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ABSTRACT The vast range of time scales (from
nanoseconds to seconds) during protein folding is a
challenge for experiments and computations. To
make concrete predictions on folding mechanisms,
atomically detailed simulations of protein folding,
using potentials derived from chemical physics prin-
ciples, are desired. However, due to their computa-
tional complexity, straightforward molecular dy-
namics simulations of protein folding are impossible
today. An alternative algorithm is used that makes
it possible to compute approximate atomically de-
tailed long time trajectories (the Stochastic Differ-
ence Equation in Length). This algorithm is used to
compute 26 atomically detailed folding trajectories
of cytochrome ¢ (a millisecond process). The early
collapse of the protein chain (with marginal forma-
tion of secondary structure), and the earlier forma-
tion of the N and C helices (compare to the 60’s helix)
are consistent with the experiment. The existence of
an energy barrier upon entry to the molten globule
is examined as well. In addition to (favorable) com-
parison to experiments, we show that non-native
contacts drive the formation of the molten globule.
In contrast to popular folding models, the non-
native contacts do not form off-pathway kinetic
traps in cytochrome c. Proteins 2003;51:245-257.
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INTRODUCTION

The mechanism by which a protein chain finds its
correct three-dimensional structure from the enormous
number of alternative conformations available to it has
attracted the interest and imagination of many biophysi-
cists.! Plausible mechanisms, such as hydrophobic col-
lapse? (forming first a compact state with little or no
secondary structure), and the framework model® (early
formation of stable helices) have been proposed. Atomi-
cally detailed computer simulations, in conjunction with
experiments, hold the promise to a comprehensive spatial
and temporal view of the process*~® and to a test of the
above hypotheses on concrete examples.

Cytochrome c is a small protein (104 amino acids) that
was studied extensively in the past. Its known high-
resolution structure’ has three well-defined secondary
structure elements: the N, C, and the so-called 60’s helix.
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The helices are packed around a heme group that is
covalently linked to the protein chain at residues Cys 14
and 17 and provides a useful spectroscopic probe.

A great wealth of experimental information is available
for cytochrome c¢ on different folding steps and time
scales.® Experiments probe the initial collapse of the
protein chain,” the early formation of secondary struc-
ture,’® and intermediates induced by heme misligation.'?

Hydrogen exchange experiments indicate that the N and
C helices are the first to form.'? Trapping of folding
intermediates with cobalt substitutions of the heme iron
also indicates that the N/C helices fold early.! This is one
of the observables that is computed in this study and
compared to the experimental data.

The radius of gyration of the molten globule was esti-
mated as 18A' based on X-ray scattering experiments.
Hence, the radius of gyration of the molten globule phase
is only 30% larger than the radius of gyration of the native
structure.'® A complementing two-dimensional view of the
folding landscape was suggested by simultaneous analysis
of X-ray scattering and circular dichroism (CD) measure-
ments.'*'® A mechanism was proposed in which chain
collapse occurs before significant formation of secondary
structure. Our simulations suggest an alternative (kinetic)
definition of the molten globule that is consistent with the
above experimental estimate. We examine the two distinct
kinetic phases that are observed in the calculations: one
phase of compactness with no formation of secondary
structure, and a second phase of significantly slower
compression but with secondary structure formation. The
onset of the second phase can be used to define the molten
globule state.

Intermediates along the folding pathways were sug-
gested to be protein conformations with misligated heme
(instead of the native link to Met 80, a bond to one of the
histidines 26 or 33 is formed).*®~8 This is a slow process as
suggested by comparing the overall collapse time (submil-
liseconds) with the rate of folding misligated proteins
(milliseconds and more).’® Interestingly, Hagen et al.?°
estimated the ratio of misligation to histidine 26 and
histidine 33 to be about 1. However, equilibrium measure-
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ments'! of misligation at the unfolded state estimated a
ratio of 1:3. Here, we present a crude calculation of the
ratio, which is based on collision frequency, and is more
consistent with the estimate of Hagen.?°

Finally, it was further suggested for cytochrome c that
an energy barrier exists at the entrance to the collapsed
state, based on the temperature dependence of the rate.®?!
We have examined this observation as well; however, the
results are inconclusive. The numerical noise of the sparse
data makes it difficult to reach quantitative conclusions on
the barrier height.

