Spectral Gaps and Cutoff in Markov Chains

Philip Knight, University of Strathclyde

January 12th, 2004

M. Grinfeld (Strathclyde) and A. Olde Daalhuis (Edinburgh)
Outline

- Introduction
- Cut-off Examples
- Spectral gap
- k-SAT
- Lumping k-SAT
A boy is trying to collect a set of n coupons. He gets a random coupon every day. How long does it take him to get a complete collection?
Coupon Collector’s Problem

- A boy is trying to collect a set of \(n \) coupons. He gets a random coupon every day. How long does it take him to get a complete collection?

- A stochastic process: if at day \(k \) he has \(p \) different coupons (\(p < n \)) then at day \(k + 1 \) he has \(p \) with probability \(\frac{p}{n} \) and \(p + 1 \) with probability \(1 - \frac{p}{n} \).
Coupon Collector’s Problem

- A boy is trying to collect a set of n coupons. He gets a random coupon every day. How long does it take him to get a complete collection?

- A stochastic process: if at day k he has p different coupons ($p < n$) then at day $k + 1$ he has p with probability p/n and $p + 1$ with probability $1 - p/n$.

- Problem has applications in computer science.
Coupon Collector’s problem

\[A = \frac{1}{n} \begin{bmatrix} 1 & n - 1 \\ 2 & n - 2 \\ \vdots & \vdots \\ n - 1 & 1 \\ n & \end{bmatrix} \]

- \(\sigma(A) = \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n - 1}{n}, 1. \)
- No spectral gap.
- Initial state is \(\pi_0 = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}. \)
• As n increases the transition gets sharper.
• We have a cut-off at $k = n \log n$.
Cut-Off (Diaconis et al., 1982–)

- Let $\mathcal{M} = \{A_n\}$ be transition matrices corresponding to a family of Markov chains with n states, $n = 1, \ldots$.
- Stationary distributions are Σ_n.
- $f(n) \uparrow$ function of n, τ_n an arbitrary vector.
Let $\mathcal{M} = \{A_n\}$ be transition matrices corresponding to a family of Markov chains with n states, $n = 1, \ldots$.

- Stationary distributions are Σ_n.
- $f(n) \uparrow$ function of n, τ_n an arbitrary vector.
- Assume that the limit
 $$g(c) = \lim_{n \to \infty} \|\tau_n A^{cf(n)} - \Sigma_n\|$$
 exists for all $c > 0$.
- If
 $$g(c) = \begin{cases}
 \alpha
eq 0 & c < c_* \\
 0 & c > c_*,
 \end{cases}$$

\mathcal{M} has a cut-off of order $f(n)$ (critical value c_*).
Remarks

- Proving there is a cut-off often requires horrendous calculations.
- Use tools from probability theory, combinatorics, group representation theory, asymptotics, ...
Remarks

- Proving there is a cut-off often requires horrendous calculations.
- Use tools from probability theory, combinatorics, group representation theory, asymptotics, . . .
- For large state spaces, lumping can often be used profitably.
Remarks

• Proving there is a cut-off often requires horrendous calculations.

• Use tools from probability theory, combinatorics, group representation theory, asymptotics, . . .

• For large state spaces, lumping can often be used profitably.

• Diaconis (1996) makes heuristic connections between existence of cut-off, multiplicity of λ_2 and symmetry.
Remarks

- Proving there is a cut-off often requires horrendous calculations.
- Use tools from probability theory, combinatorics, group representation theory, asymptotics, . . .
- For large state spaces, lumping can often be used profitably.
- Diaconis (1996) makes heuristic connections between existence of cut-off, multiplicity of λ_2 and symmetry.
- Coupon collector’s problem: neither necessary.
- We explore another connection between cut-off and spectrum.
Random Walk on A Hypercube

- In \mathbb{R}^n, at each step a particle at a vertex chooses one out of $(n + 1)$ accessible vertices (Markov chain).

