Knowledge Compilation Using
Horn Approximations

Bart Selman and Henry Kautz
AT Principles Research Department
AT&T Bell Laboratories
Murray Hill, NJ 07974

{selman, kautz}@research.att.com

Abstract

We present a new approach to developing fast and efficient knowledge repre-
sentation systems. Previous approaches to the problem of tractable inference
have used restricted languages or incomplete inference mechanisms — prob-
lems include lack of expressive power, lack of inferential power, and/or lack of
a formal characterization of what can and cannot be inferred. To overcome
these disadvantages, we introduce a knowledge compilation method. We allow
the user to enter statements in a general, unrestricted representation language,
which the system compiles into a restricted language that allows for efficient
inference. Since an exact translation into a tractable form is often impossible,
the system searches for the best approximation of the original information.
We will describe how the approximation can be used to speed up inference
without giving up correctness or completeness.

We illustrate our method by studying the approximation of logical theories
by Horn theories. Following the formal definition of Horn approximation,
we present “anytime” algorithms for generating such approximations. We
subsequently discuss extensions to other useful classes of approximations.

This paper appears in the Proceedings of the Ninth National Conference on Artificial
Intelligence (AAAI-91), Anaheim, CA, July 1991.

1 Introduction

The study of the computational properties of knowledge representation sys-
tems has revealed a direct trade-off between tractability and expressiveness
[Levesque and Brachman, 1985]. In general, in order to obtain a compu-
tationally efficient representation system one either restricts the expressive
power of the knowledge representation language or one uses an incomplete
inference mechanism. In the first approach, the representation language is
often too limited for practical applications [Doyle and Patil, 1991]. The sec-
ond approach involves either resource-bounded reasoning or the introduction
of a non-traditional semantics. In resource-bounded reasoning, inference is
limited by bounding the number of inference steps performed by the infer-
ence procedure. It therefore becomes difficult to characterize exactly what
can and cannot be inferred, that is, the approach lacks a “real” semantics
(one that does not simply mimic the proof theory). Moreover, no infor-
mation is provided if a proof cannot be found in the time bound. (But
see [Horvitz et al., 1989] for an example of probabilistic inference, where
confidence in the results increases with the amount of computation.) Ac-
counts of limited inference based on non-traditional semantics [Frisch, 1985;
Patel-Schneider, 1986] often provide only a very weak kind of inference. For
example, in the four-valued semantics approach of Patel-Schneider, given the
statements p and p D ¢, one cannot infer q.

This paper presents a third alternative for obtaining efficient representa-
tion systems, which neither limits the expressive power of the representation
language, nor gives up completeness of the inference procedure. In this new
approach, the user enters statements in a general, unrestricted representation
language, which the system compiles into a restricted language that allows
for efficient inference. Since an exact translation into a tractable form is of-
ten impossible, the system searches for the best approximation of the original
information. We describe how the approximation can be used to speed up
inference. We refer to this approach as knowledge compilation.

We illustrate our method by studying the approximation of propositional
logic theories by Horn theories. Inference based on these approximations is
very fast (linear time). Following the formal definition of Horn approxima-
tion, we present algorithms for generating such approximations. The algo-
rithms have the important property that they can be interrupted at any time
to produce some useful intermediate result. The paper concludes with a dis-
cussion of extensions to first-order theories and various generalizations of Horn

approximations.

2 Horn Approximations

In this section, we introduce the idea of knowledge compilation using a concrete
example. We show how a logical theory can be compiled into a tractable form
consisting of a set of Horn clauses. It is well-known that in the propositional
case reasoning with Horn theories is efficient. Moreover, the experience with
logic programming and databases suggests that there are also computational
advantages to the use of Horn clauses in the first-order case. We first restrict
our attention to the propositional case, and later, briefly consider the first-
order case.

