the register eax contains a 4-byte integer,
the register ebx contains the integer value 3, and the register
ecx contains a pointer () to a record (*[...]) of two 4-byte
integers.

Verification of code proceeds by taking each labeled in-
struction sequence and building a typing context that as-
sumes registers have values with types as specified by the
pre-condition. Each instruction is then type-checked, in se-
quence, under the current set of context assumptions, pos-
sibly producing a new context. For most instructions, the
verifier automatically infers a suitable typing post condi-
tion in a style similar to data-flow analysis or strongest
post-conditions. Some instructions require additional an-
notations to help the verifier. For example, it is sometimes
necessary to explicitly coerce values to an isomorphic type
or to explicitly instantiate polymorphic type variables.

Not all labels require a typing annotation. However,
code blocks without annotations may be checked multiple
times under different contexts, depending on the control-
flow paths of the program. To ensure termination of verifi-
cation, the type-checker requires annotations on labels that
are moved into a register, the stack,! or data structure (e.g.
exception handlers); on labels that are the targets of back-
wards branches (e.g. loop headers); and on labels that are

!Return addresses are an important exception; they do not need
explicit types.

exported from the object file module (e.g. function entry
points.) These restrictions ensure that verification termi-
nates.

As in a conventional compiler, our certifying compiler
translates the high-level control flow constructs of Popcorn
into suitable collections of labeled instruction sequences with
appropriate low-level control transfers. For present pur-
poses, control flow in Popcorn takes one of three forms:

e An intra-procedural jump (e.g., loops and conditionals)
e A function call or return
e An invocation of the current exception handler

Currently, our compiler only performs intra-procedural
optimizations, so the code types for function entry labels
are quite uniform and can be derived systematically from
the source-level function’s type. For simplicity, we discuss
these code types first. We then discuss the code types for
labels internal to functions, focusing on why they are more
complicated than function entries. We emphasize that the
distinction between the different flavors of code labels (func-
tion entries, internal labels, exception handlers) is a Popcorn
convention encoded in the pre-conditions and is in no way
specific to TALx86. (Indeed, we have constructed other toy
compilers that use radically different conventions.)

In what follows, we present relevant TALx86 constructs as
necessary, but for the purposes of this paper, it is sufficient
to treat the types as low-level syntax for describing pre-
conditions. Our purpose is not to dwell on the artifacts of
TALx86 or its relative expressiveness. Rather, we want to
give an intuitive feeling for the following claims which we
believe transcend TALx86:

e If the safety policy does not bake in data and control
flow abstractions, then the annotations the compiler
uses to encode them can become large.

e In fact, the annotations describing compiler conven-
tions consume much more space than the annotations
that are specific to a particular source program.

e Although the annotations for compiler conventions
are large, they are also very uniform and repetitious,
though they become less so in the presence of optimiza-
tions.

Because of this focus, we purposely do not explain some of
the aspects of the annotations other than to mention the
general things they are encoding. The reader interested in
such details should consult the literature[16, 14, 7, 13, 6, 22].

3.1 Function Entry Labels

As a running example, we consider a Popcorn function foo
which takes one parameter, an int, and returns an int.
The Popcorn type int is compiled to the TALx86 type int4.
Arithmetic operations are allowed on values of this type,
but treating them as pointers is not. Our compiler uses the
standard C calling convention for the IA32. Under this con-
vention, the parameters are passed on the stack, the caller
pops the parameters, the return address is shallowest on the
stack, and the return value is passed in register EAX. All
of these specifics are encoded in TALx86 by giving foo this
pre-condition:

foo: Vs:Ts. {esp: {eax:int4 esp: int4::s}::int4::s}

The pre-condition for foo concerns only ESP (the stack
pointer) and requires that this register point to a stack that
contains a return address (which itself has a pre-condition),
then an int4 (i.e. the parameter), and then some stack, s.
The return address expects an int4 in register EAX and the
stack to have shape int4::s. (The int4 is there because the
caller pops the parameters.) The pre-condition is polymor-
phic over the “rest” of the stack as indicated by the forall-
quantification over the stack-type variable s. This technique
allows a caller to abstract the current type of the stack upon
entry, and it ensures that the type is preserved upon return.
Types in TALx86 are classified into kinds (types of types), so
that we do not confuse “standard” types such as int4 with
“non-standard” types such as stack types. To maintain the
distinction, we must label the bound type variable s with
its kind (Ts).

Notice that our annotation already includes much more
information than it would need to if the safety policy dic-
tated a calling convention. In that case, we would presum-
ably just give the parameter types and return type of the
function.

Our annotation does not quite describe the standard
C calling convention. In particular, the standard requires
EBX, ESI, and EDI to be callee-save. (It also requires EBP,
traditionally the frame pointer, to be callee-save. Our com-
piler uses EBP for the exception handler.) We encode callee-
save registers using polymorphism:?

foo: Vs:Ts al:T4 a2:T4 a3:T4.
{esp: {eax:int4 esp: int4::s ebx:al esi:a2 edi:a3}
::int4::s
ebx:al esi:a2 edi:a3}

This pre-condition indicates that for any standard types
al, a2, a3,® the appropriate registers must have those types
before foo is called and again when the return address is
invoked. This annotation restricts the behavior of foo to
preserve these registers since it does not know of any other
values with these types. Notice that if we wish to use differ-
ent conventions about which registers should be callee-saves,
then we need only change the pre-condition on foo. In par-
ticular, we do not need to change the underlying type system
of TALx86.