- What is the probability of being in state j after k steps if initially we are in state i (initial state random)?
Random Walk on A Hypercube

- In \mathbb{R}^n, at each step a particle at a vertex chooses one out of $(n + 1)$ accessible vertices (Markov chain).

- What is the probability of being in state j after k steps if initially we are in state i (initial state random)?

- For large k it should be 2^{-n} for any i and j.

- What is the rate of convergence of the probability to this number?
Random Walk on A Hypercube

• **Problem:** State space has size 2^n.
Random Walk on A Hypercube

- **Problem:** State space has size 2^n.

- **Solution:** Take as our variable j, the distance from vertex i, which we can take to be at the origin.
Problem: State space has size 2^n.

Solution: Take as our variable j, the distance from vertex i, which we can take to be at the origin.

The state space is of size $n + 1$ and the transition matrix is

$$A = \begin{bmatrix}
\frac{1}{n+1} & \frac{n}{n+1} \\
\frac{1}{n+1} & \frac{1}{n+1} & \frac{n-1}{n+1} \\
\frac{1}{n+1} & \frac{n-1}{n+1} & \frac{1}{n+1} \\
\frac{n}{n+1} & \frac{1}{n+1} \\
\frac{n}{n+1} & \frac{1}{n+1} \\
\end{bmatrix}$$
\begin{itemize}
 \item $\lambda_1 = 1$, $\lambda_2 = 1 - 2/n$: no spectral gap.
 \item We have a cut-off at $k = 0.25n \log n$.
\end{itemize}
A Spectral Gap

- Define the $n \times n$ matrix A, such that for $i = 1, \ldots, n - 1,$

$$A[i, i] = \frac{bi}{n - 1}, \quad 0 < b < 1,$$

- This is an upper triangular matrix with a spectral gap $1 - b$.
A Spectral Gap

\[
A = \begin{bmatrix}
\frac{b}{n-1} & 1 - \frac{b}{n-1} \\
\frac{2b}{n-1} & 1 - \frac{2b}{n-1} \\
\vdots & \vdots \\
1 & 1 - b
\end{bmatrix}
\]

- Final state is absorbing.
- If \(b = 1 \), we (almost) have coupon collector’s problem.
- Given that \(\pi_0 = \begin{bmatrix} 1 & 0 & \ldots & 0 \end{bmatrix} \), how long does it take to arrive at the final state?
\[b = \frac{7}{8} \]
Theorem

- For $0 < b < 1$, this family of matrices exhibits $O(n)$ cut-off.
Theorem

- For $0 < b < 1$, this family of matrices exhibits $O(n)$ cut-off.

- $c_*(b) = -\frac{\log(1 - b)}{b}$.
Theorem

- For $0 < b < 1$, this family of matrices exhibits $O(n)$ cut-off.

- $c^*_b(b) = -\frac{\log(1 - b)}{b}$.

- Need to compute $\pi_0 A^k$.
A Spectral Gap

\[\pi_0 A^{n+s-1} = p(n, b) \sum_{j=0}^{s} \sum_{k=1}^{n-1} B(s, n, b). \]

\[B(s, n, b) = \sum_{k=1}^{n-1} \frac{(-1)^{n-1-k}k^{n-2}}{(k-1)!(n-k-1)!} \left(\frac{bk}{n-1} \right)^j. \]

\[p(n, b) = \prod_{i=1}^{n-1} \left(1 - \frac{ib}{n-1} \right). \]
A Spectral Gap

- $\pi_0 A^{n+s-1} = p(n, b) \sum_{j=0}^{s} \sum_{k=1}^{n-1} B(s, n, b)$.

- $B(s, n, b) = \sum_{k=1}^{n-1} \frac{(-1)^{n-1-k}k^{n-2}}{(k-1)!(n-k-1)!} \left(\frac{bk}{n-1} \right)^j$.

- $p(n, b) = \prod_{i=1}^{n-1} \left(1 - \frac{ib}{n-1} \right)$.

