A GUIDED TOUR OF CHERNOFF BOUNDS

Torben HAGERUP and Christine RÜB
Fachbereich Informatik, Universität des Saarlandes, D-6600 Saarbrücken, FRG

Communicated by R. Wilhelm
Received 14 April 1989
Revised 4 September 1989

We give elementary derivations of the various inequalities collectively known as Chernoff bounds. Chernoff bounds are strong upper bounds on the probability of obtaining very few or very many heads in series of independent coin tossings. This note aims at making known results and their proofs accessible to a wider audience; it contains little or no new material.

Keywords: Chernoff bounds, coin tossing, Bernoulli trials, probabilistic analysis

The following notation is used throughout: Pr(A) denotes the probability of an event A, E(X) the expected value of a random variable X. In the natural logarithm function and exp its inverse. We write exp(x) and e^x interchangeably. We need the inequalities stated in the following lemma.

Lemma 1.

1 + a ≤ e^a, \hspace{1cm} a ∈ \mathbb{R}. \hspace{1cm} (1)

\left(1 + \frac{b}{x} \right)^x ≤ e^b, \hspace{1cm} b ∈ \mathbb{R}, \hspace{1cm} x > 0. \hspace{1cm} (2)

-\frac{1}{2} \epsilon^2 < \epsilon - (1 + \epsilon) \ln(1 + \epsilon) < -\frac{1}{3} \epsilon^2, \hspace{1cm} 0 < \epsilon < 1. \hspace{1cm} (3)

-\frac{1}{2} \epsilon^2 ≥ \epsilon - (1 + \epsilon) \ln(1 + \epsilon), \hspace{1cm} -1 < \epsilon ≤ 0. \hspace{1cm} (4)

Proof. Let g(a) = e^a - (1 + a), \hspace{1cm} a ∈ \mathbb{R}. Then g''(a) = e^a > 0 for all \hspace{1cm} a ∈ \mathbb{R}, while g'(0) = 0. Hence g(a) ≥ g(0) = 0 for all \hspace{1cm} a ∈ \mathbb{R}, which proves (1). Putting \hspace{1cm} a = b/x \hspace{1cm} and raising both sides of (1) to the xth power gives (2). Now for \hspace{1cm} q ∈ \{0, 1\}, let

f_q(\epsilon) = -\epsilon - (1 + \epsilon) \ln(1 + \epsilon) + \frac{1}{2} \epsilon^2 - \frac{1}{q} q \epsilon^3, \hspace{1cm} -1 < \epsilon ≤ 1.

Then

f'_q(\epsilon) = -\ln(1 + \epsilon) + \epsilon - \frac{1}{2} q \epsilon^2,

f''_q(\epsilon) = -\frac{1}{1 + \epsilon} + 1 - q \epsilon,

and

f'''_q(\epsilon) = \frac{1}{(1 + \epsilon)^2} - q.

We can successively deduce the signs of the derivatives f'''_q, f''_q, f'_q and of f_q, as given in Table 1.
The sign variation of f_0 immediately implies (4) and the left half of (3). From the sign variation of f_1 we get for $0 \leq \epsilon \leq 1$:

$$\epsilon - (1 + \epsilon) \ln(1 + \epsilon) \leq -\epsilon^2 \left(\frac{1}{2} - \frac{\epsilon}{3} \right) \leq \frac{1}{3} \epsilon^2. \quad \Box$$

Let $n \in \mathbb{N}$ and let $p_1, \ldots, p_n \in \mathbb{R}$ with $0 \leq p_i \leq 1$, $i = 1, \ldots, n$. Put $p = (p_1 + \cdots + p_n)/n$ and $m = np$ and let X_1, \ldots, X_n and Y_1, \ldots, Y_n be independent 0-1 random variables with

$$\Pr(X_i = 1) = p_i \quad \text{for } i = 1, \ldots, n, \quad \Pr(Y_i = 1) = p \quad \text{for } i = 1, \ldots, n.$$

We are interested in the behaviour of the random variables $S = X_1 + \cdots + X_n$ and $S' = Y_1 + \cdots + Y_n$. We first quickly derive the most useful results.

Let $\epsilon \geq 0$ and $t \geq 0$. Then

$$\Pr(S \geq (1 + \epsilon)m) \leq e^{-t(1+\epsilon)m} e^{t(1+\epsilon)m} \Pr(e^{tS} \geq e^{t(1+\epsilon)m}) \leq e^{-t(1+\epsilon)m} E(e^{tS}).$$

Since X_1, \ldots, X_n are independent, we further get (also using (1))

$$E(e^{tS}) = E(e^{tX_1} \cdots e^{tX_n}) = \prod_{i=1}^{n} E(e^{tX_i}) = \prod_{i=1}^{n} \left(p_i e^{t} + (1 - p_i) \right)$$

$$= \prod_{i=1}^{n} \left(1 + p_i (e^{t} - 1) \right) \leq \prod_{i=1}^{n} e^{p_i (e^{t} - 1)} = \exp \left(\sum_{i=1}^{n} p_i (e^{t} - 1) \right) = e^{m(e^{t} - 1)}.$$

Putting $t = \ln(1 + \epsilon)$ yields

$$\Pr(S \geq (1 + \epsilon)m) \leq (1 + \epsilon) \left(\frac{e^{\epsilon}}{1 + \epsilon} \right)^{m} \leq$$

and hence

$$\Pr(S \geq (1 + \epsilon)m) \leq \left(\frac{e^{\epsilon}}{1 + \epsilon} \right)^{m}. \quad (5)$$