Much more detail is required to encode our compiler’s
translation of exception handling, so we just sketch the main
ideas. We reserve register EBP to point into the middle of
the stack where a pointer to the current exception handler
resides. This handler expects an exception packet in register
EAX. Since foo might need to raise an exception, its pre-
condition must encode this strategy. Also, it must encode
that if foo returns normally, the exception handler is still
in EBP. We express all these details below, where we use @
an infix operator for appending two stack types.

foo: Vs1:Ts s2:Ts al:T4 a2:T4 a3:T4.
{esp: {eax:int4
esp: int4::s1@{esp:s2 eax:exn}::s2

ebp: {esp:s2 eax:exn}::s2

ebx:al esi:a2 edi:a3}
::int4::s10{esp:s2 eax:exn}::s2}

ebp: {esp:s2 eax:exn}::s2

ebx:al esi:a2 edi:a3}

2Here and below, underlining is for emphasis; it is not part of
TALx86.
3The kind T4 includes all types whose values fit in a register.

We urge the reader not to focus on the details other than
to notice that none of the additions are particular to foo,
nor would it be appropriate for a safety policy to bake in
this specific treatment of exception handlers. Also, we have
assumed there is a type exn for exception packets. TALx86
does not provide this type directly, so our compiler must
encode its own representation using an extensible sum[6].
Each of the four occurrences of exn above should in fact be
replaced by the typing expression

Jdec:Tm “*[("T rw(c)*[intd4"rw]) “rw,c]

but in the interest of type-setting, we spare the reader the
result.

For the sake of completeness, we offer a final amendment
to make this pre-condition correct. Our compiler schedules
function calls while some heap records may be partially ini-
tialized. This strategy is better than the “don’t optimize”
approach of always initializing records within a basic block,
but it requires that we convince the verifier that no aliases
to partially initialized records escape. In particular, the pre-
condition for foo uses two capability variables[22], as shown
below, to indicate that it does not create any aliases to par-
tially initialized records held by the caller and exception
handler.

foo:Vs1:Ts s2:Ts el:Tcap e2:Tcap al:T4 a2:T4 a3:T4.
{esp: {eax:int4
esp: int4::s1@{esp:s2 eax:exn cap:e2}::s2
ebp: {esp:s2 eax:exn cap:e2}::s2
ebx:al esi:a2 edi:a3
cap: &[el,e2]}
::int4::s1@{esp:s2 eax:exn cap:e2}::s2}

ebp: {esp:s2 eax:exn cap:e2}::s2
ebx:al esi:a2 edi:a3
cap: &lel,e2]}

In short, because our compiler has complicated inter-
procedural invariants, the naive encoding into TALx86 is
anything but concise. (The unconvinced reader is invited
to encode a function which takes a function pointer as a pa-
rameter.) However, the only parts particular to our example
function foo are the return type, which is written once, and
the parameter types, which are written twice. Moreover,
even these parts are the same for all functions that take and
return integer values.

3.2 Internal Labels

In this section, we present the pre-conditions for labels that
are only targets of intra-procedural jumps. For simplicity,
we only discuss labels in functions that do not declare any
local exception handlers. This special case is by far the most
common, so it is worth considering explicitly. Because our
compiler does perform intra-procedural optimizations, most
relevantly register allocation, the pre-conditions for internal
labels are less uniform than those for function entry labels.
Specifically, they must encode several properties about the
program point that the label designates:

e A local variable may reside in a register or on the stack.

e Some stack slots may not hold live values, so along
different control-flow paths to the label, a stack slot
may have values of different types.

e Some callee-save values may be stored on the stack
while others remain in registers.

e Some heap records may be partially initialized.

First we describe the relevant aspects of our term trans-
lation. Any callee-save values that cannot remain in reg-
isters are stored on the stack in the function prologue and
restored into registers in the function epilogue. The space
for this storage is just shallower than the return address. Lo-
cal variables that do not fit in registers are stored in “spill
slots” that are shallowest on the stack. The number of spill
slots remains constant in the body of a function. This strat-
egy is fairly normal, but it is far too specific to be dictated
by TALx86. Indeed, our original Popcorn compiler did not
perform register allocation; it simply pushed and popped
variables on the stack as needed.

The pre-condition for internal labels gives the type and
location (register or spill slot) for each live local variable. If a
stack slot is not live, we must still give it some “placeholder”
type so that the stack type describes a stack of the correct
size. Different control-flow paths may use the same stack slot
for temporary variables of different types. In these cases, no
single type can serve as this placeholder. TALx86 provides
a primitive type top4 which is a super-type of all types of
kind T4. We give this type to the dead stack slots at the
control-flow join and the appropriate subtyping on control
transfers is handled implicitly by the verifier.

In addition to live variables, all of the invariants involving
the stack, the exception handler, etc. must be preserved as
control flows through labels, so this information looks much
as it does for function entry labels.

For example, suppose our function foo uses all of the
callee-save registers and needs three spill slots. Further-
more, suppose that at an internal label, 1, there are two live
variables, both of type int4, one in register ESI and one in
the middle spill slot. Then a correct pre-condition for 1 is:

1: Vs1:Ts s2:Ts el:Tcap e2:Tcap al:T4 a2:T4 a3:T4.
{esp:
topd::int4::top4::a3::a2::al
::{eax:int4
esp: int4::s1@{esp:s2 eax:exn cap:e2}::s2
ebp: {esp:s2 eax:exn cap:e2}::s2
ebx:al esi:a2 edi:a3
cap: &[el,e2]}
::int4::s1@{esp:s2 eax:exn cap:e2}::s2}
ebp: {esp:s2 eax:exn cap:e2}::s2
cap: &[el,e2]
esi: int4}

Our register allocator tries not to use callee-save registers
so that functions do not have to save and restore them. For
example, suppose registers ESI and EDI are not used in
a function. Then internal labels will encode that a value of
type al is on the stack in the appropriate place, ESI contains
a value of type a2, and EDI contains a value of type a3.

