Evaluation of QBF: An Applications Perspective

Jussi Rintanen
Albert-Ludwigs-Universität Freiburg
Germany
Motivation for my research on QBF

SAT has many very strong applications:

- Satisfiability planning (Kautz & Selman, 1992, 1996) is a leading approach to AI planning.
- Bounded model-checking (BMC) with LTL (Biere et al. 1999) is a leading approach to formal verification (processors, ...)

Generalizations and more compact representations of these problems require quantifiers \forall and \exists and hence QBF.
Applications of QBF in AI planning

Satisfiability Planning (Kautz and Selman, 1992, 1996)

1. Deterministic planning for poly-length plans is NP-complete.

2. Deterministic planning in general is PSPACE-complete.

3. Nondeterministic planning (without observability) for poly-length plans is Σ^P_2-complete.

(Same problem outside planning: identifying reset/homing/synchronization sequences)
Satisfiability planning

Let I be a formula describing the initial state (only one).
Let G be a formula describing the goal states.

Plans of length n are encoded as

$$I^0 \land R(P^0, P^1) \land R(P^1, P^2) \land \cdots \land R(P^{n-1}, P^n) \land G^n.$$

satisfying assignment = plan of length n
Logarithmic encoding for plan existence in QBF

A compact encoding for question: Is there a plan of length 2^n?

\[
\begin{align*}
\text{reach}_0(S, S') & \overset{\text{def}}{=} \mathcal{R}(S, S') \\
\text{reach}_{i+1}(S, S') & \overset{\text{def}}{=} \exists T \forall b \exists T_1 \exists T_2 (\text{reach}_i(T_1, T_2) \\
& \quad \wedge (b \rightarrow (T_1 = S \land T_2 = T)) \\
& \quad \wedge (\neg b \rightarrow (T_1 = T \land T_2 = S')))
\end{align*}
\]

\[
\exists S^0 \exists S^1 (\text{reach}_n(S^0, S^1) \land I^0 \land G^1)
\]
Planning with nondeterminism in QBF

There is a sequence of operators so that every execution starting in an initial state reaches a goal state.

\[
\begin{align*}
\exists o_1 \cdots o_m \cdots o_1 & \cdots o_n \\
\forall p_1^0 \cdots p_n^0 a_1^{\sigma_1} & \cdots a_1^{n} \cdots a_{\sigma_k}^{t} \\
\exists p_1^1 \cdots p_n^1 & \cdots p_1^t \cdots p_n^t \\
(I^0 \rightarrow (R(P^0, P^1, A^0) & \wedge \cdots \wedge R(P^{t-1}, P^t, A^{t-1}) \wedge G^t))
\end{align*}
\]

Sets \(A^i \) of variables \(a \) are for nondeterminism.

assignment for \(o_1^1 \cdots o_m^1 \cdots o_1^t \cdots o_n^t = \text{plan of length } n \)
Applications of QBF in bounded model-checking

Bounded Model-Checking (Biere et al., 1999)

Assuming a polynomial bound on number of time points:

1. Checking LTL properties is NP-complete.

2. Checking CTL* properties is PSPACE-complete, and Σ^p_i-complete or Π^p_i-complete for i alternations of path quantifiers.

\implies No efficient (= PTIME) translations to SAT exist for (2).

\implies Efficient translations to QBF do exist.
Why PSPACE-hard? Path quantifiers A and E!

Proof idea: The problem of determining the truth-value of quantified Boolean formulae can be reduced in polynomial time to the validity of CTL* formulae with occurrences of the modal operators A, E and X only.

\forall and \exists in QBF represented as path quantifiers A and E.

Consequence: There is no polynomial time translation from CTL* into the propositional logic assuming that NP \neq PSPACE.
Translation of CTL* BMC into QBF

Given the transition relation as formulae Γ_t, $t \geq 0$, translation of CTL* BMC for formulae in NNF into QBF is as follows.

1. $[p]_k^i := P_{p,i}$ $[-p]_k^i := \neg P_{p,i}$
2. $[f \lor g]_k^i := [f]_k^i \lor [g]_k^i$
3. $[f \land g]_k^i := [f]_k^i \land [g]_k^i$
4. $[X\phi]_k^i := \text{if } i < k \text{ then } [\phi]_{k}^{i+1} \text{ else } \bot$
5. $[A\phi]_k^i := \forall X \exists Y (\bigwedge_{j=i+1}^{n} \Gamma_j \land [\phi]_k^i)$ where $n = \min(i + \text{depth}(\phi), k)$, $X = \bigcup_{j=i+1}^{n} U_j$, and $Y = \bigcup_{j=i+1}^{n} D_j$.
6. $[E\phi]_k^i := \exists X \exists Y (\bigwedge_{j=i+1}^{n} \Gamma_j \land [\phi]_k^i)$ where $n = \min(i + \text{depth}(\phi), k)$, $X = \bigcup_{j=i+1}^{n} U_j$, and $Y = \bigcup_{j=i+1}^{n} D_j$.
7. \[[G\phi]^i_k := \bot \]
8. \[[F\phi]^i_k := \bigvee_{j=i}^{k} [\phi]^j_k \]
9. \[[\phi U\psi]^i_k := \bigvee_{j=1}^{k} ([\psi]^j_k \land \bigwedge_{n=i}^{j-1} [\phi]^n_k) \]
10. \[[\phi R\psi]^i_k := \bigvee_{j=1}^{k} ([\phi]^j_k \land \bigwedge_{n=i}^{j} [\psi]^n_k) \]

Formula’s depth is the number of time points outside the scope of any path quantifier. **Example:** \(\text{depth}(q \lor A p) = 1 \) and \(\text{depth}(XX(p \land A(q \lor Gr))) = 3. \)

1. \(\text{depth}(p) = \text{depth}(\neg p) = 1 \)
2. \(\text{depth}(f \otimes g) = \max(\text{depth}(f), \text{depth}(g)) \)
3. \(\text{depth}(X\phi) = 1 + \text{depth}(\phi) \)
4. \(\text{depth}(A\phi) = \text{depth}(E\phi) = 0 \) and \(\infty \) for others
Q-resolution (Kleine Büning et al. 1995)

Let α_1 be a clause with \exists-literal y_l and let α_2 be a clause with $\overline{y_l}$. Then the Q-resolvent α of α_1 and α_2 is obtained as follows.

1. Remove all occurrences of y_l and $\overline{y_l}$ in $\alpha_1 \lor \alpha_2$.

2. If the resulting clause contains complementary literals then no resolvent exists. Otherwise the resolvent is the clause without occurrences of \forall-literals not preceding a \exists-literal.

An \exists-unit clause is a clause with exactly one \exists-literal.
Stronger algorithm for inferring unit clauses

Let Y_1, \ldots, Y_N be the sets of universal variables in the prefix.

1. Let C be our clauses (the body of the QBF).
2. Let $C' = \emptyset$ be an auxiliary clause set.
3. Choose a valuation $V : Y_1, \ldots, Y_N \mapsto \{T, F\}$.
4. Remove from C' all clauses for which some universal literal is made true by V.
5. Perform unit Q-resolution with $C \cup C'$, adding the new clauses to C'.
6. Go back to 3.
PROCEDURE unit2(⟨Y₁, X₁, Y₂, X₂, . . . , Yₙ, Xₙ⟩, V, C, C')
IF n = 0 THEN RETURN C'∪Q-unit-resolvents(C' ∪ C);
REPEAT
 gotnew := false;
 FOR EACH valuation V' (as set of literals) of Y₁ DO
 C' := clauses in C' not made true by V ∪ V';
 C'' := unit2(⟨Y₂, X₂, . . . , Yₙ, Xₙ⟩, V ∪ V', C, C');
 IF there is clause in C''\C' without occurrences of vars in Y₁
 THEN gotnew := true;
 C' := C'' without clauses with occurrences of vars in Y₁;
 END
 UNTIL gotnew = false;
RETURN C';
Improvement on structured QBF

<table>
<thead>
<tr>
<th>problem</th>
<th>steps</th>
<th>prefix</th>
<th>vars</th>
<th>clauses</th>
<th>runtime in seconds</th>
<th>DP/QBF</th>
<th>+LPAR’01</th>
</tr>
</thead>
<tbody>
<tr>
<td>blocks4</td>
<td>2</td>
<td>∃∀∃</td>
<td>149</td>
<td>1183</td>
<td>> 1h</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>blocks4</td>
<td>4</td>
<td>∃∀∃</td>
<td>210</td>
<td>1505</td>
<td>> 1h</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>blocks4</td>
<td>8</td>
<td>∃∀∃</td>
<td>271</td>
<td>1827</td>
<td>> 1h</td>
<td>4.22</td>
<td></td>
</tr>
<tr>
<td>hanoi3</td>
<td>2</td>
<td>∃∀∃</td>
<td>709</td>
<td>16599</td>
<td>> 1h</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>hanoi3</td>
<td>4</td>
<td>∃∀∃</td>
<td>962</td>
<td>17553</td>
<td>> 1h</td>
<td>23.08</td>
<td></td>
</tr>
<tr>
<td>hanoi3</td>
<td>8</td>
<td>∃∀∃</td>
<td>1215</td>
<td>18507</td>
<td>> 1h</td>
<td>> 1h</td>
<td></td>
</tr>
<tr>
<td>bw-l.a</td>
<td>2</td>
<td>∃∀∃</td>
<td>1099</td>
<td>62916</td>
<td>> 1h</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>bw-l.a</td>
<td>4</td>
<td>∃∀∃</td>
<td>1370</td>
<td>65688</td>
<td>> 1h</td>
<td>256.75</td>
<td></td>
</tr>
<tr>
<td>bw-l.b</td>
<td>2</td>
<td>∃∀∃</td>
<td>1871</td>
<td>178890</td>
<td>> 1h</td>
<td>2.38</td>
<td></td>
</tr>
<tr>
<td>bw-l.b</td>
<td>4</td>
<td>∃∀∃</td>
<td>2268</td>
<td>183741</td>
<td>> 1h</td>
<td>15.65</td>
<td></td>
</tr>
<tr>
<td>bw-l.b</td>
<td>8</td>
<td>∃∀∃</td>
<td>2665</td>
<td>188592</td>
<td>> 1h</td>
<td>> 1h</td>
<td></td>
</tr>
</tbody>
</table>
Improvement on random QBF

<table>
<thead>
<tr>
<th>Improvement (%)</th>
<th>1.00</th>
<th>1.50</th>
<th>2.00</th>
<th>2.50</th>
<th>3.00</th>
<th>3.50</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0%</td>
<td>5.14</td>
<td>8.80</td>
<td>18.62</td>
<td>27.11</td>
<td>34.16</td>
<td>51.22</td>
<td>313.54</td>
</tr>
<tr>
<td>5.3%</td>
<td>5.19</td>
<td>9.43</td>
<td>152.52</td>
<td>1874.86</td>
<td>5679.83</td>
<td>4225.16</td>
<td>988.06</td>
</tr>
<tr>
<td>10.7%</td>
<td>5.29</td>
<td>10.97</td>
<td>847.85</td>
<td>6815.47</td>
<td>3922.47</td>
<td>1141.70</td>
<td>450.39</td>
</tr>
<tr>
<td>16.0%</td>
<td>5.60</td>
<td>16.67</td>
<td>1369.13</td>
<td>1985.74</td>
<td>869.00</td>
<td>402.73</td>
<td>232.92</td>
</tr>
<tr>
<td>21.3%</td>
<td>5.60</td>
<td>28.63</td>
<td>491.05</td>
<td>438.56</td>
<td>281.99</td>
<td>207.00</td>
<td>134.24</td>
</tr>
<tr>
<td>26.7%</td>
<td>5.84</td>
<td>43.45</td>
<td>149.33</td>
<td>140.81</td>
<td>120.16</td>
<td>98.20</td>
<td>86.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Improvement (%)</th>
<th>1.00</th>
<th>1.50</th>
<th>2.00</th>
<th>2.50</th>
<th>3.00</th>
<th>3.50</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0%</td>
<td>5.20</td>
<td>9.06</td>
<td>19.20</td>
<td>28.35</td>
<td>36.26</td>
<td>54.76</td>
<td>392.60</td>
</tr>
<tr>
<td>5.3%</td>
<td>5.82</td>
<td>12.00</td>
<td>80.59</td>
<td>107.53</td>
<td>369.88</td>
<td>439.06</td>
<td>153.00</td>
</tr>
<tr>
<td>10.7%</td>
<td>5.97</td>
<td>14.26</td>
<td>80.64</td>
<td>382.74</td>
<td>240.94</td>
<td>122.04</td>
<td>84.91</td>
</tr>
<tr>
<td>16.0%</td>
<td>6.00</td>
<td>19.93</td>
<td>195.35</td>
<td>228.58</td>
<td>131.70</td>
<td>126.41</td>
<td>85.20</td>
</tr>
<tr>
<td>21.3%</td>
<td>6.86</td>
<td>34.37</td>
<td>181.10</td>
<td>173.56</td>
<td>140.23</td>
<td>95.50</td>
<td>88.40</td>
</tr>
<tr>
<td>26.7%</td>
<td>7.19</td>
<td>56.05</td>
<td>164.50</td>
<td>160.94</td>
<td>117.94</td>
<td>100.16</td>
<td>87.78</td>
</tr>
</tbody>
</table>
Conclusions, research directions

- Many good applications for QBF; algorithms do not scale up.

- Possibilities of using Q-resolution to obtain more powerful algorithms for QBF?
 - Some of the modern SAT algorithms with clause learning are essentially inferring new clauses by resolution, until the empty clause is inferred. ⇒ Forget the story about binary search trees as in the Davis-Putnam procedure!!
 - Can the same idea be efficiently applied to QBF as well?