We assume a standard propositional language, and use a, b, ¢, p, g, and r to
denote propositional letters and x, y, and z to denote literals (a literal is either
a propositional letter, called a positive literal, or its negation, called a negative
literal). A clause is a disjunction of literals, and can be represented by the
set of literals it contains. A clause is Horn if and only if it contains at most
one positive literal; a set of such clauses is called a Horn theory. Formulas are
given in conjunctive normal form (CNF, a conjunction of disjuncts), so they
can be represented by a set of clauses. CNF notation and clausal notation
are used interchangeably. For example, we may write (p A —¢) A r instead of
{{p,~q¢},{r}}, and vice versa.

In general, determining whether a given CNF formula (the query) follows
from a set of formulas in a knowledge base is intractable [Cook, 1971]. How-
ever, when the knowledge base contains only Horn clauses the problem can be
solved in time linear in the length of the knowledge base combined with the
query [Dowling and Gallier, 1984].

So, a useful kind of knowledge compilation would be the following: Given
a set of arbitrary clauses, compute a logically equivalent set of Horn clauses,
and base subsequent inference on that set. Unfortunately, there does not
always exist a logically equivalent Horn theory: for example, no Horn theory
is equivalent to the theory p V q. We therefore propose to approzimate the
original set of clauses by a set of Horn clauses. The basic idea is to bound the
set of models (satisfying truth assignments) of the original theory from below
and from above by Horn theories. In the following definition, M(X) denotes
the set of satisfying truth assignments of the theory .

Definition: Horn lower-bound and Horn upper-bound
Let X be a set of clauses. The sets Yy, and ¥}, of Horn clauses are respectively

a Horn lower-bound and a Horn upper-bound of ¥ iff
M(Ep) € M(X) € M(Zup)

or, equivalently,

Y EXE X

Note that the bounds are defined in terms of models: the lower bounds have
fewer models than the original theory, and the upper bound has more models.
The reader is cautioned not to associate “lower” with “logically weaker.” In
fact, because the lower bound has fewer models, it is logically stronger than
(i.e., implies) the original theory. Similarly, because the upper bound has more
models, it is logically weaker than (i.e., is implied by) the original theory.

Instead of simply using any pair of bounds to characterize the initial theory,
we wish to use the best possible ones: a greatest Horn lower-bound and a least
Horn upper-bound.

Definition: Greatest Horn lower-bound (GLB)

Let 3 be a set of clauses. The set ¥ of Horn clauses is a greatest Horn
lower-bound of ¥ iff M(X,,) € M(X) and there is no set X' of Horn clauses
such that M(Xq) C M(X') C M(Y).

Definition: Least Horn upper-bound (LUB)

Let ¥ be a set of clauses. The set ¥y, of Horn clauses is a least Horn upper-
bound of ¥ iff M(¥) C M(Xb) and there is no set X' of Horn clauses such
that M(X) C M(Y') C M(Zb)-

We call these bounds Horn approzimations of the original theory ¥. The det-
inition of Horn upper-bound implies that the conjunction of two such bounds
is another, possibly smaller upper-bound. It follows that a given theory has
a unique LUB (up to logical equivalence). On the other hand, a theory can
have many different GLBs.

Example: Consider the non-Horn theory ¥ = (ma V ¢) A (=bV ¢) A (a V b).
The Horn theory a A b A ¢ is an example of a Horn lower-bound; both a A ¢
and b A ¢ are GLBs; (ma V¢) A (=bV ¢) is an example of a Horn upper-bound;
and c is the LUB. The reader can verify these bounds by noting that

(aNbAe)E(aNe) EX EckE((maVe)A(mbVc))

Moreover, there is no Horn theory ¥’ different from a A ¢ such that (a A ¢) |

¥ = X, Similar properties hold of the other GLB and of the LUB.