If one or more records were partially initialized on entry
to 1, then the pre-condition would have a more complicated
capability; we omit the details. What should be clear at
this point is that the type annotations for a given internal
label are considerably less uniform than function entry point
annotations.

4 Recovering Conciseness

Continuing the examples from the previous section, we de-
scribe three techniques for reducing the size of annotations.
The next section quantifies the effectiveness of these and
other techniques.

4.1 Sharing Common Subterms

Since the annotations repeat information, we can greatly
reduce their total size by replacing identical terms with a
pointer to a shared term. This technique is common referred
to as “hash consing”. As an example, consider again the pre-
condition for the function foo, which takes and returns an
int:

type exn = Jc:Tm “*[("T rw(c)*[int4"rw]) “rw,c]
fo0:Vs1:Ts s2:Ts el:Tcap e2:Tcap al:T4 a2:T4 a3:T4.
{esp: {eax:int4
esp: int4::s1@{esp:s2 eax:exn cap:e2}::s2
ebp: {esp:s2 eax:exn cap:e2}::s2
ebx:al esi:a2 edi:a3
cap: &[el,e2]}
::int4::s1@{esp:s2 eax:exn cap:e2}::s2}
ebp: {esp:s2 eax:exn cap:e2}::s2
ebx:al esi:a2 edi:a3
cap: &l[el,e2]}

Removing some common subterms by hand, we can
represent the same information with the following pseudo-
annotation:

= Jdc:Tm “*[(C"T rw(c)*[intd"rw]) "rw,c]
&lel,e2]

{esp:s2 eax: cap:e2}::s2
int4::sl@

{eax:int4 esp: ebp:

ebx:al esi:a2 edi:a3 cap: }::Izl

foo:Vs1:Ts s2:Ts el:Tcap e2:Tcap al:T4 a2:T4 a3:T4.

{esp: ebp: ebx:al esi:a2 edi:a3 cap: }

a > W
[

Other pre-conditions can share subterms with this one.
For example, the pre-condition for 1 from the previous sec-
tion can be re-written as:

1: Vs1:Ts s2:Ts el:Tcap e2:Tcap al:T4 a2:T4 a3:T4.
{esp: top4::int4::top4::a3::a2::a1::E|

ebp: cap: esi:int4}

Despite exploiting significant sharing, this example illus-
trates some limitations of sharing common subterms. First,
we would like to share all the occurrences of “s1:Ts s2:Ts

a3:T4”, but whether or not we can do so depends on
the abstract syntax of the language. Second, pre-conditions
for functions with different parameter types or return types
cannot exploit subterms 4 or 5.

4.2 Parameterized Abbreviations

TALx86 provides user-defined (7.e. compiler-defined) higher-
order type constructors. These functions from types to types
have several uses. For example, they are necessary to en-
code source-level type constructors, such as array, list, or

object types. Here we show how to use higher-order type
constructors to define parameterized abbreviations. Such
abbreviations can be used to share common patterns that
hash-consing of subterms cannot, but for our verifier, it is
difficult to exploit abbreviations during verification.

Since every function entry pre-condition created by Pop-
corn is the same except for its parameter types and return
types, we can create a parameterized abbreviation that de-
scribes the generic situation. Then at each function entry
label, we apply the abbreviation to the appropriate types.

type F = fn params:Ts ret:T4.
Vs1:Ts s2:Ts el:Tcap e2:Tcap al:T4 a2:T4 a3:T4.
{esp: {eax: ret

esp: params@sl1@{esp:s2 eax:exn cap:e2}::s2
ebp: {esp:s2 eax:exn cap:e2}::s2
ebx:al esi:a2 edi:a3
cap: &[el,e2]}
: :params@s1@{esp:s eax:exn cap:e2}::s2}

ebp: {esp:s2 eax:exn cap:e2}::s2
ebx:al esi:a2 edi:a3
cap: &lel,e2]}

foo: F int4::se int4

The only new feature other than the abbreviation is the
type se which describes empty stacks. We use it here to
terminate a list of parameter types. The use of abbreviations
greatly simplifies the structure of the compiler because it
centralizes invariants such as calling conventions.

It is not clear how a compiler-independent verifier could
exploit an abbreviation like F during verification. Sup-
pose the first instruction in block foo increments the in-
put parameter. The verifier must check that given the pre-
condition F int4::se int4, it is safe to perform an incre-
ment of the value on top of the stack. This verification re-
quires inspecting the result of the abbreviation application
since the verifier does not know that the argument int4::se
describes the top of the stack. As we show in the section on
experimental results, using abbreviations sometimes slows
down verification because of this phenomenon.

