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Many computational and cognitive tasks involve a
search through a large space of possible solutions.
Hill-climbing, or local search, is one strategy for
searching such a solution space.

LOCAL VERSUS GLOBAL SEARCH

There are many problems that require a search of a
large number of possible solutions to find one that
satisfies all the constraints. As a basic example
consider the problem of composing a classroom
schedule given a set of constraints on the availabil-
ity of classrooms, and various time constraints
involving students and lecturers. Even with a rela-
tively simple set of constraints, one may be forced
to search through many possible schedules in order
to find one that satisfies all constraints. In certain
cases, computer scientists have found clever algo-
rithms to solve such computational problems with-
out having to search through the space of all
potential solutions. However, in many other cases,
such a search cannot be avoided. We refer to the
search space as a combinatorial search space. A key
question is what is the best way of searching a
combinatorial space. The answer often depends
on the underlying problem to be solved. In order
to illustrate the two main techniques for searching a
combinatorial space, we consider the N-queens
problem as an example. (See Search; Constraint
Satisfaction; Problem Solving)

The N-queens problem is that of placing N
queens on an N by N chess board, so that no two
queens can attack each other. Carl Friedrich Gauss
considered this problem in its original form on an
8 by 8 chess board (Campbell, 1977). Given that a
queen can move horizontally in its row, it follows
that we can have at most one queen in each row. In
fact, because we need to place N queens, a solution
will require us to place exactly one queen in each
row. Similarly, because of the movement of a queen
in its column, the placement of queens is such that
there is exactly one queen in each column. What
makes the problem difficult is the fact that queens

can also move diagonally. Therefore, we have to
find a placement with exactly one queen per row
and column where no two queens share a diagonal.

To search for a solution to the N-queens
problem, there are two fundamentally different
techniques. Both techniques search through the
space of placements of N queens on a chess
board, but in dramatically different ways.

One strategy is referred to as a global (or system-
atic) search strategy. In this strategy, a solution is
constructed incrementally. That is, we place one
queen at a time, starting with one in the first row,
then one in the second row etc. For each placement,
we look for a position in the row that is not under
attack from any of the previously placed queens.
One difficulty is that after placing several queens,
we may be unable find such an ‘open’ position in a
row (i.e. one that is not being attacked). When we
encounter such a situation, say in row i, we need to
go back to row i — 1, and shift the queen in that row
to another open position in the row. We may find
that even with the queen in the new position in row
i — 1, we still cannot place a queen in row i. We then
again shift the queen in the (i — 1)™ row to another
open position. We may, of course, run out of open
positions to move to in row i — 1, in which case we
have to revisit the placement of the queen in row
i — 2, etc. The process of shifting previously placed
queens is called backtracking. We literally revise or
‘backtrack’ on our earlier placement choices. Such a
search technique will eventually search the full
space of all possible placements of queens. So, if a
solution exists, it will eventually be found. Unfor-
tunately, the search space is exponentially large
and a backtrack technique can therefore be quite
inefficient. Using sophisticated heuristics to try
the ‘most promising’ available positions first, one
can solve the N-queens problem for up to around
100 queens using backtrack search (Stone and
Stone, 1987).

Hill-climbing or local search provides a very differ-
ent search strategy for this problem. In a local
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search approach, we first start with a ‘random’
guess at a solution, for example by placing a
queen in each row, where the position within a
row is chosen randomly. Because of the random
placements, it is quite likely that we have one or
more pairs of queens that can attack each other
either because they share a column or a diagonal.
This means that our initial placement does not yet
give us a valid solution to the N-queens problem.
We now select one of the queens on the board that
is under attack from one or more other queens. We
move this queen to another location in its row,
giving preference to the positions that are not
attacked by any other queen. If all positions in a
row are under attack, we select a position that is
under attack from the least number of queens. If
after shifting a queen, which is referred to as a ‘local
move’ or ‘local modification’, we still have queens
under attack, we again select a queen randomly
from the ones that are under attack and move that
queen, each time trying to further minimize the
number of conflicts on the board. This basic strat-
egy is surprisingly effective. It can solve the
N-queens problem for over a million queens in
less than a minute on a standard PC (Sosic and
Gu, 1991; Minton et al., 1992).

