
From System F to Typed Assembly Language∗

Greg Morrisett David Walker Karl Crary Neal Glew

Cornell University

Abstract

We motivate the design of a statically typed assembly
language (TAL) and present a type-preserving transla-
tion from System F to TAL. The TAL we present is
based on a conventional RISC assembly language, but
its static type system provides support for enforcing
high-level language abstractions, such as closures, tu-
ples, and objects, as well as user-defined abstract data
types. The type system ensures that well-typed pro-
grams cannot violate these abstractions. In addition,
the typing constructs place almost no restrictions on
low-level optimizations such as register allocation, in-
struction selection, or instruction scheduling.

Our translation to TAL is specified as a sequence of
type-preserving transformations, including CPS and
closure conversion phases; type-correct source programs
are mapped to type-correct assembly language. A key
contribution is an approach to polymorphic closure con-
version that is considerably simpler than previous work.
The compiler and typed assembly language provide a
fully automatic way to produce proof carrying code, suit-
able for use in systems where untrusted and potentially
malicious code must be checked for safety before execu-
tion.

∗This material is based on work supported in part by the
AFOSR grant F49620-97-1-0013, ARPA/RADC grant F30602-
96-1-0317, ARPA/AF grant F30602-95-1-0047, and AASERT
grant N00014-95-1-0985. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are those
of the authors and do not reflect the views of these agencies.

To appear at the 1998 Symposium on Principles of Program-
ming Languages

1 Introduction and Motivation

Compiling a source language to a statically typed in-
termediate language has compelling advantages over a
conventional untyped compiler. An optimizing com-
piler for a high-level language such as ML may make
as many as 20 passes over a single program, perform-
ing sophisticated analyses and transformations such
as CPS conversion [14, 35, 2, 12, 18], closure conver-
sion [20, 40, 19, 3, 26], unboxing [22, 28, 38], subsump-
tion elimination [9, 11], or region inference [7]. Many
of these optimizations require type information in or-
der to succeed, and even those that do not often ben-
efit from the additional structure supplied by a typ-
ing discipline [22, 18, 28, 37]. Furthermore, the ability
to type-check intermediate code provides an invaluable
tool for debugging new transformations and optimiza-
tions [41, 30].

Today a small number of compilers work with typed in-
termediate languages in order to realize some or all of
these benefits [22, 34, 6, 41, 24, 39, 13]. However, in
all of these compilers, there is a conceptual line where
types are lost. For instance, the TIL/ML compiler pre-
serves type information through approximately 80% of
compilation, but the remaining 20% is untyped.

We show how to eliminate the untyped portions of a
compiler and by so doing, extend the approach of com-
piling with typed intermediate languages to typed tar-
get languages. The target language in this paper is
a strongly typed assembly language (TAL) based on
a generic RISC instruction set. The type system for
the language is surprisingly standard, supporting tuples,
polymorphism, existentials, and a very restricted form
of function pointer, yet it is sufficiently powerful that
we can automatically generate well-typed and efficient
code from high-level ML-like languages. Furthermore,
we claim that the type system does not seriously hin-
der low-level optimizations such as register allocation,
instruction selection, instruction scheduling, and copy
propagation.

TAL not only allows us to reap the benefits of types
throughout a compiler, but it also enables a practical
system for executing untrusted code both safely and

1

λF -
CPS conversion

λK -
Closure conversion

λC -
Allocation

λA -
Code generation

TAL

Figure 1: Compilation of System F to Typed Assembly Language

efficiently. For example, as suggested by the SPIN
project [5], operating systems could allow users to down-
load TAL extensions into the kernel. The kernel could
type-check the TAL code to ensure that the code never
accesses hidden resources within the kernel, always calls
kernel routines with the right number and types of ar-
guments, etc., and then assemble and dynamically link
the code into the kernel.1 However, SPIN currently re-
quires the user to write the extension in a single high-
level language (Modula-3) and use a single trusted com-
piler (along with cryptographic signatures) in order to
ensure the safety of the extension. In contrast, a ker-
nel based on a typed assembly language could support
extensions written in a variety of high-level languages
using a variety of untrusted compilers, as the safety of
the resulting assembly code can be checked indepen-
dently of the source code or the compiler. Furthermore,
critical inner-loops could be hand-written in assembly
language in order to achieve optimal performance. TAL
could also be used to support extensible web-browsers,
extensible servers, active networks, or any other “ker-
nel” where security, performance, and language inde-
pendence are desired.

Software Fault Isolation (SFI) [47] also provides mem-
ory safety and language independence. However, SFI
requires the insertion of extra “sandboxing” code, cor-
responding to dynamic type tests, to ensure that the
extension is safe. In contrast, TAL does not have the
overhead of the additional sandboxing code, as type-
checking is performed offline.

With regard to these security properties, TAL is an in-
stance of Necula and Lee’s proof carrying code (PCC)
[33, 32]. Necula suggests that the relevant operational
content of simple type systems may be encoded using
extensions to first-order predicate logic, and proofs of
relevant security properties such as memory safety may
be automatically verified [32]. In addition, Necula’s ap-
proach places no restrictions on code sequences, or in-
struction scheduling, whereas our TAL has a small num-
ber of such restrictions (see Section 5.2). However, in
general there is no complete algorithm for construct-
ing the proof that the code satisfies the desired security
properties. In contrast, we provide a fully automatic
procedure for generating typed assembly language from
a well-formed source term.

1Of course, while type safety implies many important security
properties such as memory safety, there are a variety of other
important security properties, such as termination, that do not
follow from type safety.

1.1 Overview

In order to motivate the typing constructs in TAL and
to justify our claims about its expressiveness, we spend
much of this paper sketching a compiler from a vari-
ant of the polymorphic λ-calculus to TAL. The anxious
reader may wish to glance at Figure 11 for a sample
TAL program.

The compiler in this paper is structured as four trans-
lations between the five typed calculi given in Figure 1.
Each of these calculi is used as a first-class program-
ming calculus in the sense that each translation accepts
any well-typed program of its input calculus; it does not
assume that the input is the output from the preceding
translation. This allows the compiler to aggressively op-
timize code between any of the translation steps. The
inspiration for the phases and their ordering is derived
from SML/NJ [4, 2] (which is in turn based on the Rab-
bit [40] and Orbit compilers [19]) except that types are
used throughout compilation.