The abbreviation F can be used often because all func-
tion entry pre-conditions are similar. To use abbreviations
for internal labels, we must capture the additional proper-
ties that distinguish these pre-conditions. In addition to F’s
parameters, we also need parameters for the spill slots, the
live registers, and something to do with partial initializa-
tion issues. We also use a primitive type constructor (&)
for combining two pre-conditions. That way we can pass in
the live registers as one pre-condition and merge it with a
pre-condition that describes the reserved registers.

type L =
fn params:Ts ret:T4 spills:Ts part:Tcap regs:Tpre.
Vs1:Ts s2:Ts el:Tcap e2:Tcap al:T4 a2:T4 a3:T4.
{esp:
spills@a3::a2::al
::{eax: ret
esp: params@{esp:s2 eax:exn cap:e2}::s2
ebp: {esp:s2 eax:exn cap:e2}::s2
ebx:al esi:a2 edi:a3
cap: &lel,e2]}
: :params@{esp:s2 eax:exn cap:e2}::s2}
ebp: {esp:s2 eax:exn cap:e2}::s2

cap: &[part,el,e2]}
& regs

1: L int4::se int4
topd::int4::top4::se ce {esi:int4}

L is correct, but it is only useful for labels in functions
where all three callee-save values are stored on the stack.
With a “don’t optimize” approach, we could make all func-
tions meet this description, but we lose most of the advan-
tages of callee-save registers as a result. A better approach
is to provide 2° = 8 different abbreviations, one for each
combination of callee-save values being stored on the stack.
In fact, we only need four such abbreviations since our reg-
ister allocator uses the callee-save registers in a fixed order.
Since the compiler is the creator of the abbreviations, this
specialization is possible and appropriate.

4.3 Eliding Pre-conditions

Recall that the verifier checks a code block by assuming its
pre-condition is true and then processing each instruction in
turn, checking it for safety and computing a pre-condition
for the remainder of the block. At a control transfer to
another block, it suffices to ensure that the current pre-
condition implies the pre-condition on the destination label.

TALx86 takes a “reconstruction” approach by allowing
many label pre-conditions to be elided. Clearly, the result of
eliding a pre-condition is a direct decrease in annotation size.
To check a control transfer to a block with an elided pre-
condition, the verifier simply uses the current pre-condition
at the source of the transfer to check the target block. Hence
if a block with elided pre-condition has multiple control flow
predecessors, it is verified multiple times under (possibly)
different pre-conditions.

To ensure termination of verification, we must prohibit
annotation-free loops in the control flow graph. For this
reason, TALx86 allows a pre-condition to be elided only if
the block is only the target of forward jumps. Even with
this restriction, the number of times a block is checked is
the number of paths through the control-flow graph to the
block such that no block on the path has an explicit pre-
condition. This number can be exponential in the number
of code blocks, so it is unwise to elide explicit pre-conditions
indiscriminantly. As the next section demonstrates, an ex-
ponential number of paths is rare, but it does occur and it
can have disastrous effects on verification time.

The approach taken by our compiler is to set an elision
threshold, T, and insist that no code block is verified more
than T times. Notice T' = 1 means all merge points have
explicit pre-conditions. We interpret 7' = 0 to mean that
all code labels, even those with a single predecessor, have
explicit pre-conditions. For higher values of T, we expect
space requirements to decrease, but verification time to in-
crease. Given a value for 7', we might like to minimize the
number of labels that have explicit pre-conditions. Unfortu-
nately, this problem is NP-Complete for T' > 3. Currently,
the compiler does a simple greedy depth-first traversal of
the control-flow graph, leaving off pre-conditions until the
threshold demands otherwise.

5 Experimental Results

In this section, we present our quantitative study of cer-
tifying a real program in TALx86. We conclude that tar-

geting compiler-independent safety policies is practical and
scalable, but that careful use of appropriate techniques can
significantly reduce verification space and time.

Our example is the Popcorn compiler itself. This choice
saves us the effort of writing a compiler and an application.
It also suggests that our application is useful and our source
language is realistic. Of course, studying a new applica-
tion written by ourselves in our own language makes many
comparisons impossible. Since we are more interested in
studying the overheads of compiling to expressive low-level
safety policies than in producing excellent code, we find this
approach attractive.

The compiler consists of 39 Popcorn source files compiled
separately. The more interesting optimizations performed
are Chaitin-style intra-procedural register allocation[4] (us-
ing optimistic spilling[3] and conservative coalescing[5]) and
the elimination of fully redundant null-checks for object
dereferences. The entire compiler is roughly 18,000 lines
of source code and compiles to 816 kilobytes of object code
(335 kilobytes after running strip).

The sizes we report include the sum across files of all
annotations, not just those for code labels. They do not
include interface information used for type-safe linking. All
execution times were measured on a 266MHz Pentium II
with 64MB of RAM running Windows NT 4.0. The ver-
ifier and assembler are written in Objective Caml[12] and
compiled to native code.

We first show that naive choices in the annotation lan-
guage and compiler can produce a system with unacceptable
space and/or time overhead. Then we show that our actual
implementation avoids these pitfalls. Next we adjust var-
ious parameters and disable various techniques to discover
the usefulness of individual approaches and how they inter-
act. Finally, we discuss how we could extend our techniques
to further lower the TALx86 overhead.

5.1 Two Bad Approaches

A simple encoding of the TALx86 annotations is insufficient.
First, consider a system where we do not use the abbrevi-
ations developed in Section 4, our type annotations repeat
types rather than sharing them, and we put types on all
code labels. Then the total annotation size for our program
is over 4.5 megabytes, several times the size of the object
code. As for verification time, if we make no attempt to
share common subterms created during verification, then it
takes 59 seconds to verify all of the files.