4

Before we discuss how to compute Horn approximations, let us consider
how these approximations can be used to improve the efficiency of a knowledge
representation system. Suppose a knowledge base (KB) contains the set of
clauses ¥, and we want to determine whether the formula « is implied by the
KB. We assume that « is in CNF, because one can determine in linear time
if a propositional CNF formula follows from a Horn theory. (Note that the
query need not be Horn.) The system can proceed as follows. First, it tries to
obtain an answer quickly by using the Horn approximations. If ¥, = « then
it returns “yes,” or if Mg, = « then it returns “no.” So far, the procedure
takes only linear-time in the length of the approximations.’ In case no answer
is obtained, the system could simply return “don’t know,” or it could decide
to spend more time and use a general inference procedure to determine the
answer directly from the original theory. The general inference procedure
could still use the approximations to prune its search space. Thus the system
can answer certain queries in linear time, resulting in a improvement in its
overall response time. Exactly how many queries can be handled directly by
the Horn approximations depends on how well the bounds characterize the
original theory. Note that we give up neither soundness nor completeness,
because we can always fall back to the original theory.

3 Computing Horn Approximations

We now turn to the problem of generating Horn approximations. Note that
there cannot be a polynomial time procedure for generating such approxima-
tions (provided P#NP). This is a direct consequence of the following theorem.

Theorem 1 Let ¥ be a set of clauses. The GLB of ¥ is consistent iff ¥ is
consistent. Similarly, the LUB of ¥ is consistent iff ¥ is consistent.

Proof: If M(X) = (), then an inconsistent Horn theory such as p A =p is both
a GLB and LUB of ¥. Let ¥ be consistent and M be a satisfying truth
assignment of . By definition, M must be a satisfying assignment
of any Horn upper-bound. Moreover, the theory with M as the only
satisfying truth assignment is a better (larger) Horn lower-bound than
an unsatisfiable (inconsistent) Horn theory. So, both the LUB and the
GLB of ¥ are consistent since each has at least one satisfying truth
assignment. =

!'We assume that the lengths of the Horn approximations are roughly the same as that
of the original theory. We will return to this issue later on.

If the length of the Horn approximations is bounded by some polynomial
function of the length of ¥, then the task of finding them is NP-hard, because
checking the consistency of a general set of clauses is NP-complete, but check-
ing the consistency of Horn clauses takes only linear-time. On the other hand,
if certain approximations are of exponential length, then it certainly takes ex-
ponential time to generate them. So, in either case the problem is intractable.
Of course, if the approximations were polynomial time computable, then they
could not be very good approximations (for example, inconsistency could go
undetected), and at query time they could save at most a polynomial amount
of time on an exponentially hard problem.

Computing the Horn approximations should be viewed as a compilation
process. The computational cost can be amortized over the total set of sub-
sequent queries to the KB. In some cases, however, the approximations may
be needed for query answering before the compilation process finishes. So,
instead of waiting for the best Horn bounds, it would be desirable to employ
procedures that could output lower- and upper-bounds as intermediate results,
generating better and better bounds over time. That is, the approximation
algorithms should be “anytime” procedures [Boddy and Dean, 1988]. The
algorithms presented in this paper have this property.

We discuss a method for generating the GLB first. The following notion is
central to our approach:

Definition: Horn-strengthening
A Horn clause Cy is a Horn-strengthening of a clause C' iff Cy C C' and there
is no Horn clause Cf; such that Cy C C}; C C.

Example: Consider the clause C = {p,q,—r}. The clauses {p,—r} and
{q, —r} are Horn-strengthenings of C.

The following two lemmas state some useful properties of Horn-strengthenings.
The first lemma shows that a Horn theory entails a clause only if it entails
some Horn-strengthening of the clause.

Lemma 1 Let Yy be a Horn theory and C a clause that is not a tautology.
If ¥y | C then there is a clause Cy that is a Horn-strengthening of C such
that EH |= CH

Proof: By the subsumption theorem [Lee, 1967], there is a clause C' that fol-
lows from Yy by resolution such that C’ subsumes C'. Because the resol-
vent of Horn clauses is Horn, C' is Horn, and thus is a Horn-strengthening

of C. nm

GLB Algorithm
Input: a set of clauses ¥ = {C},Cy,...,C,}.
Output: a greatest Horn lower-bound of .
begin
L := the lexicographically first Horn—
strengthening of X
loop
L' := lexicographically next Horn—
strengthening of X
if none exists then exit
if L = L' then L:=1'
end loop
remove subsumed clauses from L
return L
end

Figure 1: Algorithm for generating a greatest Horn lower-bound.