The rest of this paper proceeds as follows: Section
2 presents λF, the compiler’s source language, and
sketches a typed CPS translation based on Harper and
Lillibridge [18] and Danvy and Filinski [12], to our first
intermediate language λK. Section 3 presents the next
intermediate language, λC, and gives a typed closure
translation based on, but considerably simpler than, the
presentation of Minamide, Morrisett, and Harper [26].
Section 4 presents the λA intermediate language and
a translation that makes allocation and initialization
of data structures explicit. At this point in compila-
tion, the intermediate code is essentially in a λ-calculus
syntax for assembly language, following the ideas of
Wand [48]. Finally, Section 5 presents our typed as-
sembly language and defines a translation from λA to
TAL. Section 6 discusses extensions to TAL to support
language constructs not considered here.

Space considerations prevent us from giving all of the
details of the term translations. We encourage those
interested to read the companion technical report [31],
which gives formal static semantics for each of the in-
termediate languages. Also, the report gives a full
proof that the type system for our assembly language is
sound.

2 System F and CPS Conversion

The source language for our compiler, λF, is a call-by-
value variant of System F [15, 16, 36] (the polymorphic
λ-calculus) augmented with products and recursion on

2

K[[α]]
def
= α

K[[int]]
def
= int

K[[τ1→ τ2]]
def
= (K[[τ1]], (K[[τ2]])→ void)→ void

K[[∀α.τ]]
def
= ∀[α].((K[[τ]])→ void)→ void

K[[〈τ1, . . . , τn〉]] def
= 〈K[[τ1]], . . . ,K[[τn]]〉

Figure 2: CPS type translation

terms. The syntax for λF appears below:

types τ ::= α | int | τ1→ τ2 | ∀α.τ | 〈τ1, · · · , τn〉
terms e ::= x | i | fix x(x1:τ1):τ2.e | e1e2 | Λα.e |

e[τ] | 〈e1, · · · , en〉 | πi(e) |
e1 p e2 | if0 (e1, e2, e3)

prims p ::= + | − | ×

In order to simplify the presentation, we assume λF

has only integers as a base type (ranged over by the

metavariable i). We use ~X to denote a vector of syn-
tactic objects drawn from X . For instance, 〈~τ〉 is
shorthand for a product type 〈τ1, . . . , τn〉. The term
fix x(x1:τ1):τ2.e represents a recursively-defined func-
tion x with argument x1 of type τ1 and body e. Hence,
both x and x1 are bound within e. Similarly, α is bound
in e for Λα.e and bound in τ for ∀α.τ . As usual, we
consider syntactic objects to be equivalent up to alpha-
conversion of bound variables.

We interpret λF with a conventional call-by-value oper-
ational semantics (not presented here). The static se-
mantics is specified as a set of inference rules that allow
us to conclude judgments of the form ∆;Γ `F e : τ
where ∆ is a set containing the free type variables of Γ,
e, and τ ; Γ assigns types to the free variables of e; and
τ is the type of e.

As a running example, we will be considering compila-
tion and evaluation of 6 factorial:

(fix f(n:int):int. if0(n, 1, n× f(n− 1))) 6.

The first compilation stage is conversion to continuation-
passing style (CPS). This stage names all intermedi-
ate computations and eliminates the need for a con-
trol stack. All unconditional control transfers, including
function invocation and return, are achieved via func-
tion call. The target calculus for this phase is λK:

types τ ::= α | int | ∀[~α].(~τ)→ void | 〈~τ〉
terms e ::= v[~τ](~v) | if0 (v, e1, e2) | halt[τ]v |

let x = v in e |
let x = πi(v) in e |
let x = v1 p v2 in e

values v ::= x | i | 〈~v〉 | fix x[~α](x1:τ1, . . . , xk:τk).e

Code in λK is nearly linear: it consists of a series of let
bindings followed by a function call. The exception to
this is the if0 construct, which is still a tree containing
two expressions.

There is only one abstraction mechanism (fix), which
abstracts both type and value variables, simplifying the
rest of the compiler. The corresponding ∀ and → types
are also combined. However, we abbreviate ∀[].(~τ)→
void as (~τ)→ void.

Unlike λF, functions do not return a value; instead, they
invoke continuations. The function notation “→ void”
is intended to suggest this. Execution is completed by
the construct halt[τ]v, which accepts a result value v of
type τ and terminates the computation. Typically, this
construct is used by the top-level continuation. Aside
from these differences, the static and dynamic semantics
for λK is completely standard.

The implementation of typed CPS-conversion is based
upon that of Harper and Lillibridge [18]. The type
translation K[[·]] mapping λF types to λK types is given
in Figure 2. The translation on terms is given by a
judgment ∆; Γ `F eF : τ ; vcps where ∆; Γ `F eF : τ is
a derivable λF typing judgment, and vcps is a λK value
with type ((K[[τ]])→ void)→ void.

Following Danvy and Filinski [12], our term translation
simultaneously CPS converts the term, performs tail-
call optimization, and eliminates administrative redices
(see the technical report [31] for details). When applied
to the factorial example, this translation yields the fol-
lowing λK term:

(fix f [] (n:int , k:(int)→ void).
if0(n, k[](1),

let x = n− 1 in
f [](x,fix [] (y:int).

let z = n× y
in k[](z))))

[] (6, fix [] (n:int). halt[int]n)

3 Simplified Polymorphic Closure Conversion

The second compilation stage is closure conversion,
which separates program code from data. This is done
in two steps. Most of the work is done in the first step,
closure conversion proper, which rewrites all functions
so that they are closed. In order to do this, any variables
from the context that are used in the function must be
taken as additional arguments. These additional argu-
ments are collected in an environment, which is paired
with the (now closed) code to make a closure. In the

3

second step, hoisting, closed function code is lifted to
the top of the program, achieving the desired separa-
tion between code and data. Here we discuss closure
conversion proper; the hoisting step is elementary and
is discussed briefly at the end of the section.

Our approach to typed closure conversion is based on
that of Minamide et al. [26]: If two functions with
the same type but different free variables (and there-
fore different environment types) were naively closure
converted, the types of their closures would not be the
same. To prevent this, closures are given existential
types [27] where the type of the environment is held
abstract.

However, we propose an approach to polymorphic clo-
sure conversion that is considerably simpler than that
of Minamide et al., which requires both abstract kinds
and translucent types. Both of these mechanisms arise
because Minamide et al. desire a type-passing interpre-
tation of polymorphism where types are constructed and
passed to polymorphic functions at run-time. Under a
type-passing interpretation, polymorphic instantiation
cannot easily be treated via substitution, as this re-
quires making a copy of the code at run-time. Instead,
a closure is constructed that consists of closed code, a
value environment mapping variables to values, and a
type environment mapping type variables to types.

In our approach, we assume a type-erasure interpre-
tation of polymorphism as in The Definition of Stan-
dard ML [25], and polymorphic instantiation is seman-
tically handled via substitution (i.e., making a copy of
the code with the types substituted for the type vari-
ables). As we will ultimately erase the types on terms
before execution, the “copies” can (and will) be rep-
resented by the same term. This avoids the need for
abstract kinds (since there are no type environments),
as well as translucent types. A type-erasure interpreta-
tion is not without its costs: It precludes some advanced
implementation techniques [28, 43, 1, 29] and has sub-
tle interactions with side-effects. We address the latter
concern by forcing polymorphic abstractions to be val-
ues [42, 49] (i.e., they must be syntactically attached to
value abstractions).

To support this interpretation, we consider the partial
application of functions to type arguments to be values.

For example, suppose v has the type ∀[~α, ~β].(~τ)→ void
where the type variables ~α are intended for the type

environment and the type variables ~β are intended for
the function’s type arguments. If ~σ is a vector of types
to be used for the type environment, then the partial
instantiation v[~σ] is still treated as a value and has type

∀[~β].(~τ[~σ/~α]) → void. The syntax of λC is otherwise
similar to λK:

types τ ::= α | int | ∀[~α].(~τ)→ void | 〈~τ〉 | ∃α.τ
terms e ::= v(~v) | if0(v, e1, e2) | halt [τ]v |

let x = v in e |
let x = πi(v) in e |
let x = v1 p v2 in e |
let [α,x] = unpack v in e

values v ::= x | i | 〈~v〉 | v[τ] | pack [τ, v] as ∃α.τ ′ |
fixcode x[~α](x1:τ1, . . . , xk:τk).e

Our closure conversion technique is formalized as a
type-directed translation in the companion technical re-
port [31]. We summarize here by giving the type trans-
lation for function types:

C[[∀[~α].(τ1, . . . , τk)→ void]]
def
=

∃β.〈∀[~α].(β,C[[τ1]], . . . , C[[τk]])→ void, β〉

The existentially-quantified variable β is the type of the
value environment for the closure. The closure itself is
a pair consisting of a piece of code that is instantiated
with the type environment, and the value environment.
The instantiated code takes as arguments the type argu-
ments and value arguments of the original abstraction,
as well as the value environment of the closure. The
rules for closure converting λK abstractions and appli-
cations are given in Figure 3.

After closure conversion, all functions are closed and
may be hoisted out to the top level without difficulty.
After hoisting, programs belong to a calculus that is
similar to λC except that fixcode is no longer a value.
Rather, code must be referred to by labels (`) and the
syntax of programs includes a letrec prefix, which binds
labels to code. A closure converted and hoisted fac-
torial, as it might appear after some optimization, is
shown in Figure 4.

4 Explicit Allocation

The λC intermediate language still has an atomic con-
structor for forming tuples, but machines must allocate
space for a tuple and fill it out field by field; the alloca-
tion stage makes this process explicit. The syntax of λA,
the target calculus of this stage, is similar to that of λC,
and appears in Figure 5. Note that there is no longer
a value form for tuples. The creation of an n-element
tuple becomes a computation that is separated into an
allocation step and n initialization steps. For example,
if v0 and v1 are integers, the pair 〈v0, v1〉 is created as
follows (where types have been added for clarity):

let x0:〈int0, int0〉 = malloc[int, int]
x1:〈int1, int0〉 = x0[0]← v0

x :〈int1, int1〉 = x1[1]← v1

...

The “x0 = malloc[int , int]” step allocates an uninitial-
ized tuple and binds the address (i.e., label) of the tu-
ple to x0. The “0” superscripts on the types of the
fields indicate that the fields are uninitialized, and hence
no projection may be performed on those fields. The
“x1 = x0[0]← v0” step updates the first field of the tu-
ple with the value v0 and binds the address of the tuple
to x1. Note that x1 is assigned a type where the first
field has a “1” superscript, indicating that this field is
initialized. Finally, the “x = x1[1] ← v1” step initial-
izes the second field of the tuple with v1 and binds the
address of the tuple to x, which is assigned the fully
initialized type 〈int1, int1〉. Hence, both π0 and π1 are
allowed on x.

4

∆ `K τi Γ = {y1:τ
′
1, . . . , ym:τ ′

m} ∆ = {~β} ∆[~α]; Γ[x:τcode, x1:τ1, . . . , xn:τn] `K e : void; e′

∆; Γ `K fix x[~α](x1:τ1, . . . , xn:τn).e : τcode; pack [τenv, 〈vcode[~β], venv〉] as C[[τcode]]

where τcode = ∀[~α].(τ1, . . . , τn) → void
τenv = 〈C[[τ ′

1]], · · · , C[[τ ′
m]]〉

venv = 〈y1, . . . , ym〉
vcode = fixcode xcode[~β, ~α](xenv:τenv, x1:C[[τ1]], . . . , xn:C[[τn]]).

let x = pack [τenv, 〈xcode[~β], xenv〉] as C[[τcode]] in
let y1 = π1(xenv) in
.
..

let ym = πm(xenv) in e′

(abs)

∆; Γ `K v : ∀[~α].(τ1, . . . , τn) → void; v′ ∆ `K ~σ
∆; Γ `K v1 : τ1[~σ/~α]; v′1 · · · ∆; Γ `K vn : τn[~σ/~α]; v′n

∆; Γ `K v[~σ](v1, . . . , vn) : τ ; e

where e = let [αenv, x] = unpack v′ in
let xcode = π1(x) in
let xenv = π2(x) in
xcode[C[[~σ]]](xenv, v′1, . . . , v′n)

(app)

Figure 3: Closure Conversion for λK Abstractions and Applications

letrec `f = (* main factorial code block *)
code[](env :〈〉, n:int , k:τk).

if0(n, (* true branch: continue with 1 *)
let [β,kunpack] = unpack k in
let kcode = π0(kunpack) in
let kenv = π1(kunpack)
in

kcode(kenv , 1),
(* false branch: recurse with n− 1 *)
let x = n− 1 in
(* compute factorial of n− 1 and continue to k′ *)

`f (env , x, pack [〈int, τk〉, 〈`cont , 〈n, k〉〉] as τk))
`cont = (* code block for continuation after factorial computation *)

code[](env :〈int, τk〉, y:int).
(* open the environment *)
let n = π0(env) in
let k = π1(env) in
(* continue with n× y *)
let z = n× y in
let [β,kunpack] = unpack k in
let kcode = π0(kunpack) in
let kenv = π1(kunpack)
in

kcode(kenv , z)
`halt = (* code block for top-level continuation *)

code(env :〈〉, n:int). halt[int](n)
in

`f (〈〉,6, pack [〈〉, 〈`halt , 〈〉〉] as τk)

where τk is ∃α.〈(α, int)→ void, α〉

Figure 4: Closure Converted, Hoisted Factorial Code

5

types τ ::= α | int | ∀[~α].(~τ)→ void | 〈τϕ1
1 , . . . , τϕn

n 〉 | ∃α.τ
initialization flags ϕ ::= 0 | 1
terms e ::= let ~d in v(~v) | let ~d in if0 (v, e1, e2) | let ~d in halt[τ]v
declarations d ::= x = v | x = πi(v) | x = v1 p v2 | [α, x] = unpack v |

x = malloc[~τ] | x = v[i]← v′

values v ::= x | ` | i | v[τ] | pack [τ, v] as ∃α.τ ′

blocks b ::= ` = code[~α](x1:τ1, . . . , xk:τk).e

programs P ::= letrec~b in e

Figure 5: Syntax of λA

Like all the intermediate languages of our compiler, this
code sequence need not be atomic; it may be rearranged
or optimized in any well-typed manner. The initializa-
tion flags on the types ensure that we cannot project
a field unless it has been initialized. Furthermore, our
syntactic value restriction ensures there is no unsound-
ness in the presence of polymorphism. However, it is
important to note that we interpret x[i]← v as an im-
perative operation, and thus at the end of the sequence,
x0, x1, and x are all aliases for the same location, even
though they have different (but compatible) types. Con-
sequently, the initialization flags do not prevent a field
from being initialized twice. It is possible to use mon-
ads [44, 21] or linear types [17, 45, 46] to ensure that
a tuple is initialized exactly once, but we have avoided
these approaches in the interest of a simpler type sys-
tem.

The type translation from λC to λA is trivial. All that
happens is that initialization flags are added to each
field of tuple types:

A[[〈τ1, . . . , τn〉]] def
= 〈A[[τ1]]

1, . . . ,A[[τn]]1〉

The term translation is also straightforward. As men-
tioned above, tuple values are exploded into a sequence
of declarations consisting of a malloc and appropriate
initializations.

5 Typed Assembly Language

The final compilation stage, code generation, converts
λA to TAL. All of the major typing constructs in
TAL are present in λA and, indeed, code generation is
largely syntactic. To summarize the type structure at
this point, we have a combined abstraction mechanism
that may simultaneously abstract a type environment,
a set of type arguments, and a set of value arguments.
Values of these types may be partially applied to type
environments and remain values. We have existential
types to support closures and other data abstractions.
Finally, we have n-tuples with flags on the fields indi-
cating whether the field has been initialized.

In the remainder of this section, we present the syntax
of TAL (Section 5.1), its dynamic semantics (Section
5.2), and its full static semantics (Section 5.3). Finally,
we sketch the translation from λA to TAL (Section 5.4).

5.1 TAL Syntax

A key technical distinction between λA and TAL is that
λA uses alpha-varying variables, whereas TAL uses reg-
ister names, which like labels on records, do not alpha-
vary.2 Hence, some register calling convention must
be used in code generation, and the calling convention
needs to be made explicit in the types. Following stan-
dard practice, we assume an infinite supply of registers.
Mapping to a language with a finite number of registers
may be performed by spilling registers into a tuple, and
reloading values from this tuple when necessary.

The types of TAL include type variables, integers, exis-
tentials, and tuple types augmented with initialization
flags, as in λA. The type ∀[~α]{r1:τ1, . . . , rn:τn} is used
to describe entry points of basic blocks (i.e., code la-
bels) and is the TAL analog of the λA function type,
∀[~α].(τ1, . . . , τn)→ void. The key difference is that we
assign fixed registers to the arguments of the code. Intu-
itively, to jump to a block of code of this type, the type
variables ~α must be suitably instantiated, and registers
r1 through rn must contain values of type τ1 through
τn, respectively.

Another technical point is that registers may contain
only word values, which are integers, pointers into the
heap (i.e., labels), and instantiated or packed word val-
ues. Tuples and code blocks are large values and must
be heap allocated. In this manner, TAL makes the lay-
out of data in memory explicit.

With these technical points in mind, we present the full
syntax of TAL in Figure 6. A TAL abstract machine or
program consists of a heap, a register file and a sequence
of instructions. The heap is a mapping of labels to heap
values, which are tuples and code. The register file is a
mapping of registers (ranged over by the metavariable r)
to word values. Although heap values are not word val-
ues, the labels that point to them are. The other word
values are integers, instantiations of word values, exis-
tential packages, and junk values (?τ), which are used
by the operational semantics to represent uninitialized
data. A small value is either a word value, a register,
or an instantiated or packed small value; this distinc-
tion is drawn because a register must contain a word,
not another register. Code blocks are linear sequences

2Indeed, the register file may be viewed as a record, and reg-
ister names as field labels for this record.

6

of instructions that abstract a set of type variables, and
state their register assumptions. The sequence of in-
structions is always terminated by a jmp or halt instruc-
tion. Expressions that differ only by alpha-variation are
considered identical, as are programs that differ only in
the order of fields in a heap or register file.

5.2 TAL Operational Semantics

The operational semantics of TAL is presented in Fig-
ure 7 as a deterministic rewriting system P 7−→ P ′ that
maps programs to programs. Although, as discussed
above, we ultimately intend a type-erasure interpreta-
tion, we do not erase the types from the operational se-
mantics presented here, so that we may more easily state
and prove a subject reduction theorem (Lemma 5.1).

If we erase the types from the instructions, then their
meaning is intuitively clear and there is a one-to-one
correspondence with conventional assembly language in-
structions. The two exceptions to this are the unpack
and malloc instructions, which are discussed below.
The well-formed terminal configurations of the rewrit-
ing system have the form (H,R{r1 7→ w}, halt[τ]).
This corresponds to a machine state where the regis-
ter r1 contains the value computed by the computation.
All other terminal configurations are considered to be
“stuck” programs.

Intuitively, jmp v, where v is a value of the form `[~τ],
transfers control to the code bound to the label `, in-
stantiating the abstracted type variables of ` with ~τ .

The ld rd, rs[i] instruction loads the ith component of
the tuple bound to the label in rs, and places this word
value in rd. Conversely, sto rd[i], rs places the word

value in rs at the ith position in the tuple bound to the
label in rd. The bnz r, v instruction tests the value in r
to see if it is zero. If so, then control continues with the
next instruction. Otherwise control is transferred to v
as with the jmp instruction.

The instruction unpack [α, rd], v, where v is a value of
the form pack [τ ′, v′] as τ , is evaluated by substituting
τ ′ for α in the remainder of the sequence of instructions
currently being executed, and by binding the register rd

to the value v′. If types are erased, the unpack instruc-
tion can be implemented by using a mov instruction.

As at the λA level, malloc rd[τ1, . . . , τn] allocates a
fresh, uninitialized tuple in the heap and binds the ad-
dress of this tuple to rd. Of course, real machines do not
provide a primitive malloc instruction. Our intention
is that, as types are erased, malloc is expanded into a
fixed instruction sequence that allocates a tuple of the
appropriate size. Because this instruction sequence is
abstract, it prevents optimization from re-ordering and
interleaving these underlying instructions with the sur-
rounding TAL code. However, this is the only instruc-
tion sequence that is abstract in TAL.

Real machines also have a finite amount of heap space.
It is straightforward to link our TAL to a conservative

garbage collector [8] in order to reclaim unused heap
values. Support for an accurate collector would require
introducing tags so that we may distinguish pointers
from integers, or else require a type-passing interpreta-
tion [43, 29]. The tagging approach is readily accom-
plished in our framework.

5.3 TAL Static Semantics

The static semantics for TAL appears in Figures 9 and
10 and consists of thirteen judgments, summarized in
Figure 8. The static semantics is inspired by and follows
the conventions of Morrisett and Harper’s λ→∀

gc [29]. A
weak notion of subtyping is included for technical rea-
sons related to subject reduction, so that an initialized
tuple may still be given its old uninitialized type (see
the technical report [31] for details).

Lemma 5.1 (Subject Reduction) If `TAL P and
P 7−→ P ′ then `TAL P ′.

Lemma 5.2 (Progress) If `TAL P then either:

1. there exists P ′ such that P 7−→ P ′, or

2. P is of the form (H, R{r1 7→ w}, halt[τ]) where
there exists Ψ such that `TAL H : Ψ and Ψ; ∅ `TAL

w : τ .

Corollary 5.3 (Type Soundness) If `TAL P , then
there is no stuck P ′ such that P 7−→∗ P ′.

5.4 Code Generation

The type translation, T [[·]], from λA to TAL is straight-
forward. The only point of interest is the translation of
∀ types, which must assign registers to value arguments:

T [[∀[~α](τ1, · · · , τn)→ void]]
def
=

∀[~α]{r1:T [[τ1]], . . . , rn:T [[τn]]}

The term translation is also straightforward, except that
we must keep track of the register to which a variable
maps, as well as the registers used thus far so that we
may allocate fresh registers. When translating a block
of code, we assume that registers r1 through rn contain
the value arguments. We informally summarize the rest
of the translation as follows:

• x = v is mapped to mov rx, v.

• x = πi(v) is mapped to the sequence:

mov rx, v ; ld rx, rx[i]

7

types τ ::= α | int | ∀[~α].Γ | 〈τϕ1
1 , . . . , τϕn

n 〉 | ∃α.τ
initialization flags ϕ ::= 0 | 1
heap types Ψ ::= {`1:τ1, . . . , `n:τn}
register file types Γ ::= {r1:τ1, . . . , rn:τn}
type contexts ∆ ::= ~α

registers r ∈ {r1, r2, r3, · · ·}
word values w ::= ` | i | ?τ | w[τ] | pack [τ, w] as τ ′

small values v ::= r | w | v[τ] | pack [τ, v] as τ ′

heap values h ::= 〈w1, . . . , wn〉 | code[~α]Γ.S
heaps H ::= {`1 7→ h1, . . . , `n 7→ hn}
register files R ::= {r1 7→ w1, . . . , rn 7→ wn}

instructions ι ::= add rd, rs, v | bnz r, v | ld rd, rs[i] |
malloc rd[~τ] | mov rd, v | mul rd, rs, v |
sto rd[i], rs | sub rd, rs, v | unpack [α, rd], v

instruction sequences S ::= ι;S | jmp v | halt[τ]
programs P ::= (H,R, S)

Figure 6: Syntax of TAL

(H, R, S) 7−→ P where
if S = then P =

add rd, rs, v; S′ (H,R{rd 7→ R(rs) + R̂(v)}, S′)
and similarly for mul and sub

bnz r, v; S′ (H,R, S′)
when R(r) = 0

bnz r, v; S′ (H,R, S′′[~τ/~α])

when R(r) = i and i 6= 0 where R̂(v) = `[~τ]
and H(`) = code[~α]Γ.S′′

jmp v (H,R, S′[~τ/~α])

where R̂(v) = `[~τ]
and H(`) = code[~α]Γ.S′

ld rd, rs[i];S
′ (H,R{rd 7→ wi}, S′)

where R(rs) = `
and H(`) = 〈w0, . . . , wn−1〉 with 0 ≤ i < n

malloc rd[τ1, . . . , τn]; S′ (H{` 7→ 〈?τ1, . . . , ?τn〉}, R{rd 7→ `}, S′)
where ` 6∈ H

mov rd, v; S′ (H,R{rd 7→ R̂(v)}, S′)
sto rd[i], rs; S

′ (H{` 7→ 〈w0, . . . , wi−1, R(rs), wi+1, . . . , wn−1〉}, R, S′)
where R(rd) = `
and H(`) = 〈w0, . . . , wn−1〉 with 0 ≤ i < n

unpack [α, rd], v; S′ (H,R{rd 7→ w}, S′[τ/α])

where R̂(v) = pack [τ, w] as τ ′

Where R̂(v) =

R(r) when v = r
w when v = w

R̂(v′)[τ] when v = v′[τ]

pack [τ, R̂(v′)] as τ ′ when v = pack [τ, v′] as τ ′

Figure 7: Operational Semantics of TAL

8

Judgment Meaning
∆ `TAL τ τ is a valid type
`TAL Ψ Ψ is a valid heap type

(no context is used because heap types must be closed)
∆ `TAL Γ Γ is a valid register file type
∆ `TAL τ1 ≤ τ2 τ1 is a subtype of τ2

∆ `TAL Γ1 ⊆ Γ2 the register file Γ1 weakens Γ2

`TAL H : Ψ the heap H has type Ψ
Ψ;∆ `TAL R : Γ the register file R has type Γ
Ψ `TAL h : τ the heap value h has type τ
Ψ;∆ `TAL w : τ the word value w has type τ
Ψ;∆ `TAL w : τϕ either the word value w has type τ

or w is ?τ and ϕ is 0
Ψ;∆; Γ `TAL v : τ the small value v has type τ
Ψ;∆;Γ `TAL S S is a valid sequence of instructions
`TAL (H,R, S) (H, R, S) is a valid program

Figure 8: TAL Static Semantic Judgments

• x = v1 p v2 is mapped to the sequence:

mov rx, v1 ; arith rx, rx, v2

where arith is the appropriate arithmetic instruc-
tion.

• [α, x] = unpack v is mapped to unpack [α, rx], v.

• x = malloc[~τ] is mapped to malloc rx[~τ].

• x = v[i]← v′ is mapped to the sequence:

mov rx, v ; mov rtemp, v′ ; sto rx[i], rtemp

• v(v1, . . . , vn) is mapped to the sequence:

mov rtemp1 , v1 ; . . . ; mov rtempn
, vn ;

mov r1, rtemp1 ; . . . ; mov rn, rtempn
; jmp v

• if0 (v, e1, e2) is mapped to the sequence:

mov rtemp, v ; bnz rtemp, `[~α] ; S1

where ` is bound in the heap to code[~α]Γ.S2, the
translation of ei is Si, the free type variables of e2

are contained in ~α, and Γ is the register file type
corresponding to the free variables of e2.

• halt [τ]v is mapped to the sequence:

mov r1, v ; halt[τ]

Figure 11 gives a TAL representation of the factorial
computation.

The CPS, closure conversion, allocation, and code gen-
eration translations each take a well-typed source term,
and produce a well-typed target term. Hence, the com-
position of these translations is a type-preserving com-
piler that takes well-typed λF terms, and produces well-
typed TAL code. The soundness of the TAL type sys-
tem (Corollary 5.3) ensures that the resulting code will
either diverge or produce a TAL value of the appropriate
type.

6 Extensions and Practice

We claim that the framework presented here is a practi-
cal approach to compilation. To substantiate this claim,
we are constructing a compiler called TALC that maps
the KML programming language [10] to a variant of
the TAL described here, suitably adapted for the Intel
x86 family of processors. We have found it straight-
forward to enrich the target language type system to
include support for other type constructors, such as ref-
erences, higher-order constructors, and recursive types.
We omitted discussion of these features here in order to
simplify the presentation.

Although this paper describes a CPS-based compiler,
we opted to use a stack-based compilation model in the
TALC compiler. Space considerations preclude a com-
plete discussion of the details needed to support stacks,
but the primary mechanisms are as follows: The size
of the stack and the types of its contents are specified
by stack types, and code blocks indicate stack types de-
scribing the state of the stack they expect. Since code
is typically expected to work with stacks of varying size,
functions may quantify over stack type variables, result-
ing in stack polymorphism.

Efficient support for disjoint sums and arrays also re-
quires considerable additions to the type system. For
sums, the critical issue is making the projection and
testing of tags explicit. In a naive implementation, the
connection between a sum and its tag is forgotten once
the tag is loaded. For arrays the issue is that the index
for a subscript or update operation must be checked to
see that it is in bounds. Exposing the bounds check ei-
ther requires a fixed code sequence, thereby constraining
optimization, or else the type system must be strength-
ened so that some (decidable) fragment of arithmetic
can be encoded in the types. Sums may also be im-
plemented with either of the above techniques, or by
using abstract types to tie sums to their tags. In the
TALC compiler, in order to retain a simple type system

9

and economical typechecking, we have initially opted for
fixed code sequences but are exploring the implications
of the more complicated type systems.

Finally, since we chose a type-erasure interpretation of
polymorphism, adding floats to the language requires a
boxing translation. However, recent work by Leroy [23]
suggests that it is only important to unbox floats in ar-
rays and within compilation units, which is easily done
in our framework.

7 Summary

We have given a compiler from System F to a statically
typed assembly language. The type system for the as-
sembly language ensures that source level abstractions
such as closures and polymorphic functions are enforced
at the machine-code level. Furthermore, the type sys-
tem does not preclude aggressive low-level optimization,
such as register allocation, instruction selection, or in-
struction scheduling. In fact, programmers concerned
with efficiency can hand-code routines in assembly, as
long as the resulting code typechecks. Consequently,
TAL provides a foundation for high-performance com-
puting in environments where untrusted code must be
checked for safety before being executed.

References

[1] S. Aditya, C. Flood, and J. Hicks. Garbage collection for
strongly-typed languages using run-time type reconstruc-
tion. In ACM Conference on Lisp and Functional Pro-
gramming, pages 12–23, Orlando, June 1994.

[2] A. W. Appel. Compiling with Continuations. Cambridge
University Press, 1992.

[3] A. W. Appel and T. Jim. Continuation-passing, closure-
passing style. In Sixteenth ACM Symposium on Principles
of Programming Languages, pages 293–302, Austin, Jan.
1989.

[4] A. W. Appel and D. B. MacQueen. Standard ML of New
Jersey. In M. Wirsing, editor, Third International Sym-
posium on Programming Language Implementation and
Logic Programming, pages 1–13, New York, Aug. 1991.
Springer-Verlag. Volume 528 of Lecture Notes in Computer
Science.

[5] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility, safety
and performance in the SPIN operating system. In Fifteenth
ACM Symposium on Operating Systems Principles, pages
267–284, Copper Mountain, Dec. 1995.

[6] L. Birkedal, N. Rothwell, M. Tofte, and D. N. Turner. The
ML Kit (version 1). Technical Report 93/14, Department
of Computer Science, University of Copenhagen, 1993.

[7] L. Birkedal, M. Tofte, and M. Vejlstrup. From region infer-
ence to von Neumann machines via region representation in-
ference. In Twenty-Third ACM Symposium on Principles
of Programming Languages, pages 171–183, St. Petersburg,
Jan. 1996.

[8] H. J. Boehm and M. Weiser. Garbage collection in an unco-
operative environment. Software Practice and Experience,
18(9):807–820, Sept. 1988.

[9] V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Sce-
drov. Inheritance as implicit coercion. Information and
Computation, 93:172–221, 1991.

[10] K. Crary. KML Reference Manual. Department of Com-
puter Science, Cornell University, 1996.

[11] K. Crary. Foundations for the implementation of higher-
order subtyping. In ACM SIGPLAN International Con-
ference on Functional Programming, pages 125–135, Am-
sterdam, June 1997.

[12] O. Danvy and A. Filinski. Representing control: a study
of the CPS transformation. Mathematical Structures in
Computer Science, 2(4):361–391, Dec. 1992.

[13] A. Dimock, R. Muller, F. Turbak, and J. B. Wells. Strongly
typed flow-directed reprsentation transformations. In ACM
SIGPLAN International Conference on Functional Pro-
gramming, pages 85–98, Amsterdam, June 1997.

[14] M. J. Fischer. Lambda calculus schemata. In Proceedings
of the ACM Conference on Proving Assertions about Pro-
grams, pages 104–109, 1972.

[15] J.-Y. Girard. Une extension de l’interprétation de Gödel
à l’analyse, et son application à l’élimination de coupures
dans l’analyse et la théorie des types. In J. E. Fenstad, ed-
itor, Proceedings of the Second Scandinavian Logic Sym-
posium, pages 63–92. North-Holland Publishing Co., 1971.

[16] J.-Y. Girard. Interprétation fonctionelle et élimination
des coupures de l’arithmétique d’ordre supérieur. PhD
thesis, Université Paris VII, 1972.

[17] J.-Y. Girard. Linear logic. Theoretical Computer Science,
50:1–102, 1987.

[18] R. Harper and M. Lillibridge. Explicit polymorphism
and CPS conversion. In Twentieth ACM Symposium on
Principles of Programming Languages, pages 206–219,
Charleston, Jan. 1993.

[19] D. Kranz, R. Kelsey, J. Rees, P. R. Hudak, J. Philbin, and
N. Adams. ORBIT: An optimizing compiler for Scheme.
In Proceedings of the ACM SIGPLAN ’86 Symposium on
Compiler Construction, pages 219–233, June 1986.

[20] P. J. Landin. The mechanical evaluation of expressions.
Computer J., 6(4):308–20, 1964.

[21] J. Launchbury and S. L. Peyton Jones. State in Haskell.
LISP and Symbolic Computation, 8(4):293–341, Dec. 1995.

[22] X. Leroy. Unboxed objects and polymorphic typing. In
Nineteenth ACM Symposium on Principles of Program-
ming Languages, pages 177–188, Albuquerque, Jan. 1992.

[23] X. Leroy. The effectiveness of type-based unboxing. In
Workshop on Types in Compilation, Amsterdam, June
1997. ACM SIGPLAN. Published as Boston College Com-
puter Science Dept. Technical Report BCCS-97-03.

[24] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 1996.

[25] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The
Definition of Standard ML (Revised). MIT Press, 1997.

[26] Y. Minamide, G. Morrisett, and R. Harper. Typed closure
conversion. In Twenty-Third ACM Symposium on Prin-
ciples of Programming Languages, pages 271–283, St. Pe-
tersburg, Jan. 1996.

[27] J. C. Mitchell and G. D. Plotkin. Abstract types have ex-
istential type. ACM Transactions on Progamming Lan-
guages and Systems, 10(3):470–502, July 1988.

[28] G. Morrisett. Compiling with Types. PhD thesis, Carnegie
Mellon University, 1995. Published as CMU Technical Re-
port CMU-CS-95-226.

[29] G. Morrisett and R. Harper. Semantics of memory manage-
ment for polymorphic languages. In A. Gordon and A. Pitts,
editors, Higher Order Operational Techniques in Seman-
tics, Publications of the Newton Institute. Cambridge Uni-
versity Press, 1997.

[30] G. Morrisett, D. Tarditi, P. Cheng, C. Stone, R. Harper,
and P. Lee. The TIL/ML compiler: Performance and safety
through types. In Workshop on Compiler Support for Sys-
tems Software, Tucson, Feb. 1996.

[31] G. Morrisett, D. Walker, K. Crary, and N. Glew. From Sys-
tem F to typed assembly language (extended version). Tech-
nical Report TR97-1651, Cornell University, Nov. 1997.

[32] G. Necula. Proof-carrying code. In Twenty-Fourth ACM
Symposium on Principles of Programming Languages,
pages 106–119, Paris, 1997.

10

FTV (τ) ⊆ ∆

∆ `TAL τ

∅ `TAL τi

`TAL {`1:τ1, . . . , `n:τn}
∆ `TAL τi

∆ `TAL {r1:τ1, . . . , rn:τn}
∆ `TAL τ

∆ `TAL τ ≤ τ

∆ `TAL τ1 ≤ τ2 ∆ `TAL τ2 ≤ τ3

∆ `TAL τ1 ≤ τ3

∆ `TAL τi

∆ `TAL 〈τϕ1
1 , . . . , τ

ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τϕn

n 〉 ≤ 〈τϕ1
1 , . . . , τ

ϕi−1
i−1 , τ0

i , τ
ϕi+1
i+1 , . . . , τϕn

n 〉
∆ `TAL τi

∆ `TAL {r1:τ1, . . . , rm:τm} ⊆ {r1:τ1, . . . , rn:τn}
(m ≤ n)

`TAL Ψ Ψ `TAL hi : τi

`TAL {`1 7→ h1, . . . , `n 7→ hn} : Ψ
(Ψ = {`1:τ1, . . . , `n:τn})

Ψ;∆ `TAL wi : τi

Ψ;∆ `TAL {r1 7→ w1, . . . , rn 7→ wn} : Γ
(Γ = {r1:τ1, . . . , rn:τn})

Ψ; ∅ `TAL wi : τ
ϕi
i

Ψ `TAL 〈w1, . . . , wn〉 : 〈τϕ1
1 , . . . , τϕn

n 〉
~α `TAL Γ Ψ; ~α; Γ `TAL S

Ψ `TAL code[~α]Γ.S : ∀[~α].Γ

Ψ;∆ `TAL i : int

Ψ(`) = τ ′ ∆ `TAL τ ′ ≤ τ

Ψ;∆ `TAL ` : τ

Ψ;∆ `TAL w : ∀[α, ~β].Γ ∆ `TAL τ

Ψ;∆ `TAL w[τ] : ∀[~β].Γ[τ/α]

∆ `TAL τ Ψ;∆ `TAL w : τ ′[τ/α]

Ψ;∆ `TAL pack [τ, w] as ∃α.τ ′ : ∃α.τ ′

Ψ;∆ `TAL w : τ

Ψ;∆ `TAL w : τ1

∆ `TAL τ

Ψ;∆ `TAL ?τ : τ0

Γ(r) = τ

Ψ;∆;Γ `TAL r : τ

Ψ;∆ `TAL w : τ

Ψ;∆;Γ `TAL w : τ

Ψ;∆;Γ `TAL v : ∀[α, ~β].Γ′ ∆ `TAL τ

Ψ;∆;Γ `TAL v[τ] : ∀[~β].Γ′[τ/α]

∆ `TAL τ Ψ;∆;Γ `TAL v : τ ′[τ/α]

Ψ;∆; Γ `TAL pack [τ, v] as ∃α.τ ′ : ∃α.τ ′

`TAL H : Ψ Ψ; ∅ `TAL R : Γ Ψ; ∅; Γ `TAL S

`TAL (H, R, S)

Figure 9: Static Semantics of TAL (except instructions)

11

Γ(rs) = int Ψ;∆;Γ `TAL v : int Ψ;∆;Γ{rd:int} `TAL S

Ψ;∆;Γ `TAL arith rd, rs, v; S
(arith ∈ {add, mul, sub})

Γ(r) = int Ψ;∆;Γ `TAL v : ∀[].Γ′ ∆ `TAL Γ′ ⊆ Γ Ψ;∆; Γ `TAL S

Ψ;∆;Γ `TAL bnz r, v; S

Γ(rs) = 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉 ϕi = 1 Ψ;∆; Γ{rd:τi} `TAL S

Ψ;∆;Γ `TAL ld rd, rs[i];S

∆ `TAL τi Ψ;∆;Γ{rd:〈τ0
1 , . . . , τ0

n〉} `TAL S

Ψ;∆;Γ `TAL malloc rd[τ1, . . . , τn]; S

Ψ;∆;Γ `TAL v : τ Ψ;∆;Γ{rd:τ} `TAL S

Ψ;∆;Γ `TAL mov rd, v; S

Γ(rd) = 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉 Γ(rs) = τi Ψ;∆;Γ{rd:〈τϕ0

0 , . . . , τ
ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τ

ϕn−1
n−1 〉} `TAL S

Ψ;∆;Γ `TAL sto rd[i], rs; S

Ψ;∆;Γ `TAL v : ∃α.τ Ψ;∆α; Γ{rd:τ} `TAL S

Ψ;∆;Γ `TAL unpack [α, rd], v; S
(α 6∈ ∆)

Ψ;∆; Γ `TAL v : ∀[].Γ′ ∆ `TAL Γ′ ⊆ Γ

Ψ;∆; Γ `TAL jmp v

Γ(r1) = τ

Ψ;∆;Γ `TAL halt[τ]

Figure 10: Static Semantics of TAL instructions

[33] G. Necula and P. Lee. Safe kernel extensions without run-
time checking. In Proceedings of Operating System Design
and Implementation, pages 229–243, Seattle, Oct. 1996.

[34] S. L. Peyton Jones, C. V. Hall, K. Hammond, W. Partain,
and P. Wadler. The Glasgow Haskell compiler: a technical
overview. In Proc. UK Joint Framework for Information
Technology (JFIT) Technical Conference, July 1993.

[35] G. D. Plotkin. Call-by-name, call-by-value, and the lambda
calculus. Theoretical Computer Science, 1:125–159, 1975.

[36] J. C. Reynolds. Towards a theory of type structure. In
Programming Symposium, volume 19 of Lecture Notes in
Computer Science, pages 408–425, New York, 1974.

[37] E. Ruf. Partitioning dataflow analyses using types. In
Twenty-Fourth ACM Symposium on Principles of Pro-
gramming Languages, pages 15–26, Paris, Jan. 1997.

[38] Z. Shao. Flexible representation analysis. In ACM SIG-
PLAN International Conference on Functional Program-
ming, pages 85–98, Amsterdam, June 1997.

[39] Z. Shao. An overview of the FLINT/ML compiler. In Work-
shop on Types in Compilation, Amsterdam, June 1997.
ACM SIGPLAN. Published as Boston College Computer
Science Dept. Technical Report BCCS-97-03.

[40] G. L. Steele Jr. Rabbit: A compiler for Scheme. Master’s
thesis, MIT, 1978.

[41] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper,
and P. Lee. TIL: A type-directed optimizing compiler
for ML. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 181–
192, Philadelphia, May 1996.

[42] M. Tofte. Type inference for polymorphic references. In-
formation and Computation, 89:1–34, Nov. 1990.

[43] A. Tolmach. Tag-free garbage collection using explicit type
parameters. In ACM Conference on Lisp and Functional
Programming, pages 1–11, Orlando, June 1994.

[44] P. Wadler. Comprehending monads. In ACM Conference
on Lisp and Functional Programming, pages 61–78, Nice,
June 1990.

[45] P. Wadler. Linear types can change the world! In M. Broy
and C. Jones, editors, Programming Concepts and Meth-
ods, Sea of Galilee, Israel, Apr. 1990. North Holland. IFIP
TC 2 Working Conference.

[46] P. Wadler. A taste of linear logic. In Mathematical Founda-
tions of Computer Science, volume 711 of LNCS, Gdansk,
Poland, Aug. 1993. Springer-Verlag.

[47] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Effi-
cient software-based fault isolation. In Fourteenth ACM
Symposium on Operating Systems Principles, pages 203–
216, Asheville, Dec. 1993.

[48] M. Wand. Correctness of procedure representations in
higher-order assembly language. In S. Brookes, editor, Pro-
ceedings Mathematical Foundations of Programming Se-
mantics ’91, volume 598 of Lecture Notes in Computer
Science, pages 294–311. Springer-Verlag, 1992.

[49] A. K. Wright. Simple imperative polymorphism. LISP and
Symbolic Computation, 8(4), Dec. 1995.

12

fact = (H,{}, S) where
H =
l fact:

code[]{r1:〈〉,r2:int,r3:τk}.
bnz r2,l nonzero
unpack [α, r3],r3 % zero branch: call k (in r3) with 1
ld r4,r3[0] % project k code
ld r1,r3[1] % project k environment
mov r2,1
jmp r4 % jump with {r1 = env, r2 = 1}

l nonzero:
code[]{r1:〈〉,r2:int,r3:τk}.
sub r6,r2,1 % n− 1
malloc r4[int, τk] % create environment for cont in r4
sto r4[0],r2 % store n into environment
sto r4[1],r3 % store k into environment
malloc r3[∀[].{r1:〈int1, τ1

k 〉,r2:int}, 〈int1, τ1
k 〉] % create cont closure in r3

mov r5,l cont
sto r3[0],r5 % store cont code
sto r3[1],r4 % store environment 〈n, k〉
mov r2,r6 % arg := n− 1
mov r3,pack [〈int1, τ1

k 〉,r3] as τk % abstract the type of the environment
jmp l fact % jump to k with {r1 = env, r2 = n− 1, r3 = cont}

l cont:

code[]{r1:〈int1,τ1
k 〉,r2:int}. % r2 contains (n− 1)!

ld r3,r1[0] % retrieve n
ld r4,r1[1] % retrieve k
mul r2,r3,r2 % n× (n− 1)!
unpack [α,r4],r4 % unpack k
ld r5,r4[0] % project k code
ld r1,r4[1] % project k environment
jmp r5 % jump to k with {r1 = env, r2 = n!}

l halt:
code[]{r1:〈〉,r2:int}.
mov r1,r2
halt[int] % halt with result in r1

and S =
malloc r3[∀[].{r1:〈〉,r2:int},〈〉] % create halt closure in r3
mov r1,l halt
sto r3[0],r1
malloc r1[] % create an empty environment (〈〉)
sto r3[1],r1 % store 〈〉 into closure, still in r1
mov r3,pack [〈〉,r3] as τk % abstract the type of the environment
mov r2,6 % load argument (6)
jmp l fact % begin factorial with {r1 = 〈〉, r2 = 6, r3 = haltcont}

and τk = ∃α.〈∀[].{r1:α,r2:int}1, α1〉

Figure 11: Typed Assembly Code for Factorial

13