A second possibility is to remove as many pre-conditions
as possible. That is, we only put an explicit pre-condition
on a code label if the label is used as a call destination, a
backwards branch destination, or a first-class value. Indeed,
the total size of our annotations drops to 1.85 megabytes.
However, the verifier now checks some code blocks a very
large number of times. Total verification time rises to 18
minutes and 30 seconds.

These two coarse experiments yield some immediate con-
clusions. First, the actual amount of safety information de-
scribing a compiled program is large. Second, the number
of loop-free paths through our application code is, in places,
much larger than the size of the code. Therefore, it is un-
wise to make verification time proportional to the number
of loop-free paths as the second approach does.

The latter conclusion is important for certified code
frameworks (such as proof-carrying code) that construct ver-
ification conditions at verification time via a form of weakest

10

-
L

Verification Time (sec)
(2

0.01 T T T
1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Total File Size (bytes)

Figure 1: Verification Time vs. File Size

pre-condition computation [11]. If done naively, the con-
structed condition can have exponential size by creating a
different logical clause for every loop-free path. For a com-
piler to exploit the weakness of such a pre-condition, it would
need to have optimized based on an exponential amount of
path-sensitive information. We conclude that constructing
weakest pre-conditions in this way is impractical and waste-
ful.

5.2 A Usable System

Having shown how bad matters can get, we now present the
actual overhead that our system achieves. First we iden-
tify the main techniques used and the overhead that results.
Then we show that verification time is roughly proportional
to file size; this fact suggests that our approach should scale
to larger applications. Finally, we partition the source code
into several styles, show that the overhead is reasonable for
all of them, and discuss salient differences.

Unlike the “straw man” systems constructed above, the
real encoding of TALx86 annotations uses several tables to
share common occurrences. Specifically, uses of identifiers,
types, kinds, and coercions are actually indices into a table
that contains the annotation. The code producer can avoid
duplicates when constructing the table. The benefit of this
approach is proportional to the amount of repetition; there is
a small penalty for annotations that occur only once. We call
this technique “sharing”; more specifically it is full common
subexpression elimination on types at the file level.

Since this sharing does not create parameterized abbrevi-
ations, we also use the abbreviations developed in Section 3.

We set the elision threshold to four. At this value,
many forward control flow points will not need explicit pre-
conditions, but no block is verified more than four times.

Finally, the verifier uses “hash consing” to share types
that are created during verification. That is, when creat-
ing a new type, the verifier consults a table to see if it has
encountered the type previously. If so, it uses the type in
the table. Moreover, reductions on higher-order type con-
structors are performed in a lazy manner. In particular,
we use a weak-head normalization strategy with memoiza-
tion to avoid both unnecessary reductions and duplicated
reductions. As such, other uses of the type will not have
to re-compute the reduction. Because of complications with

Style | Object Code (kB) | Annotations (kB) | Verification Time (sec) | Size Ratio | Time Ratio

Polymorphic Libraries 36.4 19.6 1.19 .54 46.9
Monomorphic Libraries 34.8 15.1 94 43 53.1
Mostly Type Definitions 45.7 30.6 1.29 .67 58.9
Machine-generated 148.4 82.0 6.30 .55 36.6
Compilation 550.0 271.4 22.3 49 36.8

Figure 2: Effect of Different Code Styles

the scope of abbreviations, the hash consing table is emp-
tied before verifying each file. If memory becomes scarce,
we could empty the table at any point, but this measure
has not been necessary in practice. Note that the use of
hash consing cannot affect the size of explicit annotations.

With this system, total annotation size drops from 4.5
megabytes to 419 kilobytes and verification time drops from
59 to 34.5 seconds. As for compilation time, our compiler
takes 40 seconds to compile the Popcorn source files into
ASCII TALx86 files, which are essentially Microsoft Assem-
bler (MASM) style files augmented with annotations. A
separate tool takes 23 seconds to assemble all of these files;
this time includes the creation of the binary encoding of the
annotations with sharing. As we add more optimizations to
our compiler, we expect compilation time to increase more
than verification time. The latter may actually decrease as
object code size decreases.

Performing gzip compression on the 419 kilobytes of an-
notations reduces their size to 163 kilobytes. The ratio of
compression is similar to that for our object files; the un-
stripped files compress from 816 to 252 kilobytes and the
stripped files compress from 335 to 102 kilobytes.

A desirable property is that verification time is gener-
ally proportional to file size. In theory, TALx86 verification
could take exponential time, so we are pleased to see that
empirically this has not occurred. Figure 1 plots verification
time against total size (object code plus annotations) for all
of the files in the compiler. The time stays roughly pro-
portional as file size grows by over an order of magnitude.
Small files take proportionally longer to verify because of
start-up costs and the overhead of using a hash cons table.
Such files take just a fraction of a second to verify, so we
consider these costs insignificant.

So far we have presented results for the entire compiler
as a whole. By analyzing the results for different styles of
code we can gain additional insight. Of course, all of the
code is in the same source language, compiled by the same
compiler, and written by the authors. Nonetheless, we can
partition the files into several broad categories:

e Polymorphic library files: These files provide generally
useful utilities such as iterators over generic container
types. Examples include files for lists, dictionaries, sets,
and re-sizing arrays.

e Monomorphic library files: Examples include files for
bit vectors and command-line argument processing.

e Datatype files: These files primarily define types used
by the compiler and provide only simple code to create
or destruct instances of the type. Examples include
files for the abstract syntax of Popcorn, the compiler’s
intermediate language, an abstract syntax for TALx86,
and an environment maintained while translating from
the intermediate language to TALx86.

e Machine-generated files: These files include the scan-
ner and the parser. Compared to other styles of code,
they are characterized by a small number of large func-
tions which contain switch statements with many cases.
They also have large constant arrays.

e Compilation files: These files actually do the compila-
tion. Examples include files for type-checking, register
allocation, and printing the output.