The next lemma shows that every GLB of a theory — given in clausal form
— is equivalent to some subset of the Horn-strengthenings of the clauses of
the theory.

Lemma 2 If Y., is a GLB of a theory ¥ = {Cy,...,C,}, then there is a
set of clauses C1,...,C) such that ¥, = {C1,...,C!}, where C! is a Horn-
strengthening of C;.

Proof: Directly from lemma 1 and the definition of GLB. =

So, each GLB of ¥ is given by some Horn-strengthening of the clauses of 3.
Moreover, it is not difficult to see that the set containing a Horn-strengthening
of each clause is a Horn lower-bound of ¥ — though not necessarily the
greatest lower-bound. This leads us to the GLB algorithm given in figure
1. The algorithm systematically searches through the various possible Horn-
strengthenings of the clauses of the original theory, looking for a most general
one. Where ¥ = {Cy,C,,...,C,} and C/ is the j-th Horn strengthening of
clause C;, the Horn strengthenings of ¥ are generated in the lexicographic

Order {0115021’ * '707’1L}7 {01270217 * '707’1L}7 {01170227 * '707’1L}7 {01270227 * '701}7

n
etc.

Theorem 2 Given a set of clauses X, the GLB algorithm (Fig. 1) computes
a greatest Horn lower-bound of ¥ of length less than or equal to that of Y.

Example: Consider the theory ¥ = (-a VbV ¢) A (a V b). The algorithm
first tries the Horn-strengthening L = ((—a V b) A a) = (a A b), and then
L' = ((maVb)Ab) =b Since L = L', L is set to L', and the algorithm
proceeds. Since the other two Horn strengthenings do not further improve the
bound, the algorithm returns b as an answer (the redundant clause (—aV b) is
removed by the last step of the algorithm).

Proof of correctness of the GLB algorithm: Assume that the set of clauses
L returned by the algorithm is not a GLB of ¥. Clearly, L is a Horn
lower-bound. So, it follows that there is some greatest Horn lower-bound

L' of ¥ such that L | L' =Y and L' £ L. By lemma 2, L' is equivalent
to some Horn-strengthening L* of the clauses of ¥. So, the algorithm
would have returned L*. Contradiction. m

The GLB algorithm is indeed an anytime algorithm: [represents some
lower-bound whenever the algorithm is interrupted. Note also that the total
running time of the algorithm is exponential only in the length of the non-Horn
part of the original theory, because the only strengthening of a Horn clause is
the clause itself.

A theory may have exponentially many greatest Horn lower-bounds, so in
practice one would not want to generate them all. However, there is a simple
and significant relationship between a theory and the set of all its GLBs, which
follows from the fact that each model of a theory is a lower-bound of the theory:

Theorem 3 Let X be a set of clauses. Then X s logically equivalent to the
disjunction of all the greatest Horn lower-bounds of X..

We now turn our attention to the generation of the LUB. We will use the
notion of a prime implicate of a theory, which is a strongest clause implied by
the theory. The following theorem reveals our basic strategy.

Theorem 4 Let ¥ be a set of clauses. The LUB of ¥ is logically equivalent
to the set of all Horn prime implicates of X.

Proof: The set of Horn prime implicates is implied by ¥, and thus is a Horn
upper-bound. Furthermore, it must the LUB, because at least one of its
clauses subsumes (and therefore implies) any clause in any Horn upper-
bound. m

LUB Algorithm
Input: a set of clauses ¥ = ¥y U Yy, where
Yy is a set of Horn clauses, and Yy is a
set of non-Horn clauses.
Output: a least Horn upper-bound of .
begin
loop
try to choose clause Cg € Xy U XN and
(1 € XN, such that C'; = Resolve(Cy, Cy)
is not subsumed by any clause in ¥y U ¥y
if no such choice is possible then exit loop
if C5 is Horn then
delete from ¥y and YN any clauses
subsumed by C
EH = EH U {02}
else
delete from YN any clauses subsumed by C5
EN = ZN U {02}
end if
end loop
return Xy
end

Figure 2: Algorithm for generating a least Horn upper-bound.

