Naming and Addressing

An Engineering Approach to Computer Networking
Outline

- Names and addresses
- Hierarchical naming
- Addressing
- Addressing in the telephone network
- Addressing in the Internet
- ATM addresses
- Name resolution
- Finding datalink layer addresses
Names and addresses

- Names and addresses both uniquely identify a host (or an interface on the host)

- `%nslookup`
 - Default Server: DUSK.CS.CORNELL.EDU
 - Address: 128.84.227.13

 > underarm.com

 - Name: underarm.com
 - Address: 206.128.187.146

- *Resolution*: the process of determining an address from a name
Why do we need both?

- Names are long and human understandable
 - wastes space to carry them in packet headers
 - hard to parse
- Addresses are shorter and machine understandable
 - if fixed size, easy to carry in headers and parse
- Indirection
 - multiple names may point to same address
 - can move a machine and just update the resolution table
Hierarchical naming

- Goal: give a globally unique name to each host
- Naïve approach: ask other naming authorities before choosing a name
 - doesn’t scale (why?)
 - not robust to network partitions
- Instead carve up name space (the set of all possible names) into mutually exclusive portions => hierarchy
Hierarchy

- A wonderful thing!
 - scales arbitrarily
 - guarantees uniqueness
 - easy to understand
- Example: Internet names
 - use *Domain name system (DNS)*
 - global authority (Network Solutions Inc.) assigns top level domains to naming authorities (e.g. .edu, .net, .cz etc.)
 - naming authorities further carve up their space
 - all names in the same domain share a unique *suffix*
Addressing

- Addresses need to be globally unique, so they are also hierarchical.
- Another reason for hierarchy: aggregation
 - reduces size of routing tables
 - at the expense of longer routes
Addressing in the telephone network

- Telephone network has only addresses and no names (why?)
- E.164 specifications
- ITU assigns each country a unique \textit{country code}
- Naming authority in each country chooses unique area or city prefixes
- Telephone numbers are variable length
 - this is OK since they are only used in call establishment
- Optimization to help dialing:
 - reserve part of the lower level name space to address top level domains
 - e.g. in US, no area code starts with 011, so 011 => international call => all other calls need fewer digits dialed
Addressing in the Internet

- Every host interface has its own IP address
- Routers have multiple interfaces, each with its own IP address
- Current version of IP is version 4, addresses are IPv4 addresses

- 4 bytes long, two part hierarchy
 - network number and host number
 - boundary identified with a subnet mask
 - can aggregate addresses within subnets
Address classes

- First cut
 - fixed network-host partition, with 8 bits of network number
 - too few networks!

- Generalization
 - Class A addresses have 8 bits of network number
 - Class B addresses have 16 bits of network number
 - Class C addresses have 24 bits of network number

- Distinguished by leading bits of address
 - leading 0 => class A (first byte < 128)
 - leading 10 => class B (first byte in the range 128-191)
 - leading 110 => class C (first byte in the range 192-223)
Address evolution

- This scheme was too inflexible
- Three extensions
 - subnetting
 - CIDR
 - dynamic host configuration
Subnetting

- Allows administrator to cluster IP addresses *within* its network
CIDR

- Scheme forced medium sized nets to choose class B addresses, which wasted space
- Address space exhaustion
- Solution
 - allow ways to represent a set of class C addresses as a block, so that class C space can be used
 - use a CIDR mask
 - idea is very similar to subnet masks, except that all routers must agree to use it
 - subnet masks are not visible outside the network (why?)
CIDR (contd.)

EIGHT CLASS C NETWORKS = $256 \times 8 = 2048$ ADDRESSES = 1 CLASS C NETWORK

201.10.0.0 / 21 =

- 201.10.0.0, 201.10.1.0, 201.10.2.0, 201.10.3.0, 201.10.4.0, 201.10.5.0, 201.10.6.0, 201.10.7.0
Dynamic host configuration

- Allows a set of hosts to share a pool of IP addresses
- Dynamic Host Configuration Protocol (DHCP)
- Newly booted computer broadcasts `discover` to subnet
- DHCP servers reply with `offers` of IP addresses
- Host picks one and broadcasts a `request` to a particular server
- All other servers withdraw offers, and selected server sends an `ack`
- When done, host sends a `release`
- IP address has a `lease` which limits time it is valid
- Server reuses IP addresses if their lease is over
- Similar technique used in *Point-to-point* protocol (PPP)
IPv6

- 32-bit address space is likely to eventually run out
- IPv6 extends size to 128 bits
- Main features
 - classless addresses
 - multiple levels of aggregation are possible
 - registry
 - provider
 - subscriber
 - subnet
 - several flavors of multicast
 - anycast
 - interoperability with IPv4
ATM network addressing

- Uses *Network Service Access Point (NSAP)* addresses
- Variable length (7-20 bytes)
- Several levels of hierarchy
 - national or international naming authority
 - addressing domain
 - subnet
Name resolution

- Done by name servers
 - essentially look up a name and return an address
- Centralized design
 - consistent
 - single point of failure
 - concentrates load
DNS

- Distributed name server
- A name server is responsible (an authoritative server) for a set of domains
- May delegate responsibility for part of a domain to a child
- Root servers are replicated
- If local server cannot answer a query, it asks root, which delegates reply
- Reply is cached and timed out
Finding datalink layer addresses

- Datalink layer address: most common format is IEEE 802

- Need to know datalink layer address typically for the last hop
ARP

- To get datalink layer address of a machine on the local subnet
- Broadcast a query with IP address onto local LAN
- Host that owns that address (or proxy) replies with address
- All hosts are required to listen for ARP requests and reply
 - including laser printers!
- Reply stored in an ARP cache and timed out
- In point-to-point LANs, need an ARP server
 - register translation with server
 - ask ARP server instead of broadcasting