In general, the key benefits of hill-climbing
search are that it requires only a limited amount
of memory (only the current state is stored), it is
easy to implement efficiently, and, if one or more
solutions exists in the search space, hill-climbing
search can be surprisingly effective at finding it.
Perhaps the first successful use of a hill-climbing
strategy was that of Lin and Kernighan (1973; Lin,
1965) for finding good solutions for the traveling
salesperson problem. In this problem, the goal is to
find the shortest route for a salesperson to take
to visit a given set of cities. Starting with an arbi-
trary tour that visits the cities, Lin and Kernighan
showed how one can quickly reduce the length of
the tour by making a series of local changes to the
route. Since the work by Lin and Kernighan, local
search has become one of the main practical tech-
niques for tackling combinatorial optimization
problems (Papadimitriou and Steiglitz, 1982).

An important drawback of local search is its
inability to detect the unsolvability of a problem
instance. That is, if no solution exists, a local search
method will simply continue to make local modi-
fications indefinitely. (When dealing with an
optimization problem, such as the traveling sales-
person problem, the difficulty is that local search
cannot be used to determine whether the solution
found is globally optimal.) In principle, one could
memorize all previously visited problem states and

force the local search method to never explore
states it has explored before. Provided the local
modifications are general enough, such a search
would eventually explore the full search space
underlying the problem. However, given the com-
binatorial nature of these problems, this is not
feasible on instances of practical interest. Inter-
estingly, for global search techniques, there are
memory-efficient ways of keeping track of the
space explored so far. Therefore, global search tech-
niques, in contrast to local search methods, can tell
us that no solution exists after the method has
explored the full search space and no solution has
been found.

LOCAL SEARCH STRATEGIES

In hill-climbing search, we are optimizing a
certain objective function. For example, in our
N-queens problem, our objective function is O
(board) = (N?/2)— L, where L is the number of
pairs of queens that attack each other on the current
board. (N?/2 is the number of pairs of queens.) A
solution corresponds to finding a board with the
largest possible value for the objective function, i.e.
N?/2.

In hill-climbing search, we select any local
change that improves the current value of the ob-
jective function. Greedy local search is a form of hill-
climbing search where we select the local move that
leads to the largest improvement of the objective
function. Traditionally, one would terminate hill-
climbing and greedy search methods when no local
move could further improve the objective function.
Upon termination, the search would have reached
a local, but not necessarily global, optimum of the
objective function. For many optimization prob-
lems, such as the traveling salesperson problem,
such a local optimum is quite acceptable, since it
often is a reasonable approximation of the global
optimum value. However, when a globally optimal
solution is required — such as in our N-queens
example — local optima present a serious problem
for local search methods.

In recent years, it has been found, perhaps some-
what surprisingly, that simply allowing the local
search to continue, by accepting ‘sideway’ or even
‘downhill” moves, i.e. local moves to states with,
respectively, the same or worse objective values,
one can often eventually still reach a global opti-
mum. For example, such ‘non-improving’ moves
are a key component of local search methods for
the Boolean satisfiability (SAT) problems, such
as GSAT and Walksat (Selman et al., 1992, 1994;
Gu, 1992). These local search methods for SAT
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outperform the more traditional backtrack search
strategies for a number of SAT problem classes.
Many combinatorial problems can be encoded ef-
fectively as Boolean SAT problems, so these local
search algorithms provide a general mechanism for
solving combinatorial problems.

The local search framework allows for a large
number of different realizations, and literally hun-
dreds of variants have been explored over the
years. The main variants are tabu search, simulated
annealing, and genetic algorithms.