So, in principle, we could use resolution to generate the prime implicates and
simply collect the Horn ones in order to generate the least Horn upper-bound.
However, such a method could prove very expensive since even if the origi-
nal theory contains only Horn clauses, there can be exponentially many Horn
resolvents (for an example, see Selman [1990].) Clearly, such resolvents add
nothing to the best approximation of the original Horn theory, since the least
Horn upper-bound is already given by the theory itself. Fortunately, we can
improve upon the procedure of generating all prime implicates by only resolv-
ing two clauses if at least one of them is non-Horn.

Theorem 5 Given a set of clauses X, the LUB algorithm (Fig. 2) computes
the least Horn upper-bound of X.

Example: Consider the theory (—a V b) A (=bV ¢) A (a V b). The LUB
algorithm resolves the first and the third clause, obtaining the clause b. ¥y
becomes (—bV ¢) A b, upon which the loop is exited and Yy is returned.

The correctness proof of the LUB algorithm [Selman and Kautz, 1991] is
quite involved and we therefore do not include it here. As with the GLB, the
algorithm is anytime: ¥y improves over time.

Finally, we briefly consider the size of the generated Horn approximations.
From the GLB algorithm it follows immediately that the size of the generated
bound is less than or equal to that of the original theory. So, the system can
safely use this bound; even if the approximation does not provide an answer
for a particular query, at most a linear amount of time in terms of the length of
the original theory is being “wasted.” Whether there always exists a similarly
short least Horn upper-bound is currently an open question. We conjecture
that there are cases where the LUB algorithm generates a bound that is
exponentially longer then the original theory, although we expect the blow-up
to be exponential only in the size of the non-Horn part of the theory. In such
cases, the system has to somehow limit the length of the approximation, for
example, by using a weaker bound or by minimizing the length of the bound
(e.g., replace (aV —b) A b by a A b).

4 Relation to Other Approaches

In this section, we discuss some related work. The Horn upper-bound can
be viewed as a generalization or abstraction of the original theory, because
the upper-bound is a more general, weaker theory. To illustrate this, we now
show how the notion of abstraction as introduced by Borgida and Etherington
[1989] directly corresponds to the least Horn upper-bound of the theories that
they consider.

Borgida and Etherington propose using background knowledge that cap-
tures the hierarchical relationship among predicates in order to replace dis-
junctions by more general concepts. Suppose the background knowledge is
doctor(Jill) D professional(Jill)and lawyer(Jill) D professional(Jill),
and the KB is doctor(Jill)V laywer(Jill). They then generate a new KB
that contains only professional(Jill). But this is simply the least Horn
upper-bound of the original KB together with the background knowledge.
Note that the idea of an LUB is much more general than Borgida and Ether-
ington’s approach, since it can be applied to arbitrary propositional Horn

10

theories — not just concept hierarchies with positive disjunctions. However,
their specialized procedures may run faster than our more general ones.

A Horn lower-bound corresponds to a more specific theory than the original
one. Its use generalizes the use of a counterexample to prune the search space
of inference procedures. The best-known example of the use of counterexam-
ples in artificial intelligence (Al) can be found in the early work by Gelernter
[1959] on proving theorems in geometry. Gelernter used a single model M
(given by a diagram) of the original theory ¥ to answer certain queries neg-
atively, based on the fact that if M [~ o« then ¥ [~ «, for a query a. The
Horn lower-bound is used in a similar manner, but it will generally involve a
set of models, and is thus a better characterization of the original theory. In
particular, one may avoid some of the “accidental truths” that often hold in a
single model or diagram.

