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Non-deterministic polynomial time (commonly termed `NP-complete') problems are relevant to many computational
tasks of practical interestÐsuch as the `travelling salesman problem'Ðbut are dif®cult to solve: the computing time
growsexponentiallywithproblemsize in theworst case. It has recentlybeenshownthat theseproblemsexhibit `phase
boundaries', across which dramatic changes occur in the computational dif®culty and solution characterÐthe
problems become easier to solve away from the boundary. Here we report an analytic solution and experimental
investigation of the phase transition in K-satis®ability, an archetypal NP-complete problem. Depending on the input
parameters, the computing time may grow exponentially or polynomially with problem size; in the former case, we
observe a discontinuous transition, whereas in the latter case a continuous (second-order) transition is found. The
nature of these transitions may explain the differing computational costs, and suggests directions for improving the
ef®ciency of search algorithms. Similar types of transition should occur in other combinatorial problems and in glassy
or granular materials, thereby strengthening the link between computational models and properties of physical
systems.

Many computational tasks of practical interest are surprisingly
dif®cult to solve even using the fastest available machines. Such
problems, found for example in planning, scheduling, machine
learning, hardware design, and computational biology, generally
belong to the class of NP-complete problems1±3. NP stands for `non-
deterministic polynomial time', which denotes an abstract
computational model with a rather technical de®nition. Intuitively
speaking, this class of computational tasks consists of problems for
which a potential solution can be checked ef®ciently for correctness,
yet ®nding such a solution appears to require exponential time in
the worst case. A good analogy can be drawn from mathematics:
proving open conjectures in mathematics is extremely dif®cult, but
verifying any given proof (or solution) is generally relatively
straightforward.

The class of NP-complete problems lies at the foundations of
the theory of computational complexity in modern computer
science. Literally thousands of computational problems have been
shown to be NP-complete. The completeness property of NP-
complete problems means that if an ef®cient algorithm for solving
just one of these problems could be found, one would immediately
have an ef®cient algorithm for all NP-complete problems. However,
a fundamental conjecture of modern complexity theory is that no
such ef®cient algorithm exists.

Although NP-complete problems are believed to require expo-
nential time to solve in the worst case, the typical-case behaviour is
dif®cult to characterize. Yet, such typical-case properties are most
relevant in practical applications. Fu and Anderson4 ®rst conjec-
tured a deep connection between NP-complete problems and
models studied in statistical physics5. More recently, it was dis-
covered (refs 6±9) that NP-complete problems can exhibit phase
transition phenomena, analogous to those in physical systems, with
the hardest problems occurring at the phase boundary. (For a
collection of papers and a review, see refs 10, 11.) The exact
relationship between phase transition phenomena and compu-
tational properties has remained unclear. For example, phase

transitions are also observed in computationally `easy' problems
(that is, ones that are not NP-complete).

Here we establish the nature of the relationship between phase
transition phenomena and typical-case computational complexity.
More speci®cally, we show that when the underlying computational
task exhibits a continuous (`second order') phase transition,
resource requirements grow only polynomially with problem size,
while discontinuous (`random ®rst order'12) phase transitions
correspond to an exponential growth in resource requirements,
characteristic of truly hard computational problems. Our results
show that techniques from statistical physics can provide important
new insights into computational phenomena, possibly leading to
improved solution methods. In addition, computational problems,
viewed as many-particle systems, provide models which challenge
the assumptions of physics, and may shed light on the behaviour of
some highly nonlinear materials now coming under study.