Figure 2 summarizes the annotation size and verification
time relative to the categorization. The “Size Ratio” is
annotation size divided by the object code size. The “Time
Ratio” is the sum of the two sizes divided by the verification
time.

Most importantly, all of the size ratios are well within
a factor of two and the time ratios are even closer to each
other. We conclude that no particularr style of code we have
written dominates the overhead of producing provably safe
machine code. Even so, the results differ enough to make
some interesting distinctions.

The datatype files have the largest (worst) size ratio and
largest (best) time ratio. The former is because type def-
initions are compiled into annotations which describe the
corresponding TALx86 types, but there is no associated ob-
ject code. The size ratio can actually be arbitrarily high as
the amount of code in a source file goes to zero. The time
ratio is also not surprising; the time-consuming part of ver-
ification is checking that each instruction is safe given its
context.

The relatively high size ratio for machine-generated code
is an artifact of how parsers are generated. Essentially, all of
the different token types are put into a large union. The code
which processes tokens is therefore filled with annotations
which coerce values into and out of this union.

The size ratio for polymorphic libraries is slightly larger
than we expected. At the source level, a single type modifier
lists the type variables for an entire function. Since TALx86
has no notion of function, all of the labels for such a function
must express their type variables.® Furthermore, control
transfers between these labels must explicitly instantiate the
additional type variables.

Finally, the time ratio is noticeably smaller (worse) for
the compilation code. This style of code contains a much
higher proportion of function calls than libraries, which
mostly contain leaf procedures. Because of the complicated
type instantiations that occur at a call site, call instructions
take the most time to verify.

4The sum of the verification times is slightly less than the time to
verify all the files together due to secondary effects.
5Pre-conditions can still be elided, fortunately.

Annotation Size (kB) Verification Time (sec)
Sharing | Abbreviations | Uncompressed | Compressed | No hash consing | Hash consing
no no 2041 155 50 38
no yes 793 132 42 36
yes no 503 205 37.5 34.5
yes yes 419 163 40.5 34.5

Figure 3: Effect of Abbreviations, Sharing Subterms, and Hash Consing

5.3 Effectiveness of Individual Techniques

We have shown that our system achieves reasonable per-
formance and uses a number of techniques for controlling
annotation overhead, but we have not yet discussed which
of the techniques are effective. In this section, we examine
what happens if we selectively disable some of these tech-
niques.

Figure 3 summarizes the total annotation size when the
elision threshold is four and the other techniques are used
selectively. We discuss this data in detail below. When
“Sharing” is no, we do not use tables for sharing types and
coercions. Instead, we repeat the types directly in the an-
notations. We still share identifiers so that the lengths of
strings is insignificant. If “Abbreviations” is no, then all
abbreviations are fully expanded before the annotations are
written. “Uncompressed” is the total size of all the anno-
tations. “Compressed” is the sum of the result of running
gzip on each file’s annotations separately. The final two
columns give total execution time with and without hash
consing enabled.

We first discuss the effect of sharing and abbreviations
on the explicit annotation size. Both techniques appear very
effective if we ignore the effect of gzip. Abbreviations alone
reduce size by a factor of three whereas sharing alone reduces
size by a factor of four. Using abbreviations and sharing re-
duces size by about another fifteen percent as compared to a
system with just sharing. Hence neither technique subsumes
the other, but they do recover much of the same repetition.

However, if what we really care about is the size of anno-
tations that must be sent to a code consumer, then we should
consider running gzip. It is clear that gzip is extremely
effective; our worst result for compressed annotations is a
factor of two better than our best result for uncompressed
annotations. More subtle is the fact that gzip achieves a
smaller result when sharing is not used in our binary encod-
ing. This surprising result is a product of how our tables
are implemented and how gzip performs compression. In
short, gzip constructs its own tables and uses a much more
compact format than our encoding. Worse, our tables hide
repetition from gzip which looks for common strings. We
conclude that if annotation size is the primary concern, then
the binary encoding should remain “gzip-friendly”.

Abbreviations are actually much more effective than the
data in the figure indicates. The compiler’s abbreviations
are only used for code pre-conditions, so optimization on this
one aspect of annotation size must eventually demonstrate
Amdahl’s Law. We considered what the total annotation
size would be if we removed all explicit code pre-conditions.
Of course, the result of this drastic measure is unverifiable,
but it provides a rough lower bound for the effectiveness
of the abbreviations.® The total size is still 377 kilobytes,

GActually, there are a few other places where the abbreviations
are used, such as when a polymorphic function is instantiated at a

10

so abbreviations reduced the size of code pre-conditions by
about a factor of three.

We now discuss the effect of the techniques on verifi-
cation time. Here gzip is useless since our verifier works
on uncompressed annotations. Without hash consing, shar-
ing significantly reduces verification time. While the verifier
under these conditions does not share types that it creates
during verification, it does share types that originally oc-
cur in the annotations. The result suggests that these types
cover many of those used during verification.” Without shar-
ing, abbreviations are a great help since they recover the
most common occurrences. However, with sharing, abbrevi-
ations actually hurt verification time. Essentially, the time
to expand the abbreviations during verification outweighs
the time that the additional sharing gains.