The work in Al on problem solving with abstraction [Amarel, 1968; Sacer-
doti, 1974; Plaisted, 1981] is less directly related to the knowledge-compilation
approach. In the work on abstraction one maps a theory to a smaller theory,
generates proofs in the smaller theory, and then uses the proofs to guide gener-
ation of proofs in the original theory. While the idea of transforming a theory
in order to make inference faster is similar, the abstraction approach does not
in general preserve consistency in the sense of Theorem 1 (but see Tenenberg
[1988] for an exception), and does not map theories into a particular syntac-
tic form that is guaranteed to be efficient. Most importantly, the abstraction
mappings are supplied by the user and are domain-specific; in contrast, the
Horn approximations in our approach are generated automatically.

5 Other Kinds of Approximations

While we have concentrated on propositional Horn approximations, the gen-
eral knowledge compilation approach can be applied to produce any efficient
logical form. In this section, we briefly discuss some of the other kinds of
approximation we are investigating.

One natural extension of this work is to generate first-order Horn approxi-
mations of first-order theories. As noted earlier, while first-order Horn theories
are not necessarily tractable, in practice they tend to support fast inference.
Because satisfiability is undecidable for first-order languages, it is clear that
there cannot be algorithms to generate approximations that always terminate.
However, we also noted that the algorithms presented in this paper are anytime
algorithms, so they can be used (with minor modifications [Selman and Kautz,

11

1991]) to generate an infinite sequence of better and better bounds. One open
technical question is whether first-order clausal theories always have a greatest
Horn lower-bound. (Note: they do; see [Selman and Kautz, 1991].)

We are also investigating the general classes of approximations that can be
generated using techniques based on those described in this paper [Kautz and
Selman, 1991]. At least in the propositional case, the GLB and LUB algorithms
can be modified to generate approximations that are in any class of clauses
with the following properties: the class is closed under resolution, closed under
subsumption, and any general clause is subsumed by some clause in the class.
A simple but useful example of such a class is all clauses not containing a
given set of predicates; the techniques can thus be used to “compile away” a
set of “irrelevant” predicates [Subramanian and Genesereth, 1987]. Another
useful case is the class of binary clauses, since satisfiability can be determined
in polynomial time.

6 Conclusions

We introduced the notion of knowledge compilation. The basic idea is to
compile knowledge from an intractable into a tractable form. Since an ex-
act translation is often not possible, we introduced approximate translations,
consisting of two bounds that delimit the original theory.

Knowledge compilation provides an alternative to approaches that force
the user to state all knowledge in some restricted but tractable language. A
representation system incorporating a knowledge compilation procedure will
allow the user to enter information in a general, unrestricted language, while
the system compiles such information into a tractable form.

To illustrate our approach, we showed how knowledge represented in a
propositional theory can be approximated using two Horn theories, called Horn
approximations: a greatest Horn lower-bound and a least Horn upper-bound.
Answering a query based on the original knowledge base is intractable, but
by using the Horn approximations certain queries can be answered in time
linear in the length of the approximations. We gave algorithms for generating
such Horn approximations. The algorithms operate incrementally, generating
better and better approximations over time. The incremental nature of the
approximation algorithms is a key feature of our approach, since in practical
applications it would be unacceptable to have to wait until the system has
computed the best bounds before answering any queries.

In summary, the main features of our knowledge compilation approach are:

12

e A guaranteed fast response for queries that can be answered directly
using the approximations.

e An incremental, off-line compilation process that provides continuous
improvement of the overall response time of the system.

e No loss of soundness or completeness.

We also considered some generalizations of the Horn approximation notion
and discussed its relationship with research on abstraction in problem-solving.

Acknowledgements

We thank Daniel Bobrow for getting us to think more about the issue of how
to make practical use of restricted, tractable representation languages and Ray
Reiter for pointing us to the work on prime-implicates. We also thank Hector
Levesque and Yoav Shoham for useful comments and discussions.