K-SAT: a standard test bed
We focus on the K-satis®ability (K-SAT) problem1±3,11, which is
characteristic of the class of NP-complete problems, and is com-
monly used as a test bed for heuristic algorithms. An instance of the
K-SAT problem is de®ned by a set of N boolean variables, each of
which can be assigned `true' or `false', and a set of M clauses. Each
clause is a logical OR of K variables, where each variable can be
negated. The goal is to ®nd an assignment to the variables such that
all clauses are satis®ed. For example, the 2-SAT formula, (x OR y)
AND ((NOT x) OR (NOT y)), can be satis®ed by setting x to true
and y to false. In the worst case, for K > 3, an exponential search
through the space of 2N truth assignments is required in order to
®nd a satisfying assignment or to determine that no such assign-
ment exists, in which case the formula is called `unsatis®able'. The
K-SAT problem was the ®rst problem shown to be NP-complete1. A
remarkable consequence of the theory of NP-completeness is that a
large collection of problems (in fact, several thousand) from many
different ®elds can be represented as instances of the K-SAT
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problem2. In a sense, the problem lies at the core of computational
complexity theory, and the analysis of K-SAT therefore provides
insights into a broad range of challenging computational problems.

We study the typical case complexity of K-SAT by considering an
ensemble of randomly generated K-SAT formulae. For each for-
mula, we generate M clauses, where each clause is generated by
randomly selecting K variables from the set of N variables and
negating each selected variable with probability 0.5 to construct the
clause. Formulae constructed at random, keeping the ratio of
clauses to variables, a � M=N , constant as M, N ! `, provide a
natural ensemble of test problems.

The value of K is important: the 1-SATand 2-SAT problem can be
solved ef®ciently, that is, in time polynomial in size of the formula
(in fact, a linear time algorithm is known13). We say that 1-SAT and
2-SAT belong to the class `P' (polynomial time solvable problems).
The 2-SAT problem exhibits phase transition phenomenon at a
critical ratio of clauses to variables equal to one (ac�2� � 1). Below
this critical ratio almost all formulae are satis®able (SAT), whereas
above this ratio almost all are unsatis®able (UNSAT)14,15. The
intuitive explanation for this phenomenon is that at low values of
a, we have relatively few clauses and many variables, which means
that the formula is relatively easy to satisfy (the problem is under-
constrained). At high values of a, the problem is over-constrained
and generally no satisfying assignment exists. The most interesting
formulae can be found at the transition from the under-constrained
to the over-constrained area. We will make these observations more
precise below.

For K > 3, K-SAT is NP-complete. Using computer experiments,
we have shown8 thresholds for K � 3, 4, 5 and 6. A threshold exists
for any value of K (ref. 16), but determining the exact location of the
threshold remains a dif®cult open problem. One reason for the
interest in the threshold is the growing recognition that `easy±hard±
easy' patterns of computational cost are characteristic of heuristic
search algorithms developed for solving NP-complete problems,

and that the hardest instances occur near phase boundaries6±11. (The
easy±hard±easy pattern refers to the facts that (1) at low values of a,
it is relatively easy to ®nd a satisfying assignment, (2) at values of a
near the threshold, it is most dif®cult to ®nd a satisfying assignment
or show unsatis®ability of the formula, and (3) at high values of a, it
becomes again relatively easy to solve the formulae (in this case, by
showing them unsatis®able).) Above the critical ratio, ac, proving
UNSAT is still hard, with a lower bound on the search cost that is
exponential in N with a coef®cient of N that decreases as a power law
in a (ref. 17). Because of the extreme hardness of formulae at the
threshold, such formulae provide a useful benchmark for evaluating
new search methods.

Interpolating between P and NP
To understand the onset of exponential complexity that occurs
when going from a problem in P (2-SAT) to a problem that is NP-
complete (3-SAT), we introduce here formulae containing mixtures
of 2- and 3-clauses. Consider a random formula with M clauses, of
which �1 2 p�M contain two variables and pM contain three vari-
ables, with 0 < p < 1. This `(2 � p)-SAT' model smoothly inter-
polates between 2-SAT (p � 0) and 3-SAT (p � 1). Figure 1 shows
that the threshold from SAT to UNSATshifts as a function of p from
that for 2-SAT to that for 3-SAT. The problem is NP-complete for
any value of p . 0, as any such instance contains a sub-formula of 3-
clauses. Thus, the worst-case complexity is probably exponential,
but the typical-case complexity need not be, as we ®nd below.