- $p(n, b)$ is independent of s.

- We seek (the unique) $j^* = j^*(b, n)$ that maximizes $B(s, n, b)$.

- Cut-off at $j^* + n - 1$.
Proof

\[k^n + j - 2 = \frac{\Gamma(n + j - 1)}{2\pi i} \int_{-\infty}^{(0+)} e^{kz} z^{-n-j+1} dz, \]

from which we obtain after some manipulation

\[B(j, n, b) = \left(\frac{b}{n-1} \right)^j \frac{\Gamma(n + j - 1)}{\Gamma(n-1)} I(j, n), \]

where

\[I(j, n) = \frac{1}{2\pi i} \int_{-\infty}^{(0+)} e^{z} (e^{z} - 1)^{n-2} z^{-n-j+1} dz. \]

We write \(j = \alpha n + \beta \), and

\[I(\alpha n + \beta, n) = \frac{1}{2\pi i} \int_{-\infty}^{(0+)} \frac{e^{\alpha z} z^{1-\beta}}{(e^{z} - 1)^2} e^{-n f(z)} dz, \]

where \(f(z) = (1 + \alpha) \ln z - \ln(e^{z} - 1) \). The saddle points satisfy

\[f'(z) = \frac{1 + \alpha}{z} - \frac{1}{1 - e^{-z}} = 0. \]

Hence, \(f(z) \) has a unique saddle point \(z_\alpha > 0 \). The previous line can be written as \(\frac{z_\alpha}{1 - e^{-z_\alpha}} = 1 + \alpha \). (1)
Proof, ctd.

We let $n \to \infty$ and obtain from the method of steepest descents

$$I(\alpha n + \beta, n) \sim \frac{1}{\sqrt{2\pi n}} e^{-n(\alpha \ln z \alpha - z \alpha + \ln(1+\alpha))} e^{-z \alpha z^{-\beta}} (1 + \alpha)^{3/2} (z \alpha - \alpha)^{-1/2}.$$

Hence,

$$B(\alpha n + \beta, n, b) \sim \left(\frac{b}{n-1} \right)^{\alpha n + \beta} \frac{\Gamma(n(1+\alpha) + \beta - 1)}{\Gamma(n-1)} \frac{1}{\sqrt{2\pi n}} e^{-n(\alpha \ln z \alpha - z \alpha + \ln(1+\alpha))}$$

$$\times e^{-z \alpha} z^{-\beta} (1 + \alpha)^{3/2} (z \alpha - \alpha)^{-1/2}.$$

Consequently,

$$\frac{B(\alpha n + 1, n, b)}{B(\alpha n + 0, n, b)} \sim \frac{b}{(n-1)z \alpha} \sim \frac{(1+\alpha)b}{z \alpha},$$

as $n \to \infty$. By definition of j^*, we are looking for α such that

$$\frac{B(\alpha n + 1, n, b)}{B(\alpha n + 0, n, b)} \sim 1.$$

Hence, we need α such that $z \alpha = (1 + \alpha)b$. We substitute this result into (1) and deduce that

$$\alpha = -\frac{\ln(1-b)}{b} - 1.$$
Alternative Derivation

- Write $A_n = \begin{bmatrix} Q_n & r_n \\ 0 & 1 \end{bmatrix}$.

- Let $\tau^{(n)} = (I - Q_n)^{-1}e$. Mean arrival time is $\tau^{(n)}_1$.
Alternative Derivation

- Write \(A_n = \begin{bmatrix} Q_n & r_n \\ 0 & 1 \end{bmatrix} \).