With hash consing, the different verification times are
much closer to each other. Using a hash-cons table redis-
covers any sharing, so without sharing initially we only have
to pay the cost to achieve this rediscovery. More interest-
ingly, the penalty for using abbreviations goes away. We
believe this result is due to the fact that with hash consing,
any abbreviation applied to the same argument only needs
to be expanded once and then the result can be used in
multiple places.

Using hash consing reduces verification time significantly,
but only with a careful implementation of the hashing. For
example, if we give our hash cons table a size near a power
of two (as number theory warns against), verification time
takes longer than without hash consing at all. The good
news is that optimizing the verifier can sometimes be re-
duced to fundamental properties of data structures. The
bad news is this fact means the difference between verifica-
tion times under different parameters is more brittle than
we would like.

As explained in the previous section, TALx86 code blocks
that are only targets of forward branches do not need an-
notations, but they will be re-verified along every unanno-
tated control-flow path. Given an elision threshold T', our
compiler ensures that no block will be verified more than 7'
times. Subject to this constraint, it uses a simple greedy al-
gorithm to leave annotations off labels. Figure 4 shows the
effect of changing the value of T'. Sharing and abbreviations
are both used.

The left chart in Figure 4 shows that total annotation
size drops by over fifteen percent as T is 1 instead of 0.
We conclude that low-level systems should not require pre-
conditions on all blocks. However, the additional space sav-
ings as T is given values larger than 8 are quite small. This
fact justifies the use of T' = 4 for the other experiments.

The other charts in Figure 4 show the verification time
for different values of T'. Verification time initially drops as

function type, but such situations are exceedingly rare in our code.
"Parsing time is a small but noticeable fraction of the difference.

IS

600

5

500 *—‘

[=]0
B Compressed

400 1

300 1

200 1

Verification Time (sec)

Annotation Size (kB)

100

Verification Time (sec)

Jom [

0+ 0 1

Elision Threshold

Elision Threshold

2

4 8 16 100 1000 10000 infinity

Elision Threshold

Figure 4: Effect of Elision Threshold

T gets the value 1 instead of 0. This phenomenon indicates
that it takes a lot of time to process an explicit annotation
and compare it to a pre-condition. As T takes values 2, 4,
8, and 16, verification time rises noticeably but only by a
few seconds. We conclude that this range of values allow
for different reasonable time-space trade-offs. As T takes
larger values, verification time rises sharply. Although very
few additional blocks have their pre-conditions elided, these
blocks are then checked a very large number of times. In
fact, for large T', the time spent verifying different files varies
drastically since most files do not have any such blocks.

5.4 Useful Extensions

We have presented a system where uncompressed safety an-
notations consume roughly half the space of the object code
they describe, and we have given techniques (sharing, ab-
breviations, and elision) that help in this regard. Now we
investigate whether the current system is the best we can
hope to achieve or if the techniques could contribute more
to reducing the TALx86 overhead. By moving beyond what
the current system supports, we demonstrate the latter con-
clusion.

First, we notice that sharing common subterms was so
effective because it shares type annotations across an entire
file. The file level is currently the best we can do because
we compile each file separately. In a scenario where all of
the object files are packaged together, it may be reasonable
to share annotations in a single table for the entire package.
Although our current tools cannot process such a package,
we are able to generate it by hand and measure its size.
The total size drops from 419 kilobytes to 338 kilobytes. We
conclude that different files in our project have many similar
annotations; we should be able to exploit this property to
further reduce overhead. In fact, since this improvement
does not rely on understanding the compiler’s conventions,
a generic TALx86 tool could put separately compiled object
files into a package.

Second, the annotations that describe what coercions ap-
ply at each instruction are not currently shared. While there
are common occurrences in the annotations, some of the
most common only take one byte to represent, so sharing
these annotations must carefully avoid increasing space re-
quirements.

Third, verification time suffers significantly from mem-
ory allocation and garbage collection. Although we have

11

implemented hash consing to address this bottleneck, Shao
and associates [21] use their experience with type-directed
compilers to suggest that suspension-based lambda encod-
ing [17] can further improve performance. Unfortunately,
modifying our verifier to use these techniques is non-trivial,
so we relegate such an investigation to future work.

Fourth, some well-chosen uses of type reconstruction
could eliminate many of the explicit annotations. For exam-
ple, if the verifier performed unification of (first-order) type
variables, then the compiler could eliminate all of the type
applications at control transfer points. This elision would
improve our annotation size to 330 kilobytes. (We com-
puted this figure by eliding the instantiations even though
the verifier cannot process the result.) More importantly, re-
construction approaches improve the size even in the pres-
ence of gzip; the compressed annotations drop from 163
kilobytes to 141 kilobytes in this case.

In summary, the TALx86 system shows that techniques
such as sharing and elision make certified code scalable and
practical, but even TALx86 could use these techniques more
aggressively to achieve lower overhead.

6 Conclusions

Our Popcorn compiler encodes the safety of its output in
TALx86. As a Popcorn application itself, it also serves as the
largest application we know of that has been compiled to a
safe machine language. Because we believe safety policies
should not be tailored to a particular compiler, we encode
the aspects of Popcorn compilation relevant to safety in the
more primitive constructs of TALx86. We have found that
the most important factor in the scalability of certifying
compilation is the size of code pre-conditions.