References

[Amarel, 1968] Saul Amarel. On representations of problems of reasoning
about actions. In Michie, editor, Machine Intelligence 3, pages 131-171.
Edinburgh University Press, 1968.

[Boddy and Dean, 1988] Mark Boddy and Thomas Dean. Solving time de-
g
pendent planning problems. Technical report, Department of Computer
Science, Brown University, 1988.

[Borgida and Etherington, 1989] Alex Borgida and David W. Etherington. Hi-
erarchical knowledge bases and efficient disjunctive reasoning. In Proceed-
ings of the First International Conference on Principles of Knowledge Rep-
resentation and Reasoning, pages 33-43, Toronto, Ontario, 1989. Morgan
Kaufmann Publishers, Inc.

[Cook, 1971] S. A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the 3rd Annual ACM Symposium on the Theory of Comput-
ing, pages 151-158, 1971.

[Dowling and Gallier, 1984] William F. Dowling and Jean H. Gallier. Linear
time algorithms for testing the satisfiability of propositional horn formula.
Journal of Logic Programming, 3:267-284, 1984.

13

[Doyle and Patil, 1991] J. Doyle and R. Patil. Two theses of knowledge rep-
resentation: Language restrictions, taxonomic classification, and the utility
of representation services. Artificial Intelligence, 48(3):261-298, 1991.

[Frisch, 1985] Alan M. Frisch. Using model theory to specify Al programs. In
Proceedings of IJCAI-85, pages 148-154, 1985.

[Gelernter, 1959] H. Gelernter. Realization of a geometry theorem-proving
machine. In Proceedings of the International Conference on Information
Processing, pages 273-282, Paris, 1959. UNESCO House. (Reprinted in
Computers and Thought, E. Feigenbaum and J. Feldman (Eds.), McGraw-
Hill, NY, pages 134-152, 1963.).

[Horvitz et al., 1989] Eric J. Horvitz, Gregory F. Cooper, and David E. Heck-
erman. Reflection and action under scarce resources: Theoretical principles
and empirical study. In Proceedings of IJCAI-89, page 1121, Detroit, MI,
May 1989. Morgan Kaufmann.

[Kautz and Selman, 1991] Henry Kautz and Bart Selman. A general frame-
work for knowledge compilation, 1991. Submitted for publication.

[Lee, 1967] R. C. T. Lee. A Completeness Theorem and a Computer Program
for Finding Theorems Deriwvable From Given Azioms. PhD thesis, University
of California at Berkeley, Berkeley, CA, 1967.

[Levesque and Brachman, 1985] H.J. Levesque and R.J. Brachman. A funda-
mental tradeoff in knowledge representation and reasoning (revised version).
In R.J. Brachman and H.J. Levesque, editors, Readings in Knowledge Rep-
resentation, pages 41-70. Morgan Kaufmann, Los Altos, CA, 1985.

[Patel-Schneider, 1986] Peter F. Patel-Schneider. A four-valued semantics for
frame-based description languages. In Proceedings of AAAI-86, pages 344—
348, Philadelphia, PA, 1986.

[Plaisted, 1981] D. Plaisted. Theorem proving with abstraction. Artificial
Intelligence, 16:47, 1981.

[Sacerdoti, 1974] Earl D. Sacerdoti. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence, 5(2):115-135, 1974.

[Selman and Kautz, 1991] Bart Selman and Henry Kautz. Methods of knowl-
edge compilation. In Preparation, 1991.

14

[Selman, 1990] Bart Selman. Tractable default reasoning. Ph.D. Thesis, De-
partment of Computer Science, University of Toronto, Toronto, Ontario,

1990.

[Subramanian and Genesereth, 1987] Devika Subramanian and Michael R.
Genesereth. The relevance of irrelevance. In Proceedings of 1JCAI-87, vol-
ume 1, page 416, 1987.

[Tenenberg, 1988] Josh D. Tenenberg. Abstraction in planning. Techni-

cal Report 250, Computer Science Department, University of Rochester,
Rochester, NY, May 1988.

15