There is a strong analogy between randomly generated K-SAT
problems and disordered materials, alloys or glasses, studied by
constructing models whose energy function captures the unsatis®ed
constraints. In studies of strongly disordered models with con¯ict-
ing interactions, similar to the randomly negated variables in K-
SAT, the replica method is used5 to con®rm that ordering of an
unusual type is possible in the presence of microscopic randomness.
We have previously applied replica methods to determine the
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Figure 1 The SAT/UNSAT phase transition for the (2 � p) SAT problems for a

range of values of p and N. Each curve was generated by considering 10,000±

40,000 randomly generated formulae, for a range of values of a. For p � 0, N has

values of 1,000 (red), 2,000 (blue), 5,000 (green), 10,000 (light blue); for p � 0:2, N

has values of 1,000 (red), 2,000 (blue), 5,000 (green), 7,500 (light blue); for p � 0:4, N

has values of 500 (red),1,000 (blue), 2,000 (green), 5,000 (light blue); for p � 0:6, N

has values of 250 (red), 500 (blue), 1,000 (green), 1,500 (light blue); p � 0:8, N has

values of 200 (red), 350 (blue), 500 (green); for p � 1:0, N has values of 100 (red),

200 (blue), 250 (green). The largest value of N which could be achieved for each

value of p was limited by the increasing cost of the calculations as p is increased.

We note that p � 0:0 corresponds to 2-SAT, and p � 1:0 to 3-SAT. The vertical lines

mark the thresholds as predicted by the replica symmetric (RS) theory. The

transition curves sharpen with increasing N.
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characteristics of the 3-SAT problem18±20. Here we report results on
the `(2 � p)-SAT' problem, which provides new insights into the
typical-case complexity, in particular with respect to the change in
going from a computationally tractable (polynomial) problem to an
intractable (NP-complete) problem. We hope that these results are
useful both to computer scientists, in constructing better algo-
rithms, and to statistical physicists, in their study of disordered
systems.

The (2 � p)-SAT model can be mapped onto a diluted spin glass
model with N spin variables Si: Si � 1 if the boolean variable xi is
true, Si � 2 1 if xi is false. We can associate with each con®guration
an energy E, or cost-function, equal to the number of clauses
violated by that con®guration. (Note that a con®guration
corresponds to an assignment of truth values to the boolean
variables.) The replica formalism provides an order parameter
describing the statistics of optimal assignments, that is, those
`ground-state' assignments that minimize the number of violated
(unsatis®ed) clauses. Consider an instance of the (2 � p)-SAT
problem. We use the NGS ground-state con®gurations to de®ne
mi � 1=NGSS

NGS
g�1 Sg

i , that is, the average value of spin Si over all
optimal con®gurations. Clearly, mi ranges from -1 to +1, and
mi � 2 1 means that the corresponding boolean variable xi is
always false in all ground states; conversely, mi � �1 means that
xi is always true in all ground states. The distribution P(m) of all mi

characterizes the microscopic structure of the ground states. The
accumulation of magnetizations m around 61 represents a `back-
bone' of almost completely constrained variables, whose logical
values cannot vary from solution to solution, while the centre of the
distribution P�m < 0� describes weakly constrained variables.

The backbone fraction is the order parameter
For a , ac, the solution exhibits a simple symmetry property,
usually referred to as replica symmetry, which leads to an order
parameter which is precisely the magnetization distribution P(m)
de®ned above. An essential qualitative difference between 2-SAT
and 3-SAT is the way that the order parameter P(m) changes at the

threshold. This discrepancy can be seen in the fraction f(K, a) of
boolean variables which become fully constrained, at and above the
threshold. Below the threshold, f �K;a� � 0. (Consider adding one
clause to a satis®able formula found below ac. If there is a ®nite
fraction of backbone spins, there will be a ®nite probability that the
added clause creates an unsatis®able formula, but we know that the
probability of an unsatis®able formula tends to zero for large N, for
a , ac.) For 2-SAT, f(2, a) becomes strictly positive above ac�� 1�
and is continuous at the transition: f �2; 1 2 � � f �2; 1�� � 0. By
contrast, f(3, a) displays a discontinuous change at the threshold:
f �3;a 2

c � � 0 and f �3;a�
c � � f c�3� . 0.