Simulated annealing (Kirkpatrick et al., 1983) is
another example of a local search technique that
incorporates sideway and downhill moves. In
simulated annealing, downhill moves are accepted
with a probability based on the size of the change in
the objective function, with the ‘worst” moves be-
coming the least likely. The fraction of accepted
local changes is also controlled by a formal param-
eter, called the ‘temperature’. At a high tempera-
ture, almost any possible local move is accepted.
When lowering the temperature parameter, fewer
moves are accepted that worsen the objective value,
and the search starts to resemble a purely greedy
strategy. In simulated annealing, inspired by the
physical process of annealing, the temperature
starts high and is slowly lowered during the search
process. Simulated annealing has been successfully
applied in a wide range of applications.

In tabu search (Glover, 1989), a ‘tabu’ list is
added to the local search method. The tabu list
contains the most recent local moves; the local
search method is prevented from undoing those
modifications. The tabu list is of limited length,
and is updated after each local move. Therefore,
any particular change is only prevented for a
limited period of time. A tabu list provides a
powerful way of forcing a local search method to
explore a larger part of the search space.

Another form of local search can be found in so-
called genetic algorithms (Holland, 1992). Genetic
algorithms are inspired by the natural selection
process encountered in evolution. A genetic algo-
rithm can be viewed as a strategy for running a
large number of local searches in parallel. Aside
from local modifications, the states are also modi-
fied through a process called ‘crossover’, in which
states from different local searches are combined to
provide a (hopefully) better starting point for a new
local search.

Hill-climbing search also has a long tradition in
the area of continuous optimization. In continuous
search spaces, one generally uses the gradient of
the objective function to take local steps in the
direction of the greatest possible improvement.

There are many refinements on the basic gradient
search techniques, such as dynamically varying the
local step size during the search (Miller, 2000).

In conclusion, hill-climbing search provides a
powerful strategy for exploring combinatorial
search spaces. In many applications, hill-climbing
outperforms global search. In recent work on ran-
domizing backtrack search methods (Gomes et al.,
2000), we see how some of the ideas from local
search are being used to boost the performance of
global search methods.
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Conclusion

The hippocampus is a cortical structure located in
the temporal lobes of the brain. Its role in memory
has been extensively investigated in humans and
other animals.

INTRODUCTION

There is universal agreement that the hippocam-
pus, a cortical structure located in the temporal
lobes, is involved in memory. Theories of hippo-
campal function are based on studies of amnesic
patients and experimental animals. The cognitive
map theory is the most clearly specified and is
supported by the most evidence, but the declara-
tive memory and flexible relational theories also
have their proponents.

ANATOMY

Historically, the hippocampal formation has been
considered to be a part of the limbic system, a set of
structures traditionally believed to be constituents
of the emotional brain. It was also included in the
Papez circuit, a network of structures envisaged by
Papez to subserve emotion. As we shall see, there
is good evidence that the hippocampal formation
and the Papez circuit are not involved in emotion
but instead are part of the memory system of the
brain. In humans, the hippocampus is an elongated

structure lying on the medial surface of the temporal
lobe (Figure 1a). In rats, it is more banana-shaped
and extends dorsally upwards from the temporal
lobes to lie beneath the parietal cortex (Figure 1b).
There are two major pathways by which the hippo-
campus communicates with the rest of the brain: the
fornix—fimbria fiber bundle which connects it with
the septal nuclei and the hypothalamus, and the
perforant path which connects it with the cerebral
cortex. The fornix—fimbria conveys information to
the hippocampal formation about the animal’s
movements, attentional and bodily states and
takes information from the hippocampus to control
movements, in particular those which take the
animal towards goals or away from punishments.
An important function of the fornical input is to
provide both the cholinergic and y-aminobutyric
acid (GABA) inputs which are a necessary condi-
tion for the theta electroencephalographic (EEG)
state of the hippocampus (see below). Sensory in-
formation about the external world enters the
hippocampus through the perforant path, which
arises in the entorhinal cortex. The entorhinal cortex
in turn receives information from other parts of the
temporal lobe, in particular the perirhinal and para-
hippocampal cortices and ultimately from many of
the sensory analysing regions of the cerebral cortex.
These areas in the parahippocampal gyrus appear
to be responsible for at least some aspects of the