Mechanisms of protein folding were simulated exten-
sively in the past using reduced or simplified mod-
els.>?2-24 These studies help develop a general understand-
ing of protein folding and outline many important
principles. However, the simplifications make it difficult to
propose concrete predictions to be tested on a specific
molecule. For example, weighting alternate folding mecha-
nisms (secondary structure formation vs. hydrophobic
collapse) depends on the strength of detailed interactions.
Atomically detailed simulations of the type reported here
can supplement general models by adding a specific and
detailed view of folding mechanisms.

Unfortunately, the extended temporal scale of cyto-
chrome c folding (milliseconds) is too long compared to the
temporal scales of molecular dynamics simulations that
are limited to nanoseconds (six orders of magnitude shorter
than the folding time). This limitation, which is general for
protein folding and is not specific to cytochrome ¢, moti-
vated the use of approximate molecular dynamics tech-
niques.

Past atomically detailed simulations of protein folding
with broadly tested chemical-physics potentials either
probe only early events® or were based on one of the
following approximations: (1) the use of high temperature
unfolding trajectories®® and (2) the construction of free
energy profiles along pre-specified reaction coordinates.?®
The comparison to experimental data (when available)
was encouraging.*® Examples of the high-temperature
trajectories suggest that the effects on the pathways are
small.2® However, these approaches are not simulations of
the folding dynamics that can proceed along unknown
temperature-dependent pathways. It is, therefore, desired
to have alternative simulation techniques that do not use
the above assumptions. One interesting approach that
probes folding dynamics directly is using massively distrib-
uted computing.®”

Here, we discuss such an alternative approach that
computes room-temperature atomically detailed folding
trajectories without assuming a reaction coordinate or an
equilibrium state. The new method was used already to
investigate a number of biological systems: C peptide®’
folding, the R to T transition in hemoglobin,?® an enzy-
matic reaction,?® ion permeation through the gramicidin
channel,®® and the folding of a small helical protein
(protein A).3!

Our approach (as applied to the folding of cytochrome c)
is also approximate with respect to a most detailed and
accurate classical trajectory: (1) we modeled the water

solvation by a continuum (the Generalized-Born model
[GB] of Hawkins et al.32; the GB code that we implemented
into our program MOIL is of Tsui and Case®?) and (2) we
filter out from the trajectories motions that are rapid on
the scale of the step.3*3® The rapid motions are modeled as
noise. These approximations (that are very different from
those that were used in the past) are likely to fail when: (1)
structured water molecules are making significant contri-
bution to the kinetics of folding, a contribution that cannot
be captured with a continuum model; and (2) the (filtered)
rapid vibrations strongly influence slow modes; the filtered
trajectory clearly misses their contributions to the dynam-
ics.

Simulations were also carried out with explicit water
solvation (i.e., not using the first approximation). In our
studies of C peptide folding,?” hemoglobin R to T transi-
tion,?® and the permeation of ions through the gramicidin
channel,®® we have used explicit water molecules to obtain
average solvation forces for intermediate structures. In
that procedure, the solute coordinates were moving adia-
batically in the solvent field in the spirit of the Carr and
Parrinello procedure.®® The calculations with explicit wa-
ter molecules are, however, significantly more expensive
(by a factor of about 50 compared to calculations with
implicit solvation; Ron Elber, unpublished data). For
protein folding, the computational saving of the implicit
solvation model is extremely helpful, and made the cur-
rent study feasible.

The present implementation of this algorithm was briefly
discussed in Ghosh et al.>' These authors described the
methodology and an application to the folding of protein A.
Here, we provide a more detailed discussion of the algo-
rithm and describe an application to a larger protein
(cytochrome c). In contrast to protein A, the folding
kinetics of cytochrome ¢ was studied extensively by experi-
ments. This makes cytochrome ¢ a better candidate for
testing our model against experimental data.

