Uncertainty

AIMA2e Chapter 13
Outline

◊ Uncertainty
◊ Probability
◊ Syntax and Semantics
◊ Inference
◊ Independence and Bayes’ Rule
Let action $A_t = \text{leave for airport at } t \text{ minutes before flight}$
Will A_t get me there on time?

Problems:
1) partial observability (road state, other drivers’ plans, etc.)
2) noisy sensors (KCBS traffic reports)
3) uncertainty in action outcomes (flat tire, etc.)
4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either
1) risks falsehood: “A_{25} will get me there on time”
or 2) leads to conclusions that are too weak for decision making:
 “A_{25} will get me there on time if there’s no accident on the bridge
 and it doesn’t rain and my tires remain intact etc etc.”

(A_{1440} might reasonably be said to get me there on time
but I’d have to stay overnight in the airport . . .)
Methods for handling uncertainty

Default or nonmonotonic logic:
- Assume my car does not have a flat tire
- Assume A_{25} works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:
- $A_{25} \mapsto_{0.3}$ get there on time
- $Sprinkler \mapsto_{0.99} WetGrass$
- $WetGrass \mapsto_{0.7} Rain$

Issues: Problems with combination, e.g., $Sprinkler$ causes $Rain$?

Probability
- Given the available evidence,
 - A_{25} will get me there on time with probability 0.04

Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

Fuzzy logic handles *degree of truth* NOT uncertainty e.g.,
- $WetGrass$ is true to degree 0.2
Probability

Probabilistic assertions *summarize* effects of

- **laziness**: failure to enumerate exceptions, qualifications, etc.
- **ignorance**: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:
Probabilities relate propositions to one’s own state of knowledge

- e.g., $P(A_{25}|\text{no reported accidents}) = 0.06$

These are *not* claims of some probabilistic tendency in the current situation
(but might be learned from past experience of similar situations)

Probabilities of propositions change with new evidence:

- e.g., $P(A_{25}|\text{no reported accidents, 5 a.m.}) = 0.15$

(Analogous to logical entailment status $KB \models \alpha$, not truth.)
Making decisions under uncertainty

Suppose I believe the following:

\[P(A_{25} \text{ gets me there on time} | \ldots) = 0.04 \]
\[P(A_{90} \text{ gets me there on time} | \ldots) = 0.70 \]
\[P(A_{120} \text{ gets me there on time} | \ldots) = 0.95 \]
\[P(A_{1440} \text{ gets me there on time} | \ldots) = 0.9999 \]

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory