
Compiling for Runtime Code Generation

(Extended Version)

Frederick Smith, Dan Grossman, Greg Morrisett, Luke Hornof, and Trevor Jim

Cornell University, {fms,danieljg,jgm}@cs.cornell.edu
Transmeta Corporation, hornof@transmeta.com
AT&T Research, trevor@research.att.com

Abstract. Cyclone is a programming language that provides explicit
support for dynamic specialization based on runtime code generation.
To generate specialized code quickly, our Cyclone compiler uses a tem-
plate based strategy in which pre-compiled code fragments are stitched
together at runtime. To achieve good performance, the pre-compiled frag-
ments must be optimized. This paper describes a principled approach to
achieving such optimizations. In particular, we generalize standard flow-
graph intermediate representations to support templates, define a formal
mapping from (a subset of) Cyclone to this representation, and describe
a data-flow analysis framework that supports standard optimizations.
This extended version contains two mappings to the intermediate repre-
sentation, a less formal one that emphasizes the novelties of our transla-
tion strategy and a purely functional one that is better suited to formal
reasoning.

1 Introduction

Runtime code generation (RTCG) is a kind of program specialization that op-
timizes for short-lived invariants by dynamically generating specialized code.
In this setting, where invariants may last only seconds or minutes, compila-
tion time can easily dominate any benefit. Therefore, rapid compilation is criti-
cal. Template-based RTCG [3, 13, 2] generates code by combining copies of pre-
compiled code fragments (templates). Compared to other approaches (see Sec-
tion 7), template-based RTCG enjoys faster compilation but less optimization.

In earlier work [8], we developed Cyclone, a type-safe C-like language with
support for explicit RTCG. In that work, we proved the soundness of Cyclone’s
type system and presented a simple stack-based compiler that translates Cyclone
to TAL/T, an extension of Typed Assembly Language [11]. The type-checker for
TAL/T statically guarantees that, in addition to standard type-safety properties,
no type-unsafe code will be generated at run time. In the context of reliable or
secure systems (e.g., operating systems), this guarantee is crucial for assurance.

Though Cyclone allows programmers to dynamically generate specialized
code, our previous compiler performed almost no optimization. For instance, we
placed all variables on the stack instead of performing register allocation. As a
result, the performance of the dynamically generated code was relatively poor

compared to statically generated, but highly-optimized, code. In contrast, the
Tempo template-based RTCG system [3, 13] is able to achieve high performance
by generating C code with a clever use of labels (to define template boundaries),
and then passing the resulting code to GCC. Though an expedient approach, the
Tempo designers had to trick GCC into compiling template-based code, and as
a result, the compiler does not always generate correct code. Furthermore, the
output of GCC cannot be (easily) type-checked. Consequently, Tempo cannot be
used in settings where reliability or security are just as important as performance.

We therefore set out to adapt traditional flow-graph intermediate repre-
sentations, data-flow analyses (such as liveness analysis), and optimizations
(such as register allocation) to the template-based RTCG setting, so that we
might achieve both high-performance and high-assurance. This project requires
a template-aware intermediate representation, a translation from Cyclone to
the less structured intermediate form, and a sound and effective framework for
performing data-flow-based optimization. We quickly encountered a number of
subtleties that suggested these tasks were more difficult than they first appeared.

Our contributions include (1) a formal translation from a source language to
an intermediate form, (2) an analysis for computing control-flow graphs for func-
tions containing templates, and (3) a discussion about performing optimizations
in the presence of RTCG. Although we describe small theoretical languages, they
capture the most interesting aspects of our new optimizing RTCG compiler.

2 Overview

Cyclone is a type-safe C-like language supporting polymorphism, exceptions,
and, of course, RTCG. There are four constructs that support RTCG: codegen,
cut, splice, and fill. These constructs are best conceptualized as manipulat-
ing “strings” to construct the text of a new function. For example, the function
dot gen below takes a vector u and returns a function specialized for taking
dot products of u. The boxes are used to highlight code fragments that are
dynamically assembled to produce the specialized function.

(int[] -> int) dot_gen(int u[]) {
return codegen (

int dot(int v[]) { int result = 0;

cut { for(int i=0; i<size(u); i++)

splice{ result += fill(u[i]) * v[fill(i)]; }; }
return result; });

}

The expression codegen (int(dot(intv[]) . . .) indicates runtime code generation
of a function, dot. The cut{. . . } suspends code generation and drops back into
running code for dot gen. On each loop iteration, splice {. . . } appends a copy
of its contents to the body of dot. Furthermore, each copy is specialized using

the fill construct to place the values of u[i] and i in the generated code.
Thus, executing dot gen({12,24,32}) returns a function like this one:

int dot(int v[]) {
int result = 0;
result += 12 * v[0];
result += 24 * v[1];
result += 32 * v[2];
return result;

}
In this example, RTCG allows us to eliminate the looping overhead and to
fold constants into the instructions. A more aggressive version of dot gen could
generate different code when an element of u is zero, one, or a power of two.

The RTCG primitives could be implemented using string manipulation and
calls to a conventional compiler. Doing so would ensure that the resulting code
was well optimized. For instance, we could reasonably expect that the result
variable would be allocated a register. However, the overhead of a conventional
compiler makes it difficult to take advantage of short-lived invariants.

We therefore use a different approach, leveraging the fact that Cyclone does
not permit arbitrary operations on code fragments. In particular, we pre-compile
code fragments into templates—binary code fragments with “holes” for run-time
values—when we initially compile the program. These templates can be quickly
copied, and their holes can be filled, to produce a specialized function with low
overhead. For example, the compiled dot gen would use three templates: (1) for
the function prologue and for initializing result, (2) for adding to result some
constant value (u[i]) multiplied by a vector element at some constant offset (i),
and (3) for returning result and the function epilogue.

To achieve good code, we must perform optimizations on the templates, such
as register allocation, at compile time. But how can we perform the necessary
data-flow analyses, such as live-range analysis, when templates can be dynami-
cally assembled at run-time? The approach we suggest here is to perform data-
flow analysis on the generating function to construct a generating graph—an
approximation of the control-flow graph—for the functions that may be gener-
ated at run-time. Then we can use the generating graph to analyze the possible
data-flow paths of the templates and optimize them.

For example, by analyzing dot gen, we know that, no matter what specialized
function it produces, the control flow graph will have a restricted form: It will
start with one copy of the first template, followed by some number of copies of
the second template (appropriately specialized with constants), and then one
copy of the third. Such an analysis would allow us to compute accurate live
ranges for the variables of the function, and to allocate them to registers.

In what follows, we make these informal ideas precise by formally defining a
core subset of Cyclone (Section 3), an intermediate representation with explicit
support for templates (Section 4), and a compiler that maps Mini-Cyclone to
the intermediate representation (Section 5). We then discuss how analyses and
optimizations may be applied to the intermediate representation (Section 6).

(integers) i ∈ Z
(function names) f ∈ cycvar
(variables) x ∈ cycvar
(expressions) e ::= i | f | x | e1 + e2 | e(e1, . . . , en) | codegen D | fill e
(statements) s ::= x := e | s1; s2 | if(e) s1 else s2 | while(e) s | return e

| cut s | splice s
(functions) D ::= f(x1, . . . , xn) s
(programs) P ::= D1, . . . , Dn

Fig. 1. Mini-Cyclone Syntax

The translation in Section 5 is rather informal; much of the translation envi-
ronment’s structure is unspecified and target code is “emitted” in an undefined
imperative fashion. In the appendix we present a formal translation, independent
of the first though identical in its overall strategy, which completely describes
translation environments. The translation itself is a pure monadic-style func-
tion over such environments. Such formality should facilitate formal reasoning
about properties of the translation (for example, correctness), but we leave such
reasoning to future work.

3 Mini-Cyclone

Figure 1 presents the abstract syntax for Mini-Cyclone, a subset of Cyclone
that serves as this paper’s source language. The primitive values are integers (i)
and function names (f). The other standard expressions are variables, addition,
and function application. Similar to Cyclone, there are two expression forms for
RTCG: codegen d generates a function and returns a pointer to it. fill e uses
the evaluation of e as a constant in the enclosing code fragment.

The standard statements (assignment, composition, conditional, loop, and
return) all have their usual meaning. cut s must occur within a code fragment
for a generated function. Its meaning is to execute s in the generating function
while the generated function is being generated. splice s must occur within a
cut. It treats s as a code fragment belonging to the function that was being
generated when the enclosing cut began executing. A copy of s is placed after
the code that has already been generated.

A Mini-Cyclone function takes a fixed number of arguments and executes a
body, which is just a statement. For simplicity here, we ignore types and assume
that code is well-formed.

4 Target Language

Our compiler’s intermediate representation is a standard low-level block-based
language with special RTCG instructions and the type information needed to

generate certified code. In this paper, we focus on compiling for RTCG, so we
ignore typing issues and use a target language called CIR that is sufficient for
compiling Mini-Cyclone.

i ∈ Z
x ∈ var
l ∈ label
h ∈ hole
t ∈ template
r ∈ region
p ∈ instance

(value) v ::= x | l | i
(destination) d ::= l | ◦ | [h]

(instruction) ι ::= x := v
| x := v1 + v2

| x := v(x1, . . . , xn)
| x := [h]
| r := start l
| p := copy t into r

| fill p.[h] with v
| fill p1.[h] with p2.l
| x := end r

(transfer) χ ::= jmp d | jnz x ? d1 : d2 | retn x

(block) B ::= (l, t, ι1 . . . ιn, χ)
(function) F ::= (x1, . . . , xn)B1, . . . , Bm

(program) P ::= F1, . . . , Fn

Fig. 2. CIR Syntax

Figure 2 shows the syntax for CIR. A CIR program is a collection of functions.
A function has a list of parameters and a list of blocks. A block has a label
(l), a template name (t), an instruction sequence (ι1, . . . , ιn), and a control
transfer (χ). The first block is the function’s entry point; its label serves as the
function’s name. Assignment (x := v), addition (x := v1 + v2), function call
(x := v(x1, . . . , xn)), return (retn x), and jump (jmp d) are standard. The
conditional transfer (jnz x ? d1 : d2) jumps to d1 if x is not zero, else it jumps
to d2. The destination ◦ is a “fall through” — in block Bi of a function, ◦ is
equivalent to the label of Bi+1.

A CIR function represents either code that is directly executable or a (tem-
plate) container. Executable functions must not contain holes, whereas contain-
ers can. The template names on the blocks within a container are used to group
blocks into templates. Specifically, a template t is the list of blocks with template
name t.1 Executable functions use containers to generate code dynamically by
copying templates (t) into code regions (r) and filling holes ([h]). We call a copy
of a template an instance (p). Holes ([h]) allow generating code to specialize in-
stances. Generating code can dictate the control flow of generated code by filling
destination holes, and can insert values into the generated instructions by filling
value holes (x := [h]).

The instruction r := start l allocates a code region and binds it to r. All
templates copied into r should come from the (container) function named l.

1 The order of blocks in the template is the same as their order in the function.
Template names within executable functions are present only to simplify the syntax.

(u) (dot gen, , r := start dot
p1 := copy t1 into r

i := 0,
jmp ◦)

(l3, , tst := i < size(u),
jnz tst ? l5 : ◦)

(l4, , p2 := copy t2 into r

fill p2.[h1] with u[i]
fill p2.[h2] with i
i := i + 1,
jmp l3)

(l5, , p3 := copy t3 into r

f := end r,
retn f)

(v) (dot, t1, result := 0,
jmp ◦)

(l1, t2, x := [h1]
i := [h2]
tmp := x ∗ v[i]
result := result+ tmp,
jmp ◦)

(l2, t3, , retn result)

Fig. 3. Translation of the dot gen example (simplified)

The instruction p := copy t into r puts an instance of t after the instances
previously copied into r.2 p becomes a reference to the new instance. The two
fill instructions (fill p.[h] with . . .) both fill the hole h of the specified instance
(p). The second form allows one instance to refer directly to a label in another
instance. That way, the generating code can put inter-template jumps in the
generated code. Finally, x := end r completes the generation of a function and
binds x to the resulting function pointer.

Inter-template jumps merit further discussion. It makes no sense for a tem-
plate to refer directly to a label in another template. To which instance of a
template would such a label refer? Therefore, the generating code must create
all inter-template control flow using the fill p1.[h] with p2.l instruction. There
is an important exception: If a template’s last block has a fall-through destina-
tion (such as jmp ◦), then control will flow from an instance of that template to
the next instance in the code region. That is, fall-through destinations refer to
the code region’s next block, not the container function’s next block.

Figure 3 shows our dot gen example in CIR (extended with arrays, etc.).
The translation of Section 5 would introduce more variables but would other-
wise produce similar output. Notice the function dot contains holes, so it is not
executable. When dot gen is called, it creates a code region r in which to gener-
ate a function. It then copies dot’s prologue, t1, and enters the loop consisting
of blocks l3 and l4. The loop copies an instance of t2 and binds p2 to it. p2 is
used when filling holes h1 and h2 to specify which instance’s holes to fill. Hole
h1 is filled with the value in u[i] and hole h2 is filled with the counter i. After
the loop, dot gen copies dot’s epilogue, t3, and ends the code generation.

To employ inter-template optimizations on dot, it helps to have an approx-
imation of the order its templates might be copied. Put another way, we seek
2 The implementation detects buffer overflow and moves the region to a larger buffer.

to approximate what the fall-through destinations of t1 and t2 might refer to.
Without looking at dot gen, we must pessimistically assume that instances of t1
and t2 might be followed by instances of t1, t2, or t3, but an analysis of dot gen
reveals that an instance of t1 would never follow an instance of t1 or t2.

5 Translation

This section describes a translation from Mini-Cyclone (Section 3) to CIR (Sec-
tion 4). We begin with some highlights.

Translating a lexically scoped language with RTCG into an unstructured
block-based language is challenging because the source language intertwines gen-
erated and generating code. In the target language, a function is either executable
or a template container, never a mixture. The one-pass top-down translation we
present untangles the levels by maintaining an environment for each level.

If a function f contains “codegen g . . . ,” then we call f the parent of g and
g a child of f . During the translation, exactly one function is active; instructions
are emitted into the active function. Entering a cut activates the active function’s
parent, and entering a splice activates the active function’s child. Entering a
codegen is like entering a splice except that it spawns a new child and then
activates the child. For fill e, we emit a value hole and then activate the
parent just long enough to translate e and emit a fill instruction. Notice that
an explicit Mini-Cyclone fill always corresponds to a value hole.

All the code in a template must be copied into a code region at once. Conse-
quently, whenever two pieces of code might not be copied consecutively, we must
introduce a new template. Our translation conservatively creates new templates
on each transition from parent to child (when entering a splice or codegen,
and when leaving a cut).

Multiple templates create the possibility for inter-template jumps. To see
how such control flow arises, consider code of the form, “while(e){ cut{ . . . }
} . . . ” The cut causes the code following the loop and the loop guard to be in
different templates. Hence, the control transfer for a false guard is inter-template.
If the loop body had not contained a cut, then no inter-template jump would
have been necessary. After translating the loop body, the translation checks if
the template following the loop is the same as the template for the guard. If
not, then the translation places a destination hole in the guard, and issues an
inter-template fill (fill p1.[h] with p2.l).

The above difficulties make translating RTCG into an unstructured block-
based language inherently more complex than standard translations. To explore
all the subtleties, we present a full translation from Mini-Cyclone into CIR. In
order to emphasize the interesting aspects, some parts are informal; a more
formal translation is given in the appendix.

5.1 Translation Environment and Preliminaries

The translation of a Mini-Cyclone term is with respect to a global environment,
Φ, that contains local environments, E , for each function being simultaneously

translated. A global environment is a (functional) record of type τΦ where a local
environment has type τE .

τΦ = {parents : τE list, active : τE , children : τE list}
A global environment represents a sequence of the form:

E1, . . . , Ek−1︸ ︷︷ ︸
parents

, Ek︸︷︷︸
active

, Ek+1, . . . , En︸ ︷︷ ︸
children

The head of the list parents is Ek−1 and the head of the list children is Ek+1.
In general, if f is the parent of g, then f immediately precedes g in the sequence.
We need a list because codegen expressions can nest.

We treat τE informally because it has the same information as an environ-
ment for a conventional compiler: It is a partially generated target function into
which we (imperatively) add blocks. It also contains a distinguished current block
into which we (imperatively) emit instructions. When we are done generating a
function, we use addFun E to add it to the output.

A tricky aspect of any translation is relating source variables to target vari-
ables while easily generating new names. We finesse this issue by asserting:

var = cycvar ∪ genvar cycvar ∩ genvar = ∅
Hence variables in genvar cannot clash with names in the source program. We
use the function newV ar to generate fresh elements of genvar.

We assume that the base syntactic classes are isomorphic and that we have
functions witnessing these isomorphisms: Given an element of any class (call
it a), we can get the corresponding variable (V(a)), label (L(a)), hole (H(a)),
template name (T (a)), code region (R(a)), or instance (P(a)). This technical
trick helps us exploit subtle invariants. For example, the translation has the
property that only one instance of a template is live at a time, so we use the
template name (t) to induce an instance name (P(t)).

5.2 Non-RTCG Translation

Each top-level function of the input program is translated independently, so to
compile a program, we simply compile each source function and collect all the
target functions created.

The translation of a function, [[D]], takes an environment, Φ, as an argument.
For top-level functions, Φ should be the empty sequence of function environ-
ments. For a D declared in codegen, Φ.parents will begin with D’s parent (see
the next section). The role of [[D]] is to translate the function’s body under an
environment where Φ.active is a new function environment. Roughly, newFun
creates a function environment for f(x1, . . . , xn) s in which there is one empty
block with label L(f) and template name T (f). Using an informal notation:

[[f(x1, . . . , xn) s]] Φ =
let E = newFun (f(x1, . . . , xn) s) in
[[s]] Φ[active = E];
addFun E

The main effect of [[D]] is to add a target function that is the translation of
D. (As a side-effect, any codegen terms in the body of D give rise to target
functions too.) Notice we use the notation Φ[label = F] for functional-record
update; the result is a record with the same fields as Φ except field label has
value F .

The translation of statements, [[s]], also takes a Φ. The translation of expres-
sions, [[e]], leaves its result in a CIR variable provided as input, so it takes a
Φ and an x. The definitions [[s]] and [[e]] are inductive over the structure of
Mini-Cyclone statements and expressions. The rest of this section presents the
non-RTCG cases for these definitions, beginning with the simpler cases.

All of the non-RTCG expression forms appear straightforward to translate.
Most of the work lies in generating fresh variables to hold intermediate results.
The term emit Φ ι updates Φ such that ι is appended to the end of the active
function’s current block. Analogously, emit Φ χ replaces the control transfer of
the current block with χ. Finally, e1; e2 means, “Do e1 then e2.”

[[i]] Φ x =
emit Φ x := i

[[f]] Φ x =
emit Φ x := L(f)

[[x]] Φ y =
emit Φ y := x

[[e1 + e2]] Φ x =
let x1 = newV ar in
let x2 = newV ar in
[[e1]] Φ x1;
[[e2]] Φ x2;
emit Φ x := x1 + x2

[[e0(e1, . . . , en)]] Φ x =
let x0 = newV ar in
. . .
let xn = newV ar in
[[e0]] Φ x0;
. . .
[[en]] Φ xn;
emit Φ x := x0(x1, . . . , xn)

The following statement cases are just as straightforward:

[[x := e]] Φ =
[[e]] Φ x

[[s1; s2]] Φ =
[[s1]] Φ;
[[s2]] Φ

[[return e]] Φ =
let x = newV ar in
[[e]] Φ x;
emit Φ retn x

The control-flow constructs (if and while) are more complicated. Both
definitions follow the same strategy: Generate the subterms while remember-
ing the entry and exit blocks for each. Then replace various transfers to cre-
ate the correct control flow. This order is important for RTCG. As explained
earlier, the translation may have to create inter-template control-flow at these
points. We use the term genDest for this purpose. In the absence of RTCG,
genDest(bsrc, bdst) = bdst; the next section gives a complete definition. The term
changeBlock puts a new block in the active function and makes the new block
the current one. changeBlock returns a pair of the old current block’s label and
the new current block’s label. The new block has the same template name as
the old block. The term emit Φ b: χ replaces the transfer in block b with χ.

[[if(e) s1 else s2]] Φ =
let x = newV ar in
[[e]] Φ x;
let (b0, bt) = changeBlock Φ in
[[s1]] Φ;
let (b1, bf) = changeBlock Φ in
[[s2]] Φ;
let (b2, bm) = changeBlock Φ in
let df = genDest Φ (b0, bf) in
let dm = genDest Φ (b1, bm) in
emit Φ b0: jnz x ? ◦ : df ;
emit Φ b1: jmp dm;
emit Φ b2: jmp ◦

[[while(e) s]] Φ =
let (b0, bt) = changeBlock Φ in
let x = newV ar in
[[e]] Φ x;
let (b1, bb) = changeBlock Φ in
[[s]] Φ;
let (b2, be) = changeBlock Φ in
let de = genDest Φ (b1, be) in
let dt = genDest Φ (b2, bt) in
emit Φ b0: jmp ◦;
emit Φ b1: jnz x ? ◦ : de;
emit Φ b2: jmp dt

5.3 RTCG Translation

We now explain how the four Mini-Cyclone constructs specific to RTCG are
compiled. We already have all the machinery we need to translate codegen:

[[codegen f(x1, . . . , xn)s]] Φ x =
emit Φ R(f) := start L(f);
emit Φ P(f) := copy T (f) into R(f);
[[f(x1, . . . , xn)s]] Φ[parents = Φ.active :: Φ.parents];
emit Φ x := end R(f)

The translation creates both generating code and generated code. At the gen-
erating level, we first allocate the code region (R(f) := start L(f)) and copy
the child’s first template (P(f) := copy T (f) into R(f)). For translating the
child, we provide an environment where the current active function is the par-
ent. That way, cut statements in s will use the correct local environment. Recall
that [[D]] takes care of creating a new function (the child) and considering it
active. The translation of s will add code at various levels. After the child has
been translated, the parent (that is, the active function of Φ) will not have any
more instructions emitted into it that manipulate this child. So the last step is
to emit code that converts the code region to executable code (x := end R(f)).
Notice that we use the original Φ except when translating the child function.

For translating the remaining constructs, special notation for shifting the
active function will prove useful:

↑ Φ = {parents = Φ.active :: Φ.parents, active = head(Φ.children),
children = tail(Φ.children)}

↓ Φ = {children = Φ.active :: Φ.children, active = head(Φ.parents),
parents = tail (Φ.parents)}

So ↑ Φ makes the child active and ↓ Φ makes the parent active. Translation of
well-formed source code will never apply tail to an empty list.

The translations for cut and splice are pleasingly symmetric:

[[cut s]] Φ =
emit Φ jmp ◦;
[[s]] (↓ Φ);
newTemplate Φ

[[splice s]] Φ =
newTemplate (↑ Φ);
[[s]] (↑ Φ);
emit (↑ Φ) jmp ◦

Recall that the purpose of cut s is to execute s in the parent of the function in
which the cut appears. Dually, splice s puts the code fragment s in the child
of the function in which the splice appears. In both cases, we have a child-to-
parent transition (beginning of the cut, end of the splice) and a parent-to-child
transition (end of the cut, beginning of the splice). For child-to-parent transi-
tions, we end the current block so that control will flow to a new template that
an ensuing parent-to-child transition creates. For parent-to-child transitions, we
put a new template in the child because the parent may choose to copy the code
after the transition at different times than the code before the transition. The
auxiliary term newTemplate creates a new template in the child and a copy in-
struction in the parent. (activeFunction Φ retrieves the active function’s name.
setTemplateOfCurrent Φ t changes the current block’s template name to t.)

newTemplate Φ =
let f = activeFunction Φ in
let x = newV ar in
let (b0, b1) = changeBlock Φ in
setTemplateOfCurrent Φ T (x);
emit (↓ Φ) P(x) := copy T (x) into R(f)

The translation of fill e is straightforward at this point. In the parent, we
translate e and emit a fill instruction for a new hole. In the child, we emit a
value hole. (currentTemplate retrieves the current block’s template name.)

[[fill e]] Φ x =
let x1 = newV ar in
[[e]] (↓ Φ) x1;
let x2 = newV ar in
let t = currentTemplate Φ in
emit (↓ Φ) fill P(t).[H(x2)] with x1;
emit Φ x := [H(x2)]

So far, the translation does not seem to use any fill p1.[h] with p2.l instruc-
tions. As discussed in Section 4, we need such instructions for inter-template
jumps. We have just seen that new templates are created when cut statements
occur inside of other source constructs. This fact is precisely why the control-flow
jumps in the translation of if and while may be inter-template. We now have
the machinery to define easily genDest for the general case: We simply check
whether the templates of the source and destination blocks are the same (using
templateOf Φ b to retrieve the template name in the block with label b). If the

same, we just return the destination’s label. If different, we create a hole, emit
a fill for the hole in the parent, and return the hole.

genDest Φ (bsrc, bdst) =
let tsrc = templateOf Φ bsrc in
let tdst = templateOf Φ bdst in
if tsrc = tdst then bdst

else (let x = newV ar in
emit (↓ Φ) fill P(tsrc).[H(x)] with P(tdst).bdst;
[H(x)])

6 Optimization

A goal of our research is to study the interaction between RTCG and opti-
mization. By careful design of CIR, we have made the application of traditional
data-flow optimizations straightforward. These optimizations can be split into
an analysis and a transformation phase. We consider these phases individually.

6.1 Analysis

A preliminary step in data-flow analyses is to build a control-flow graph (CFG)
that conservatively approximates the dynamic control flow of the function. For a
conventional language, we just put an edge between a block and the blocks that
its control transfer mentions. In the presence of RTCG with holes or fall-throughs
for destinations, control transfers are no longer apparent. In this section, we
describe how to compute an appropriate CFG for any CIR function.

A CFG for a function F , which we write CFG(F), is a directed graph where
the nodes are the labels in F . To compute CFG(F), we start with an empty graph
and add edges. Adding edges for intra-template control transfers is conventional.
For inter-template control transfers, we need to approximate how generating code
might create control flow among F ’s templates. Such control flow can result from
filling holes in transfer instructions. It can also result from copying templates
that end with fall-through destinations. One conservative approach would be to
assume that a hole destination could be filled with any label of any instance of
F and that F ’s templates could be copied in any order.

By analyzing the parent of F (that is, the function containing r := start f
where f is the name of F), we can compute a less conservative CFG. Our trans-
lation has the property that executable functions have no parents and non-
executable functions have exactly one parent. We denote F ’s parent by F ↓. We
explain how to extend the analysis to multiple parents at the end of the section.

We begin with the intra-template edges. Let F = (x1, . . . , xn)B1, . . . , Bm

and Bi = (li, ti, ιi1 . . . ιip, χi). The intra-template destinations for block Bi are:

intrai([h]) = ∅

intrai(lj) =
{

{lj} if ti = tj
undefined otherwise

intrai(◦) =
{
{li+1} if i < m and ti = ti+1

∅ otherwise

Hole destinations are handled by the inter-template part of the algorithm (even
though a parent may fill the hole with a label in the same instance). An explicit
destination must be to a block in the same template, a fact the undefined case
emphasizes. A fall-through destination is an intra-template transfer if and only
if the next block in the function belongs to the same template. We extend the
definition to transfers (intrai(χ)) and functions (intra(F)) by taking the union
of intrai(d) over all constituent destinations, d.

For functions without parents (executable functions), CFG(F) = intra(F).
For those with parents (container functions), CFG(F) = intra(F) ∪ inter(F).
So we now turn to inter(F), assuming we have CFG(F ↓). That is, we compute
the parent’s CFG and use it to compute the child’s CFG. For now, assume that
F ↓ contains exactly one r := start l instruction. Our goal is to determine
what edges we must add to CFG(F) because of the way F ↓ manipulates the
templates. We assume every instruction in F ↓ is reachable, so the edges added
are the union of the edges each instruction adds:

inter(F) =
⋃

ι∈F↓
inter(ι)

Instructions add edges by filling holes and copying templates:

inter(ι) =

{(li, lj)} if ι = fill p1.[h] with p2.lj and h is in χi

copypred(ι)× {l} if ι copies t and t’s first block has label l
∅ otherwise

The first case includes edges introduced by filling holes. The second case is for
fall-through destinations: If ι copies t, then consider all t′ that could have been
the most recently copied template when control reaches ι. If the last block of t′

has a fall-through destination, then we must add an edge from the last block of
t′ to the first block of t. We write copypred(ι) for the set of the labels of such
“last blocks”. Determining copypred(ι) for each ι in F ↓ is a data-flow problem.
We define the function fallthru(t) for a template in function F to be the label
of the last block if that block has a fall-through destination:

fallthru(t) =
{
{l} if (l, t, . . . , χ) is t’s last block and χ contains ◦
∅ otherwise

For an instruction sequence, last denotes the last template copied, if any:

last(ι1; . . . ; ιn) =
{

{t} if ιn = p := copy t into r
last(ι1; . . . ; ιn−1) otherwise

last(·) = ∅

We extend last to blocks via last(l, t, ι1, . . . , ιn, χ) = last(ι1, . . . , ιn). We can
now state the relevant data-flow equations.

in(B) =
⋃

B′∈pred(B)

out(B′) out(B) =
{
fallthru(t) if last(B) = {t}

in(B) if last(B) = ∅

These equations are solvable using standard techniques [1, 12] with in(B) = ∅
for the first block of F ↓. Note that the definition of in(B) is where we assume
we have already determined CFG(F ↓). Using the data-flow solution and letting
ι(l,i) denote the ith instruction in block l, we can define copypred:

copypred(ι(l,i)) =

in(B) if i = 1 and B = (l, . . .)
fallthru(t) if ι(l,i−1) = p := copy t into r

copypred(l, i− 1) otherwise

We now discuss how to generalize the CFG analysis. If F has multiple parents,
we just add the edges that each parent requires. Similarly, if one parent uses
multiple code regions, we just repeat the process for each one — because code
regions and instance pointers are second-class constructs, we always know what
code region an instruction affects. The interesting extension is for when functions
are mutually generating. That is, nothing in CIR prevents a cycle in the graph
in which the edge (F,G) means F is a parent for G. Here we cannot compute
the CFG for a parent before a child. The solution is to iterate the program-wide
analysis in a manner just like conventional inter-procedural analysis. Note that
our translation never produces mutually generating functions.

6.2 Transformation

Although analyses are little affected by RTCG, transformations require care. For
example, dead-code elimination might eliminate code containing a hole. Doing
so requires removing the attendant fills in the parent. Similarly, if a hole is
duplicated, the fills must be duplicated. Our compiler summarizes the relevant
transformation effects and then uses this summary to update the parent.

Unfortunately, treating holes as constants can be too aggressive: Each time
a template is copied, its holes may be filled with different values. For instance,
the block l1 is in a loop in CFG(dot) (see Figure 3) and (if holes are constant)
i is invariant. However, hoisting the instruction i := [h2] out of the loop would
not preserve the program’s semantics. The hoist would have been valid had the
source and destination of the transfer been in the same instance (equivalently,
if the edge is in intra(dot)). A principled understanding of transformations will

require having two kinds of edges in CFG – those from intra and those from
inter. For now, our compiler does not move holes across templates.

Note that a sound transformation of a parent will not require updating a
child: Because the parent treats the child as data, any correct optimization will
copy the templates in the same order. However, optimizing a parent may reveal
a less conservative CFG for a child, thus enabling child optimizations.

7 Related Work

Compared to other RTCG systems, Cyclone has a unique combination of fea-
tures: type-safety, a simple operational model, and user-level control. ’C [5, 14]
is an unsafe language providing rich low-level control over RTCG. Users can
choose among different run-time compilers to trade code quality for compilation
time. In essence, more costly compilers delay inter-template optimizations until
run time. MetaML [16, 15] and PML [17, 4] provide type safety and user-level
control but do not have an operational model matching the underlying machine.
Therefore, the costs and benefits of RTCG are harder to predict. Fabius [10, 9],
Tempo [13, 3], and DyC [2, 7, 6] all apply RTCG automatically based on user
annotations, thus relieving the user of low-level control.

Our contribution is a formal description of compilation and optimization for
template-based RTCG. Prior work has used ad hoc techniques. Tempo produces
template C code that is compiled to object code by GCC. From the resulting
object code, the Tempo run-time system extracts templates. This approach is
easier to implement, but is less robust, than writing a full compiler. DyC is an
impressive optimizing compiler with pervasive support for RTCG. Most data-
flow optimizations are performed before the program is staged, so it is necessary
only to preserve the user annotations during optimization. This preservation is
sometimes difficult, so some optimizations are disabled [6].

8 Conclusion

In this paper, we have presented a formal translation from a language (Mini-
Cyclone) with explicit RTCG to an intermediate language (CIR), and we have
shown how to apply standard data-flow optimizations. Hopefully, formalizing
these techniques will allow other compilers to integrate RTCG more easily.

We have implemented an optimizing compiler for a realistic source language
with RTCG; this paper distills the language and compiler down to its essence.
Our system currently performs only a small set of optimizations, notably register
allocation and null-check elimination. Nonetheless, initial results are promising:
For an implementation of RSA, we applied RTCG to code accounting for 30% of
the execution time and obtained a 10% speedup over the unspecialized program.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

2. Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers, and Brian N.
Bershad. Fast, effective dynamic compilation. In ACM Conference on Programming
Language Design and Implementation, pages 149–159, May 1996.

3. Charles Consel and François Noël. A general approach to run-time specialization
and its application to C. In Twenty-Third ACM Symposium on Principles of
Programming Languages, pages 145–156, January 1996.

4. Rowan Davies and Frank Pfenning. A modal analysis of staged computation. In
Twenty-Third ACM Symposium on Principles of Programming Languages, pages
258–270, January 1996.

5. Dawson Engler, Wilson Hsieh, and M. Frans Kaashoek. ’C: A language for fast,
efficient, high-level dynamic code generation. In Twenty-Third ACM Symposium
on Principles of Programming Languages, pages 131–144, January 1996.

6. Brian Grant, Markus Mock, Matthai Plilipose, Craig Chambers, and Susan J.
Eggers. DyC: An expressive annotation-directed dynamic compiler for C. Techni-
cal Report UW-CSE-97-03-03, Department of Computer Science and Engineering,
University of Washington. Updated May 12, 1999.

7. Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and Susan J. Eg-
gers. An evaluation of staged run-time optimizations in DyC. In ACM Conference
on Programming Language Design and Implementation, pages 293–304, May 1999.

8. Luke Hornof and Trevor Jim. Certifying compilation and run-time code gener-
ation. In ACM Conference on Partial Evaluation and Semantics-Based Program
Manipulation, pages 60–74, January 1999.

9. Peter Lee and Mark Leone. Optimizing ML with run-time code generation. In
ACM Conference on Programming Language Design and Implementation, pages
137–148, May 1996.

10. Mark Leone and Peter Lee. Lightweight run-time code generation. In ACM Con-
ference on Partial Evaluation and Semantics-Based Program Manipulation, pages
97–106, June 1994.

11. Greg Morrisett, DavidWalker, Karl Crary, and Neal Glew. From System F to typed
assembly language. ACM Transactions on Progamming Languages and Systems,
21(3):528–569, May 1999.

12. Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997.

13. François Noël, Luke Hornof, Charles Consel, and Julia L. Lawall. Automatic,
template-based run-time specialization: Implementation and experimental study.
Technical Report 1065, Institut de Recherche en Informatique et Systémes
Aléatoires (IRISA), November 1996.

14. Massimiliano Poletto, Dawson Engler, and M. Frans Kaashoek. tcc: A system
for fast, flexible and high-level dynamic code generation. In ACM Conference on
Programming Language Design and Implementation, pages 109–121, June 1997.

15. Walid Taha. A sound reduction semantics for untyped CBN mutli-stage computa-
tion. Or, the theory of MetaML is non-trival (extended abstract). In ACM Con-
ference on Partial Evaluation and Semantics-Based Program Manipulation, pages
34–43, January 2000.

16. Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations.
In ACM Conference on Partial Evaluation and Semantics-Based Program Manip-
ulation, pages 203–217, June 1997.

17. Philip Wickline, Peter Lee, and Frank Pfenning. Run-time code generation and
Modal-ML. In ACM Conference on Programming Language Design and Implemen-
tation, pages 224–235, June 1998.

A Formal Translation

We describe a formal translation from Mini-Cyclone (Section 3) to CIR (Sec-
tion 4). The translation is defined as a function that takes an empty environment
to an environment containing the translated code. The translation language is
the λ-calculus with sums, products, records, and lists; augmented with syntactic
sugar to keep the translation palatable. We omit a semantics for the trans-
lation language; any standard one suffices. The translation does not rely on
Section 5; some common material is repeated so that this formal translation is
self-contained.

In the following sections, we describe the environment for the translation, the
translation of non-RTCG constructs, and the translation of RTCG constructs.

A.1 Translation Environment

The translation of a Mini-Cyclone term is with respect to a global environment,
Φ, that contains local environments, E , for each function being simultaneously
translated. There may be more than one because of RTCG. A global environment
is a record of type τΦ and a local environment is a record of type τE .

τΦ = { funs : CIR function set, ids : genvar set,
parents : τE list, active : τE , children : τE list}

τE = {current : label, blocks : block list }

In τΦ, the funs field contains the set of completed functions and the ids
field contains the set of generated variables. These fields begin empty and grow
as the translation proceeds. The parents, active, and children fields contain
the environments for partially compiled functions. The active field contains the
information for the function currently being compiled. These fields represent a
sequence of the form:

E1, . . . , Ek−1︸ ︷︷ ︸
parents

, Ek︸︷︷︸
active

, Ek+1, . . . , En︸ ︷︷ ︸
children

The head of the list parents is Ek−1 and the head of the list children is Ek+1.
In general, if f is the parent of g (that is, f contains a codegen g expression),
then f immediately precedes g in the sequence. We need a list because codegen
expressions can nest.

In τE , the current field identifies the block into which instructions are cur-
rently being emitted. The blocks field contains the list of blocks that will, when
completed, be the function’s body. We preserve two invariants for local environ-
ments: the labels of the blocks in blocks are distinct, and blocks contains a
block with the label in current. From a local environment, we can recover the
name of the function (it is the label of the first block in blocks) and the name
of the current template (it is the current block’s template).

A tricky aspect of any translation is relating source variables to target vari-
ables while easily generating new names. We finesse this issue by asserting:

var = cycvar ∪ genvar cycvar ∩ genvar = ∅

Hence fresh variables in genvar cannot clash with names in the source program.
We assume that the base syntactic classes are isomorphic to each other:

var ∼= label ∼= hole ∼= template ∼= region ∼= instance

We further assume that we have functions witnessing these isomorphisms: Given
an element of any class (call it a), we can get the corresponding variable (V(a)),
label (L(a)), hole (H(a)), template name (T (a)), code region (R(a)), or instance
(P(a)). Our translation exploits these isomorphisms in subtle ways. For example,
the translation has the property that only one instance of a template is live at
a time, so we use the template name (t) to induce an instance name (P(t)).

A.2 Non-RTCG Translation

Each top-level function of the input program is translated independently, so to
compile a program P = D1, . . . , Dn, we simply begin with an initial environment,
compile each function, and finally retrieve the value of the funs field:

[[D1, . . . , Dn]] =
let E0 = {current = l,blocks = ·} in
let Φ0 = {ids = ∅, funs = ∅,parents = ·, active = E0, children = ·} in
(([[D1]]; · · · ; [[Dn]]) Φ0).funs

We use dot-notation for record projection, semi-colon for reverse composition
(f ; g = λx.g(f x)), and · for the empty list. E0 is a placeholder; it is never used.

The translation of a function, [[D]], has type (τΦ → τΦ). The resulting envi-
ronment has a new CIR function that is the translation ofD. It also has functions
for the codegen expressions in D, but the translation of codegen (see the next
section) is responsible for that. The definition of [[D]] creates an E , uses it to
translate the body, and adds the appropriate function to the funs field:

[[f(x1, . . . , xn) s]] Φ =
let E = {current = L(f),blocks = [(L(f), T (f), ·, jmp ◦)]} in
let Φ1 = Φ[active = E] in
let Φ2 = [[s]] Φ1 in
Φ2[funs = Φ2.funs ∪ {(x1, . . . , xn)Φ2.active.blocks}]

We use the notation R[label = F] for functional-record update; the result is a
record with the same field values as R except field label has value F .

The translation of statements, [[s]], also has type (τΦ → τΦ). The translation
of expressions, [[e]], leaves the result in a CIR variable provided as input, so its
type is (var → τΦ → τΦ). The definitions [[s]] and [[e]] are inductive over the

structure of Mini-Cyclone statements and expressions. The rest of this section
presents the non-RTCG cases for these definitions. We begin with the simpler
cases, relying on intuition to get the feeling for the translation. Then we define
the unfamiliar notation. Finally, we present the more difficult cases.

All of the non-RTCG expression forms appear straightforward to translate.
The main responsibility is to generate fresh variables to hold intermediate results:

[[i]] x =
emit x := i

[[x]] y =
emit y := x

[[f]] x =
emit x := L(f)

[[e1 + e2]] x =
let x1 = newV ar then
let x2 = newV ar then
[[e1]] x1;
[[e2]] x2;
emit x := x1 + x2

[[e0(e1, . . . , en)]] x =
let x0 = newV ar then
. . .
let xn = newV ar then
[[e0]] x0;
. . .
[[en]] xn;
emit x := x0(x1, . . . , xn)

The following statement cases are also relatively straightforward:

[[x := e]] =
[[e]] x

[[s1; s2]] =
[[s1]];
[[s2]]

[[return e]] =
let x = newV ar then
[[e]] x;
emit retn x

To make the meaning of these definitions precise, we first describe the trans-
lation of constant integers. The body, emit x := i, appends x := i to the body
of the current block. In general, the expression emit ι takes an environment, Φ,
and produces an identical environment except that the instruction ι is appended
to the current block3 of the active function. Analogously, the expression emit χ
replaces the control transfer of the current block with χ.

Notice that the argument to the emit function, x := i, is not a proper CIR
instruction because x is a meta-variable. However, the translation will apply [[e]]
to (an expression that evaluates to) a CIR variable, so we define x := i to mean
the CIR syntax obtained by replacing x with the value to which it is bound.
We blur this distinction between meta-variables and variables for the other CIR
constructs analogously.

Now consider [[e1+e2]] x. The last three lines are already well-defined (recall
f ; g = λx.g(f x)). The rest of the body has two nested occurrences of the form
let y = f then g. For example, the outer occurence has x1 for y, newV ar for f ,
and the rest of the body for g. We define let y = f then g to mean (f (λy. g)).
That is, f is a function expecting a continuation and λy. g is such a continuation.

Hence newV ar has type (var → τΦ → τΦ) → τΦ → τΦ; given a continuation
and an environment, it returns an environment. newV ar invokes the continua-
tion with a new variable and an environment that remembers the used variable:4

newV ar k Φ = k ′′x′′ Φ[ids = Φ.ids ∪ {′′x′′}] (where ′′x′′ ∈ genvar \ Φ.ids)
3 That is, the block in Φ.active.blocks with label equal to Φ.active.current.
4 We write ′′x′′ to emphasize that it is a CIR variable, not a meta-variable.