THE ALGORITHM

Recently, we have introduced an algorithm to calculate
approximate classical trajectories at extended time scales.
The method is called SDE (Stochastic Difference Equation)
and evolved through a series of publications.?35-37 Here,
we present the general ideas and emphasize the modifica-
tions that brought us to the current implementation that
we call SDEL (Stochastic Difference Equation in Length).

The SDE is different from the usual molecular dynamics
approach in a number of ways. Instead of solving an initial
value differential equation (The Newton’s law) we opti-
mize an action, which is a functional of the trajectory. A
stationary solution of the functional (a trajectory) provides
the desired classical path. The solution of the Newton’s
equations of motion also implies a solution of the trajectory
as a function of time, X(¢). In the last few years, we
computed long-time trajectories with the SDE where the
classical path was parameterized as a function of time3*
similarly to the Newton’s equation.

Here we deviate from some of our earlier studies?®’-28-3°
and parameterize the trajectories as a function of the path
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length. There are a number of reasons given below why the
length formulation is preferred. We first describe the
alternative parameterization.

We start with the principle of minimal action

Xr
S= f V2(E - U)dl 1

The functional S is the classical action, X,, and X, are the
(mass weighted) coordinates of the unfolded and the folded
states respectively, E is the total energy, U is the potential
energy of the system, and d/ is a mass-weighted length
element of the path. We seek a trajectory that will make
the action S stationary, given the two (fixed) end points (X,
and Xp), and the total energy E. We consider a discrete
version of the above action S =S = > [2(E—U, DAL ;1. For
a sufficiently small step Al;;,; (AL ;,; = [X; — X)) we
will obtain a sound approximation to the classical action. A
sequence of structures (X7, ..., X2} that makes S
stationary is determined by optimization. The optimized
set of coordinates represents different slices of the trajec-
tory as a function of the length index. The (fixed) end
points are the unfolded and folded structures, respectively
X=X, and X, ; = X)).

Since the action is not necessarily a minimum (the
principle of least action applies only for the first order
variation, 8S/6X = 0) we use the norm of the action
gradient as a target for optimization:

T = 2(38/aX,? + ALy ., — (AD)? @)

The second term on the right-hand side is a penalty
function introduced for numerical convenience (A is an
empirical constant). It forces the points to be equally distrib-

1
uted along the trajectory <(Al) =NT1 EAZ,-,”l). There is a

total of N + 1 distances since X,, and X also contribute to
equation (2).

A quick look at the boundary value formulation of
classical mechanics suggests that it is considerably more
expensive to compute than the initial value approach.
Instead of considering one or two structures at a time, as in
the initial value formulation, the whole trajectory is kept
and manipulated during the optimization of the target
function. Hence, a much larger system compared to the
initial value formulation (larger by a factor of the number
of steps) is considered in the boundary value approach. It
is, therefore, not surprising that this approach is signifi-
cantly less popular than the direct solution of the Newton’s
equation.

While exact trajectories in a boundary value formulation
were computed in the past,®®*° the implementations were
not aimed at large systems. Instead, the focus was on cases
in which fixed boundary conditions were crucial for the
problem at hand. For example, semi-classical approxima-
tions of the scattering matrix*® require a state-to-state
classical trajectory. State-to-state trajectories are more
easily obtained using a boundary value formulation since
it is difficult to ensure that a trajectory will terminate at a
desired state if only initial conditions are specified.

The promise of the functional formulation for complex
systems is not in producing trajectories of the same quality
as the initial value approach, but in providing an easy
framework for introducing systematic approximations.
Such systematic approximations (variable step sizes) were
difficult to find in the initial value approach, though
significant research was done along that direction.*'~%4

Large time steps and their consequences in SDE were
discussed in earlier reports.2”>* It was shown that their
effect is to filter high-frequency modes from the trajecto-
ries (motions with frequencies w larger than w/At, At — the
time step, are removed adiabatically). A similar filtering of
high-frequency modes exists also for the length formula-
tion®*37 that we use here. To account for some of the
effects of the high-frequency motions that we miss after
the filtering, we modeled them statistically as Gaussian
noise.3®