- Let \(\tau^{(n)} = (I - Q_n)^{-1}e \). Mean arrival time is \(\tau_1^{(n)} \).

\[
\tau_1^{(n)} = \sum_{i=1}^{n} \frac{n}{n - ib} = \sum_{i=1}^{n} \sum_{j=0}^{\infty} \left(\frac{ib}{n} \right)^j
\]
\[
= \frac{n}{b} \sum_{j=0}^{\infty} \frac{b^{j+1}}{j + 1} + o(n) = -n \frac{\log(1 - b)}{b} + o(n).
\]
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
\begin{center}
\begin{tabular}{cccc}
\textit{b} \lor \neg \textit{d} \\
\hline
\textit{a} & \textit{b} & \textit{c} & \textit{d} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{tabular}
\end{center}
\[(b \lor \neg d) \land (\neg a \lor c) \land (\neg b \lor \neg c)\]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
\((b \lor \neg d) \land (\neg a \lor c) \land (\neg b \lor \neg c) \land (c \lor d) \land (a \lor \neg b)\)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
$$\neg c \lor d$$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
\textbf{\textit{k-SAT} Problem}

- Assume we are given a set of \(n \) literals (Boolean variables) \(\{s_1, \ldots, s_n\} \).
- Create \(m \) clauses (conjunctions) each involving \(k \) literals.
k-SAT Problem

- Assume we are given a set of \(n \) literals (Boolean variables) \(\{s_1, \ldots, s_n\} \).
- Create \(m \) clauses (conjunctions) each involving \(k \) literals.
- Can we find an assignment of these variables such that the disjunction of all the clauses is true?
Remarks

- Applications in areas such as AI (e.g., theorem proving) and scheduling (e.g., airlines, cars).
- NP-complete.
- Solve by “back-tracking” (Davis-Putnam).
- There appears to be a phase change.
- 1-SAT: trivial, 2-SAT: ok, 3-SAT: hard!
Phase Transition

Define $P(n, k, m)$ to be the probability that a k-SAT problem in n literals having m clauses has a solution.
Phase Transition

Define $\mathcal{P}(n, k, m)$ to be the probability that a k-SAT problem in n literals having m clauses has a solution.

- There is numerical evidence that the limit

$$f(c, k) = \lim_{n \to \infty} \mathcal{P}(n, k, nc)$$

exists for all $c > 0$.

- $f(c, k) = 1$ if $c < c_*(k)$, $f(c, k) = 0$, $c > c_*$.
Define $\mathcal{P}(n, k, m)$ to be the probability that a k-SAT problem in n literals having m clauses has a solution.

- There is numerical evidence that the limit
 $$f(c, k) = \lim_{n \to \infty} \mathcal{P}(n, k, nc)$$
 exists for all $c > 0$.
- $f(c, k) = 1$ if $c < c_*(k)$, $f(c, k) = 0$, $c > c_*$.
- Goerdt: for $k = 2$, $c_*(2) = 1$.
- Numerically, $c_*(3) \approx 4.25$.
Phase Transition

Define $\mathcal{P}(n, k, m)$ to be the probability that a k-SAT problem in n literals having m clauses has a solution.

- There is numerical evidence that the limit

 $$f(c, k) = \lim_{n \to \infty} \mathcal{P}(n, k, nc)$$

 exists for all $c > 0$.

- $f(c, k) = 1$ if $c < c_*(k)$, $f(c, k) = 0$, $c > c_*$.

- Goerdt: for $k = 2$, $c_*(2) = 1$.

- Numerically, $c_*(3) \approx 4.25$.

- k-SAT is hardest to solve when the probability that the problem has precisely one solution is at a max.
An assignment of literals can be thought as an integer in \(\{0, \ldots, 2^n - 1\} \) or a vertex on the unit cube \(I_n \).

Clauses \(C_i \), can be seen as maps \(C_i : I_n \mapsto \{0, 1\} \).

For each \(i = 1, \ldots, m \), define

\[
S_i = \{x \in I_n | C_i(x) = 0\}.
\]

\(S_i \) is the set of the vertices on which \(C_i \) is false.
k-SAT and Vertex Painting

- An assignment of literals can be thought as an integer in \(\{0, \ldots, 2^n - 1\} \) or a vertex on the unit cube \(I_n \).