For the mixed (2 � p)-SATmodel, the crucial issue is therefore to
understand how a discontinuous 3-SAT-like transition mechanism
may appear when increasing p from zero up to one, and to see
how it affects the computational cost of ®nding solutions near
the threshold. Using replica methods, we ®nd a continuous
(second-order) SAT/UNSAT transition at ac�2 � p� � 1=�1 2 p�
for p , p0, where p0, estimated by various methods, lies between
0.4 and 0.416. This transition point can be calculated by simply
ignoring the 3-SAT clauses. (Note that we have �1 2 p�M 2-SAT
clauses, and for 2-SAT �M=N�c � ac � 1.) It is perhaps somewhat
counterintuitive that the 3-SAT clauses do not contribute at all to
the location of the phase transition for p , p0 (in a sense, the 2-SAT
constraints completely dominate the formulae), but this is consis-
tent with a recent analytical result21 derived for our model up to
p � 0:4. The replica symmetric theory appears to be correct for all
a , ac�2 � p� when p , p0, and predicts the threshold correctly, as
in the K � 2 case.

We have employed ®nite-size scaling analysis to locate the
transition region8, in which the likelihood of a formula being
UNSAT grows from zero to one, in a region centred around
ac�2 � p� and of width proportional to N-1/n. The values of ac

obtained (Fig. 2) agree with the replica symmetric theory for p , p0.
Below p0, the exponent n is roughly constant and close to 2.8, the
value found for 2-SAT (Fig. 2, inset). Corrections to scaling could
make n compatible with the value 3 obtained both from mean-®eld
theory and from the recent exact bounds on the growth of the 2-SAT
backbone (B. Bollobas, C. Borgs, J. Chayes, J. Kim, D. Wilson,
personal communication). This suggests that the (2 � p)-SAT
transition is in the same universality class as 2-SAT for p , p0. So,
for p , p0, the (2 � p)-SAT model shares the physical features of
random 2-SAT with a continuous phase transition. A plausible
hypothesis is that n � 3 for all p , p0.

For p . p0, the transition becomes discontinuous and the replica
symmetric transition can only provide an upper bound for the
true ac�2 � p�. The replica symmetric (RS) theory correctly
predicts a discontinuous appearance of a ®nite fraction of fully
constrained variables which jumps from 0 to fc when crossing
the threshold ac�2 � p�. However, values of both f c�2 � p� and ac

are overestimated; for example, for p � 1, aRS
c �3� < 4:60 and

f RS
c �3� < 0:94. Subtracting the terms in P(m) which appear to be

splitting away from m � 6 1 reduces that to an estimated
f c�3� < 0:6 in an approximation beyond replica symmetry, while
experiments give ac�3� < 4:27 and f c�3� < 0:4. A replica symmetry
breaking theory will be necessary to predict these quantities. For
p . p0, the random (2 � p)-SAT problem shares the physical
features of random 3-SAT.

Scaling of computational cost
Previous work showed that the cost of running the best heuristics,
depth-®rst search algorithms with backtracking22 increases expo-
nentially with N for any value of a > ac for K � 3 (refs 7,23). The
cost reaches its maximum value at a0.5(K, N), the value of a for
which the probability of the formula being satis®able equals 0.5, and
we have the largest uncertainty about whether the formula is
satis®able or not, leading to the greatest dif®culty for the search
algorithm. Our data show that the computational cost at a0.5(K, N)
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Figure 2 Theoretical and experimental results for the SAT/UNSAT transitions in

the (2 � p)-SAT model. The vertical line at p0 (,0.41) separates the continuous

from the discontinuous transition. The full line is the replica-symmetric theory's

predicted transition, believed exact for p , p0. The diamond data points are

results of computer experiment and ®nite-size scaling. The other two lines

show upper and lower bounds obtained in ref. 21, while the stronger upper

bound due to ref. 32 (see also refs 33, 34), and the best known lower bound, due to

ref. 35, are indicated by the two square data points (only known for p � 1:0, that is,

