Richard Hamming

Coding & Information Theory

BASIC CODING THEOY -
SYNPEHIC CHANNEL

Source
\[p(X=0) = 0.95 \]
\[p(X=1) = 0.05 \]

Symmetry: Defined by set of conditional probabilities

\[P(Y|X) \]

So, 1 in 10 'ones' are turned to a '0':
\[P(Y=0|X=1) = 0.9 \]
\[P(Y=1|X=1) = 0.1 - 'te note' \]

So, 1 in 10 'zeros' are turned to a '1':
\[P(Y=1|X=0) = 0.9 \]
\[P(Y=0|X=0) = 0.1 - 'te nine' \]

So, without observing anything, output:
\[P(X=1) = 0.05 \]
\[P(X=0) = 0.95 \]

Now, after you observe the output: 25% of
\[P(X|Y=0) \]
\[P(X|Y=1) \]
\[P(X = 0 \mid Y = 0) = \frac{P(X = 0 \land Y = 0)}{P(Y = 0)} \]

\[= \frac{P(Y = 0 \mid X = 0)}{P(Y = 0)} \cdot P(X = 0) \]

\[= P(Y = 0 \mid X = 0) \cdot P(X = 0) \]

\[P(X = 0 \land Y = 0) \]

\[= P(X = 0) \cdot P(Y = 0 \mid X = 0) \]

\[+ P(X = 1) \cdot P(Y = 0 \mid X = 1) \]

\[\text{by definition of probability,} \]

\[P(A \cup B) = \frac{P(A \cup B)}{P(C \cup B)} \]

\[P(Y = 0) = P(X = 0 \land Y = 0) + P(X = 1 \land Y = 0) \]

\[\text{by definition of probability,} \]

\[\text{two mutually exclusive and exhaustive events} \]

\[P_X(x) = \sum_y P_{X,Y}(x,y) \]

\[= P(X = x) \]

\[= \sum_y P(Y = y \mid X = x) \]

\[= \sum_y P_{Y \mid X = x}(y) \]

\[= \text{inclusion-exclusion of } \]

\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \text{ disjoint events} \]

\[x = (0.95 \cdot 0.9) + (0.05 \cdot 0.1) \]

\[= (0.95 \cdot 0.9) + (0.05 \cdot 0.1) \]

\[= 0.9419 \]

\[T = 0.0056 \]

\[0.0056 + \frac{0.05 \cdot 0.1}{0.95 \cdot 0.9} = 0.9419 \]
So, a priori

\[P(X=1) = 0.05 \Rightarrow P(X=1|Y=1) = 0.006 \]
\[P(X=0) = 0.95 \Rightarrow P(X=0|Y=1) = 0.994 \]

Second scenario - observe a "1".

\[X \quad \text{observation} \quad Y \]

\[
\begin{align*}
& 0.000001 \quad 1 \quad 0.0001 \\
& 100 \Rightarrow & 95.05 & 0.1 \text{ noise} & (95.0.1 = 9.5) \\
& & 5.1 & 0.9 & 5.0.9 = 4.5 \\
\end{align*}
\]

\[95.0.9 = 85.5 \\
5.0.1 = 0.5 \\
86 "0" \]

Observe "1" \[\Rightarrow \frac{4.5}{14} \text{ pm } "1" \Rightarrow 0.322 = P(X=1|Y=1) \]

"Inside" & \[9.5 \text{ pm } "0" \Rightarrow 0.678 = P(X=0|Y=1) \]

So, "Confirmed", overall.
\[P(X=1 \mid Y=0) = \frac{P(X=1 \land Y=0)}{P(Y=0)} \]

\[= \frac{P(Y=0 \mid X=1) \cdot P(X=1)}{P(Y=0)} \]

\[= \frac{0.95 \cdot 0.1 \cdot 0.05}{(0.95 \cdot 0.9) + (0.1 \cdot 0.05)} \]

\[= \frac{0.004775}{1} \]

\[= 0.004775 \]

\[= 0.00481 \]

\[\approx 0.0048 \]
How observe a "0" -

\[\frac{0.55}{0^0} \text{ for real "0" } = 0.994 \]

\[\frac{0.5}{0^0} \text{ for complex } "0" = 0.006 \]

(US. 0.05 Apriori)
Open curve, will be observed
\[\Rightarrow \text{ no role } \]
Fold randomly

Special case now = 0

\[\begin{align*}
P(X = 0) &= 0.95 \quad \text{(US. 1)} \\
P(X = 1) &= 0.05
\end{align*} \]

But, \[P(X = 0 \mid Y = 0) = 1.0 \] \[P(X = 1 \mid Y = 0) = 0 \]
\[P(X = 0 \mid Y = 1) = 1.0 \] \[P(X = 0 \mid Y = 1) = 0.0 \]
Will 1/3 noise:

\[
\begin{array}{c}
0001101000 \\
\downarrow \\
0001100000
\end{array}
\]

Find

\[
\begin{array}{c}
0001101000 \\
\downarrow \\
01101100 \\
\downarrow \\
00101100
\end{array}
\]

two whole 0's remain? 2 real 1's?

0 way none which it.

0 way we already the current 0's.

0 "together" 0 "also one.

So, when you see a 1 , it may very well be a corrupted 0 .
Especially when a mini 1 's are very rare & there is reasonable noise.

Also, when you see a 0 , quite likely a real Zero - rare a mini 1 = very real corrupted 0.
With \(\frac{1}{2} \) noise:

\[P(\text{out} \text{ will be random bits}) = 0.5 \]

\[P(X = 0 | Y = 0) = 0.5 \quad \text{and} \quad P(X = 1 | Y = 0) = 0.5 \]

\[P(X = 0 | Y = 1) = 0.5 \quad \text{and} \quad P(X = 1 | Y = 1) = 0.5 \]

So, the sequence

\[0 0 0 1 0 1 0 0 0 \]

equals a priori

\[1 0 1 1 0 0 0 1 0 0 \]

E.g., \(P(X = 0 | Y = 0) = 1 \)

5 cm & 5 cm
3.5 cm & 1 cm
3.5 cm & 1 cm
3.5 cm & 1 cm

0.75 \& 0.75
0.75 \& 0.75
0.75 \& 0.75
0.75 \& 0.75

\[5 \text{ total } 3 \text{ cm} \text{ down.} \]

\[\frac{3.5}{5} = \frac{7}{10} \quad \text{and} \quad \frac{3}{5} = \frac{3}{5} \]

\[0.75 \]

\[0.75 \]

\[0.75 \]