By the right half of (3),

$$\Pr(S \geq (1 + \epsilon)m) \leq e^{-\epsilon^2 m/3}, \quad 0 \leq \epsilon \leq 1. \quad (6)$$

Correspondingly, for $0 \leq \epsilon \leq 1$ and $t \geq 0$,

$$\Pr(S \leq (1 - \epsilon)m) = \Pr(m - S \geq \epsilon m) \leq \Pr(e^{t(m - S)} \geq e^{\epsilon m}) \leq$$

$$\leq e^{-t\epsilon m} E(e^{t(m - S)}) = e^{m(1 - \epsilon)E(e^{-tS})}.$$
and
\[E(e^{-tS}) = \prod_{i=1}^{n} E(e^{-tX_i}) = \prod_{i=1}^{n} (p_i e^{-t} + (1 - p_i)) = \prod_{i=1}^{n} (1 - p_i(1 - e^{-t})) \]
\[\leq \prod_{i=1}^{n} e^{-p_i(1 - e^{-t})} = \exp \left(-(1 - e^{-t}) \sum_{i=1}^{n} p_i \right) = e^{-m(1 - e^{-t})}. \]

Putting \(t = -\ln(1 - \epsilon) \) yields
\[\Pr(S \leq (1 - \epsilon)m) \leq \left[\left(\frac{1}{1 - \epsilon} \right)^{1 - \epsilon} \epsilon^{-\epsilon} \right]^m, \]
from which, by (4), the left half of (3), and continuity at \(\epsilon = 1 \), we get
\[\Pr(S \leq (1 - \epsilon)m) \leq e^{-\epsilon^2m/2} \leq \left(\frac{e^\epsilon}{1 + \epsilon} \right)^{1 + \epsilon}, \quad 0 \leq \epsilon \leq 1. \quad (7) \]

As a consequence of (5),
\[\Pr(S \geq (1 + \epsilon)m) \leq \left(\frac{e}{1 + \epsilon} \right)^{(1 + \epsilon)m}. \]
In particular,
\[\Pr(S \geq r) \leq 2^{-r}, \quad r \geq 6m. \quad (8) \]

We next derive some sharper but more complicated bounds. We henceforth consider only the case \(p_1 = \cdots = p_n = p \). Let \(0 < a < 1, \ a \geq p \) and \(t \geq 0 \). Choosing \(\epsilon \) to make \((1 + \epsilon)m = an \), we get from previous calculations
\[\Pr(S \geq an) \leq e^{-tan} \left(p \ e^t + (1 - p) \right)^n. \]

For \(t = \ln(a(1 - p)/[p(1 - a)]) \) this becomes
\[\Pr(S \geq an) \leq \left(\frac{p(1 - a)}{a(1 - p)} \right)^{an} \left(\frac{a(1 - p)}{1 - a} + (1 - p) \right)^n = \left(\frac{p(1 - a)}{a(1 - p)} \right)^{an} \left(\frac{1 - p}{1 - a} \right)^n, \]
from which we obtain
\[\Pr(S' \geq an) \leq \left[\left(\frac{p}{a} \right)^a \left(\frac{1 - p}{1 - a} \right)^{1 - a} \right]^n, \quad 0 < a < 1, \ a \geq p. \quad (9) \]

Let us introduce the abbreviation \(S' \geq k \) ("\(S' \) is at least as extreme as \(k \)") defined by
\[S' \geq k \iff \begin{cases} S' \geq k & \text{if } k > pn, \\ S' \leq k & \text{if } k < pn. \end{cases} \]

Noting that the right-hand side of (9) is invariant under a simultaneous interchange of \(a \) with \(1 - a \) and \(p \) with \(1 - p \), we then get by considering the random variable \(n - S' \),
\[\Pr(S' \geq an) \leq \left[\left(\frac{p}{a} \right)^a \left(\frac{1 - p}{1 - a} \right)^{1 - a} \right]^n, \quad 0 < a < 1. \quad (10) \]
Since by (2)
\[
\left(\frac{1-p}{1-a} \right)^{1-a} = \left(1 + \frac{a-p}{1-a} \right)^{1-a} \leq e^{a-p},
\]
we also have
\[
\Pr(S' \geq an) \leq \left[\left(\frac{p}{a} \right)^a \right]^a e^{-a}, \quad 0 < a \leq 1.
\] (11)

Putting \(na = k \), we may finally derive the inequality
\[
\Pr(S' \geq k) \leq \left(\frac{np}{k} \right)^k \left(\frac{n - np}{n - k} \right)^{n-k} \leq \left(\frac{np}{k} \right)^k e^{k-np}, \quad 0 < k < n.
\] (12)

Bibliographic remarks

The material in this note was drawn from several sources. The fundamental technique goes back to Chernoff [2]. While we have not reproduced any of Chernoff's original formulas, putting \(r = 1 \) in his equation (5.11) and exponentiating it while combining it with equations (3.5) and (3.6) yields our equation (10). Our treatment is based mostly on the derivation in [6], and equations (5) and (7) were taken from there. Equation (6) and the left half of (7) apparently were first formulated in [1]. Equation (9) and (11) are from [5], while (12) appears in [7] and a close relative of the left half of (12) is the form preferred in [3]. More general results may be found in [4, p.104, Theorems 6 and 7].

References