- Clauses \(C_i \), can be seen as maps \(C_i : I_n \mapsto \{0, 1\} \).

- For each \(i = 1, \ldots, m \), define

\[
S_i = \{x \in I_n | C_i(x) = 0\}.
\]

\(S_i \) is the set of the vertices on which \(C_i \) is false.

- E.g., if \(n = 4 \), \(C_1 = s_1 \lor s_2 \lor \neg s_3 \), \(S_1 \) can be seen as either the set \(\{2, 3\} \) or the set of vertices \((0010, 0011)\).
Each set S_i is an $(n - k)$-face of the cube I_n.

Solving a k-SAT problem in n literals having m clauses is the same as taking an n-cube with white vertices, m times choosing at random an $(n - k)$-face and applying, say, black paint to the set of its vertices.

The number of solutions of a k-SAT problem is the size of the set of unpainted vertices.
The Transition Matrix for \((n - k, n)\)

- We can formulate a Markov chain on the power set of \((n - k)\) faces of \(I_n\).
- This has dimension \(2^{2^k \binom{n}{k}} = N\).
- Matrix is upper-triangular and sparse.
- Diagonal entries are monotone increasing.
- \(P(N, N) = 1, P(N - 1, N - 1) = 1 - 2^{-k}\): a spectral gap.
- The transition matrix can be lumped into one of dimension \((2^k - 1)\binom{n}{k} + 1\).
Weak Lumpability

- Lumping is not as straightforward as for random walk.
- It is dependent on the initial condition for the system.
- We make use of the notion of weak lumping (Kemeny and Snell, 1960).
- Define \(R_m \) to be the set of all states having exactly \(m \) painted \(n - k \) faces, \(R_A \) the absorbing state.
- We can weakly lump using states \(R_1, R_2, \ldots, R_M, R_A \) where \(M = (2^k - 1)\binom{n}{k} \).
- Weak lumpability in this case seems to come from upper-triangularity: severe restrictions are placed on the itineraries.
The $(1,3)$-problem

- Paint a 3-cube by picking random edges.
- The state space has 4096 elements.
- Using weak lumpability we can condense the problem to 10 states.
The \((1, 3)\)-problem

- Paint a 3-cube by picking random edges.
- The state space has 4096 elements.
- Using weak lumpability we can condense the problem to 10 states.

\[
\begin{bmatrix}
\frac{1}{12} & \frac{11}{12} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{6} & \frac{5}{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{4} & \frac{81}{110} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{3} & \frac{95}{162} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{5}{12} & \frac{143}{342} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{161}{572} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{7}{12} & \frac{4}{23} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{2}{3} & \frac{1}{12} & \frac{1}{4} & \frac{3}{4} & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & 0 & 0 & \frac{3}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}
\end{bmatrix}
\]
Remarks

- This procedure can be generalised.
- The simplified model

\[
\begin{pmatrix}
\frac{b}{N} & 1 - \frac{b}{N} \\
\vdots & \vdots \\
\frac{(m-1)b}{N} & 1 - \frac{(m-1)b}{N} \\
\frac{mb}{N} & b - \frac{mb}{N} \\
\vdots & \vdots \\
\frac{(N-1)b}{N} & \frac{b}{N} & 1-b \\
\frac{b}{N} & b & 1-b \\
\end{pmatrix}
\]

has an $O(n)$ cut-off.
Automated Lumping

- We can automate the process for weak lumping.
- First determine all the appropriate symmetry classes.
- In the $(1, 3)$ case we get a 77×77 matrix:

 ![Matrix Diagram](image)

- Then classify into R_1, \ldots, R_9.

Conclusions

• Apparent connection between spectral gap and nature of cut-off.

• k-SAT is a Markov chain.

• It can be lumped.

• Certain processes in the lumping can be automated, and matrices can be explicitly computed for modest values of n.

• To locate $c_* (3)$ using this process is hard! (but since a cut-off exists . . .)