We have now described all of the notation used above. The remaining non-
RTCG constructs manipulate control flow, so they are more complicated:

[[if(e) s1 else s2]] =
let x = newV ar then
[[e]] x;
let (b0, bt) = changeBlock then
[[s1]];
let (b1, bf) = changeBlock then
[[s2]];
let (b2, bm) = changeBlock then
let df = genDest(b0, bf) then
let dm = genDest(b1, bm) then
emit b0: jnz x ? ◦ : df ;
emit b1: jmp dm;
emit b2: jmp ◦

[[while(e) s]] =
let (b0, bt) = changeBlock then
let x = newV ar then
[[e]] x;
let (b1, bb) = changeBlock then
[[s]];
let (b2, be) = changeBlock then
let de = genDest(b1, be) then
let dt = genDest(b2, bt) then
emit b0: jmp ◦;
emit b1: jnz x ? ◦ : de;
emit b2: jmp dt

Both definitions follow the same strategy: Generate the subterms while remem-
bering the entry and exit blocks for each. Then replace various transfers to create
the correct control flow. For example, the translation of conditionals uses b0 to
hold the label of the block in which the translation of e ends and bt to hold the
label of the block in which the s1 begins. The terms of the form emit b: χ are
defined to mean that the environment they produce is like the one they consume
(Φ) except that the block in Φ.active.blocks with label b now has transfer χ.

In the absence of RTCG, we can let genDest (bsrc, bdst) k Φ = k bdst Φ.
The next section explains why this definition is insufficient and replaces it.
changeBlock invokes its continuation with a pair of labels. The first is the label
of what was the current block. The second is the label of a new empty block
added to the end of the active function and made the current block. The new
block has the same template name as the old current block.

changeBlock k Φ =
let E = Φ.active in
let bold = E .current in
let b = newV ar then
let l = L(b) in
let t = currentT emplate E in
let E ′ = {current = l,blocks = append(E .blocks, [(l, t, ·, jmp ◦)])} in
k (bold, b) Φ[active = E ′]

currentT emplate E evaluates to the template name of the block in E .blocks
with label E .current. append appends two lists.

A.3 RTCG Translation

We now explain how the four Mini-Cyclone constructs specific to RTCG are
compiled. We begin with codegen and use it to explain most of the new concepts:

[[codegen f(x1, . . . , xn)s]] x Φ0 =
let Φ0 = emit R(f) := start L(f) Φ0 in
let Φ0 = emit P(f) := copy T (f) into R(f) Φ0 in
let Φ1 = Φ0[parents = Φ0.active :: Φ0.parents][children = ·] in
let Φ2 = [[f(x1, . . . , xn)s]] Φ1 in
let Φ3 = Φ2 [parents = tail(Φ2.parents)]

[active = head(Φ2.parents)]
[children = Φ0.children]

in (emit x := end R(f)) Φ3

The translation creates both generating code and generated code. At the gen-
erating level, it allocates the code region (R(f) := start L(f)); copies the first
template (P(f) := copy T (f) into R(f)); and, after everything else, converts
the code region to executable code (x := end R(f)). At the generated level, we
translate the function declaration. This translation needs the generating code’s
environment in order to translate cut statements. Therefore, we give it an envi-
ronment where the first element of parents is the active function’s environment.

After translating the generated function, we create an environment for trans-
lating the rest of the parent. The parents and active fields of Φ3 must be set
from Φ2 rather than Φ0 because any top-level cut or fill constructs in s affect
the value of Φ2.parents. The children field must come from Φ0 because the
codegen may be within a cut or fill.

The translations for cut and splice are pleasingly symmetric:

[[cut s]] =
emit jmp ◦;
↓ [[s]];
newTemplate

[[splice s]] =
↑ newTemplate;
↑ [[s]];
↑ emit jmp ◦

Recall that the purpose of cut s is to execute s in the parent of the function in
which the cut appears. So ↓ gives [[s]] an environment that “shifts” the head
of parents to active and the active field to the head of children and then
“unshifts” after the translation of s. The ↑ term used in splice s “shifts” and
“unshifts” in the opposite direction. To be precise, we define:

up Φ = Φ[parents = Φ.active :: Φ.parents, active = head(Φ.children),
children = tail(Φ.children)]

down Φ = Φ[children = Φ.active :: Φ.children, active = head(Φ.parents),
parents = tail(Φ.parents)]

↓ e = down; e; up
↑ e = up; e; down

Translation of well-formed source code will never apply tail to an empty list.
Note that Section 5 defines ↓ and ↑ quite differently.

With this notation, we can explain the translation of cut and splice. When
moving from child to parent, we emit a jmp ◦ to end the current block. The

newTemplate function performs the actions required when moving from parent
to child. It creates a new template, puts a new block in it, and emits a copy
instruction in the parent. We start a new template because control flow in the
parent may cause the generated child code to be copied 0, 1, or multiple times.
We emit the copy instruction before translating the template’s body so that it
will precede fills emitted while translating the body.

newTemplate =
let f = currentFunction then
let x = newV ar then
let (b0, b1) = changeBlock then
setTemplateOfCurrent T (x);
↓ emit P(x) := copy T (x) into R(f)

Given a template name (t) and an environment, setTemplateOfCurrent returns
an environment where t is the current block’s template name. currentFunction
retrieves the active function’s name (for Φ, the label of head(Φ.active.blocks)).

The translation of fill e is straightforward at this point. In the function
generating the current one, we translate e and emit a fill instruction for a new
hole. In the template, we assign the hole to the result.

[[fill e]] x =
let x1 = newV ar then
↓ [[e]] x1;
let x2 = newV ar then
let t = activeT emplate then
↓ emit fill P(t).[H(x2)] with x1;
emit x := [H(x2)]

activeT emplate retrieves the template name of the current block.
Finally, the translation uses fill p1.[h] with p2.l instructions in the correct

definition of genDest precisely when an inter-template jump occurs:

genDest (bsrc, bdst) k Φ =
let tsrc = templateOf Φ bsrc in
let tdst = templateOf Φ bdst in
if tsrc = tdst then k bdst Φ
else (let h = newV ar then

↓ emit fill P(tsrc).[H(h)] with P(tdst).bdst;
k [H(h)]) Φ

templateOf Φ b is the template of the block in Φ.active.blocks with label b.
We have now presented the entire translation. A correctness proof is beyond

the scope of this work, but we sketch what an argument would look like. First,
it remains to give a formal semantics to Mini-Cyclone and CIR; the semantics
for the former would be similar to previously published work [8]. We could then
extend the translation to work over program states (as opposed to programs).
We would then hope to establish a bisimulation relation.