Based on our experience, we present the following conclu-
sions for compiler-independent low-level code certification
systems.

e Common subexpression elimination of explicit annota-
tions is a practical necessity. Sharing terms created
during verification is also helpful, but it is important
to carefully manage the overheads inherent in doing so.

Compilers can effectively exploit parameterized abbre-
viations to encode their invariants. Although abbrevia-
tions improve the size of explicit annotations, it is more
difficult to exploit abbreviations during verification.

e Serial compression utilities, such as gzip, are very help-

ful, but they are not a complete substitute for other
techniques. Moreover, if good compression is a system
requirement, one should understand the compression
algorithm when designing the uncompressed format.

e Overhead should never be proportional to the number

of loop-free control-flow paths in a program.

We believe these suggestions should help other projects

to avoid common pitfalls and focus on the important factors
for achieving expressiveness and scalability.

Acknowledgments

Much of the TALx86 infrastructure was written by other

members of the TAL research group.

Fred Smith con-

tributed greatly to the prototype Popcorn compiler used
for bootstrapping. We proved that optimal annotation eli-
sion is NP-complete for an elision threshold greater than
five; David Kempe refined the claim to include all thresh-
olds greater than two. David Walker generously encouraged
us to write this report.

References

(1]

(2]

(10]

(11]
(12]

Andrew W. Appel and Amy P. Felty. A semantic model
of types and machine instructions for proof-carrying code.
In Twenty-Seventh ACM Symposium on Principles of Pro-
gramming Languages, Boston, MA, January 2000. To ap-
pear.

Quetzalcoatl Bradley, R. Nigel Horspool, and Jan Vitek.
Jazz: An efficient compressed format for Java archive files.
In CASCON’98, November 1998.

Preston Briggs, Keith Cooper, and Linda Torczon. Improve-
ments to graph coloring register allocation. ACM Transac-
tions on Progamming Languages and Systems, 16(3):428—
455, May 1994.

G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hop-
kins, and P. Markstein. Register allocation via coloring.
Computer Languages, 6:47-57, 1981.

Lal George and Andrew W. Appel. Iterated register coa-
lescing. ACM Transactions on Progamming Languages and
Systems, 18(3):300-324, May 1996.

Neal Glew. Type dispatch for named hierarchical types.
In ACM International Conference on Functional Program-
ming, pages 172—-182, Paris, France, September 1999.

Neal Glew and Greg Morrisett. Type safe linking and mod-
ular assembly language. In Twenty-Sizth ACM Symposium
on Principles of Programming Languages, pages 250-261,
San Antonio, TX, January 1999.

R. Harper, F. Honsell, and G. Plotkin. A framework for
defining logics. Journal of the ACM, 40(1):143-184, 1993.

Luke Hornof and Trevor Jim. Certifying compilation and
run-time code generation. In ACM Workshop on Par-
tial Evaluation and Semantics-Based Program Manipula-
tion, pages 60-74, San Antonio, TX, January 1999.

Dexter Kozen. Efficient code certification. Technical Report
98-1661, Department of Computer Science, Cornell Univer-
sity, Ithaca, NY, January 1998.

Peter Lee. Personal communication.

Xavier Leroy. The Objective Caml system, documentation,
and user’s guide, 1998.

12

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman,
Richard Samuels, Frederick Smith, David Walker, Stephanie
Weirich, and Steve Zdancewic. TALx86: A realistic typed
assembly language. In Second ACM SIGPLAN Workshop
on Compiler Support for System Software, pages 25-35, At-
lanta, GA, 1999. Published as INRIA Technical Report 0288,
March, 1999.

Greg Morrisett, Karl Crary, Neal Glew, and David Walker.
Stack-based typed assembly language. In Workshop on
Types in Compilation, volume 1473 of Lecture Notes in
Computer Science, pages 28-52, Kyoto, Japan, March 1998.
Springer-Verlag.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
From System F to typed assembly language. In Twenty-F'ifth
ACM Symposium on Principles of Programming Languages,
pages 85-97, San Diego, CA, January 1998.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
From System F to typed assembly language. ACM Trans-
actions on Progamming Languages and Systems, 21(3):528—
569, May 1999.

Gapolan Nadathur. A notation for lambda terms II: Refine-
ments and applications. Technical Report CS-1994-01, Duke
University, Durham, NC, January 1994.

George Necula and Peter Lee. The design and implemen-
tation of a certifying compiler. In ACM Conference on
Programming Language Design and Implementation, pages
333344, Montreal, Canada, June 1998.

George Necula and Peter Lee. Efficient representation and
validation of proofs. In Thirteenth Symposium on Logic in
Computer Science, Indianapolis, IN, June 1998.

William Pugh. Compressing Java class files. In ACM Con-
ference on Programming Language Design and Implementa-
tion, pages 247-258, Atlanta, GA, May 1999.

Zhong Shao, Christopher League, and Stefan Monnier. Im-
plementing typed intermediate languages. In Third ACM In-
ternational Conference on Functional Programming, pages
313-323, Baltimore, MD, September 1998.

Fred Smith, David Walker, and Greg Morrisett. Alias types.
Technical Report TR99-1773, Department of Computer Sci-
ence, Cornell University, Ithaca, NY, October 1999.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper,
and P. Lee. TIL: a type-directed optimizing compiler for
ML. In ACM Conference on Programming Language Design
and Implementation, pages 181-192, Philadelphia, PA, May
1996.

Andrew K. Wright and Robert Cartwright. A practical soft
type system for Scheme. ACM Transactions on Progamming
Languages and Systems, 19(1):87-152, January 1997.