K � 3). Inset, the values of v (the ®nite-size scaling exponent) obtained from ®nite-

size scaling analysis. (K is the average number of variables per clause). We note

that the ®nite-size scaling exponent v now depends on p, dropping roughly

linearly to 1.5 at p � 1:0.
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scales linearly with N for p � 0 through 0.4, and exponentially
(Fig. 3) for p � 0:6. These results are again consistent with the
observation that (2 � p)-SAT behaves essentially as 2-SAT for
p < p0, and as 3-SAT for p . p0.

The presence of a `backbone' of frozen spins provides a good
explanation for the apparent inevitably high cost of heuristic search
near the phase boundary. A backtrack search method which
proceeds by asserting possible spin values can make early mistakes
by setting backbone spins (variables) to incorrect values, and then
take a long time to backtrack to correct these mistakes. (The search
may have to explore an exponential size subtree with no
solutions24.) The positive value of f(2, a) above ac is consistent
with the fact that ®nding the `best' assignment, that is, one that
satis®es the most clauses, is NP-complete for 2-SAT.

Our experiments con®rm that the appearance of the backbone is
discontinuous (Fig. 4). Above the threshold, the fraction of frozen
spins which was found in small samples by exhaustive enumeration
of all ground states is relatively insensitive to N. Below the threshold,
the fraction of frozen spins decreases rapidly with increasing N.
Although the samples that could be studied are small, the results
suggest that f �2 � p;a� vanishes below ac and are consistent with
f(2, a+

c ) vanishing while f(3, a+
c ) reaches a limit of slightly more than

0.4 for large N.

Discussion
The random ®rst-order phase transition in K-SAT is unusual
because it has a mixed nature: of ®rst order in the order parameter,
yet continuous in thermodynamic quantities such as the
entropy12,25. This means that while an extensive number of degrees
of freedom freeze at the transition, forming the backbone, the
remaining ones can support critical ¯uctuations. The separation
of the backbone is a realization of the `̀ two components'' (corre-
sponding to slow and fast degrees of freedom) idea sometimes put
forward on heuristic grounds to describe the physics of glasses26 or
granular materials27. The exponent n shown in Fig. 2 inset is quite
different from the value, 1, expected for typical ®rst-order
transitions, or for the mean-®eld theories that usually describe
models with no spatial dimensionality.

The clear experimental evidence for the coexistence of a ®rst-
order transition with critical ¯uctuations is, to our knowledge, new
with K-SAT, although there have been hints of such a possibility
occurring in `̀ rigidity percolation'' models28,29 intended to capture
the mechanical properties of sand and similar granular materials.

We note that conventional ®rst-order transitions, such as the
freezing of a solid from its liquid form, do not imply computational
complexity. Describing the ground state of a crystal, once the
positions of a few atoms are established, requires only the applica-
tion of symmetry to calculate positions for the remaining atoms
with an effort that would be linear in the number of atoms. By
contrast, a spin glass may have an in®nite number of ground states
(in the limit N ! `), and no translational symmetry.

The existence of a backbone has also been observed in other
combinatorial problems, such as the travelling salesman problem30.
It is possible to improve heuristic optimization methods, at least for
this problem, by early identi®cation and elimination of the back-
bone. The remaining problem consists of many separate subprob-
lems, each of which is much less complex to solve31. This may prove
to be a generally valid approach. Ef®cient means of ®nding the
backbone would be speci®c to each problem type, but should
nonetheless provide a step forwards in algorithm ef®ciency. More-
over, many NP-complete problems occurring in practice contain a
mix of tractable and intractable constraints. Our results suggest that
the run time of search algorithms that exploit as much of the
tractable structure as possible may in fact scale polynomially in the
typical case. We hope that our work will stimulate other studies to
develop a further understanding of the structure of phase transi-
tions taking place in computational problems, as studied in com-
puter science, and in diluted random systems, as studied in
statistical physics. Both ®elds seem to share several basic open
problems. M
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