Based on numerical experimentations and the above
modeling of the high-frequency motions as Gaussian noise,
we developed a statistical theory for the trajectories. The
theory identifies most probable trajectories as optimized
solutions of the target function T with arbitrary step size.
When all or most of the frequencies are filtered out (the
step is very large), the difference between the optimized
(most probable) path and the exact trajectory is dominated
by the “noise” term. When using large steps, it is, there-
fore, necessary to consider an ensemble of plausible trajec-
tories sampled with “noise levels” appropriate for the
approximation at hand. A single optimal trajectory is
insufficient in the time formulation.

In contrast (which is one of the advantages of the length
formulation), the optimized trajectory with a large length
step has a simple physical interpretation. It is the steepest
descent path (Elber, forthcoming; and Ref.3%), a path that
is widely used in chemical physics as a reaction coordinate
of molecular processes.*> At intermediate step lengths,
approximate trajectories that interpolate between the
steepest descent path and an exact classical trajectory are
computed. Since both limits have clear physical interpreta-
tion, it is possible to use the optimized trajectory directly,
something that is harder to justify for the time formula-
tion. We follow this approach here. Twenty-six optimized
trajectories of cytochrome c folding, using 900 length
slices, are computed and analyzed.

A second advantage of the length formulation is of
energy conservation. The SDE formulation in the time
domain does not conserve energy. The problem is the lack
of an accurate estimate of the time derivatives of the
coordinates. In the time formulation, we used a finite
difference formula to calculate derivatives. As a result, a
large time step provides a poor estimate of the velocities.
The velocities are not required in the calculations but are
necessary if we attempt to compute the kinetic energy, K,
and the total energy, E. Others*® formulate a variant of the
SDE approach in which energy conservation was imple-
mented as an external constraint in the time domain. The
computational cost of the energy estimate is, however,
high. In the length representation, the total energy is
conserved by definition and does not require an external
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constraint. The kinetic energy is computed without time
derivatives (it depends only on one coordinate set (K = E —
U(X,)) and is not based on (inaccurate) numerical deriva-
tives.

A third advantage of the length formulation is the
homogenous distribution of points in space. In the time
formulation, it is possible to miss a rapid transition
between alternative minima even if the structural change
is large. This is when the transition time scale is small
compared to the time step. In the length parameterization,
the spatial distance between sequential structures along
the trajectory is kept constant. Hence, transitions that
include large spatial changes (even if they are rapid in
time) are presented consistently throughout the progress
of the trajectory.

Returning back from advantages to technical consider-
ations, we note that it is important to factor out from
individual structures along the path their overall transla-
tions and rotations. This is since the distances Al, ;, , are
computed in Cartesian space. The minimization is, there-
fore, subject to the following linear constraints: > % =0
and Y,;x; X ) = 0, x;; are the (mass weighted) Cartesian
coordinate vectors of atom j in structure i, and xg- are the
coordinates of a reference structure that is used to deter-
mine the “laboratory” coordinate frame. The coordinates
xg- are the initial coordinate set.

A final comment is concerned with the calculations of
the total time. Our trajectories are parameterized as a
function of the trajectory length. This parameterization
fixes the total energy of the system, to be contrasted with
the time formulation in which the total time of the
trajectory is fixed. The energy is a property that can be
estimated from equilibrium considerations and does not
require prior knowledge on the timescale of the process. It,
therefore, enables independent verification of the calcula-
tions by, for example, the computation of the reaction time
scale.

In principle there is one-to-one correspondence between
the length of the trajectory and its time. The following
integral over the classical path relates the time and length
Py, ) Al"‘:l .

V2(E — U) V2(E - U)
length of the trajectory. We note some expected differ-
ences between the two parameterizations: Processes that
include transitions over barriers tend to be slow in time
but are more rapid in length since the system is “sitting” at
one position in space. On the other hand, downhill motions
on an energy surface can occur rapidly in time but the
spatial changes (length) may occur on a much longer scale.
For a concrete example, consider chain collapse that is
rapid in time; however, the length of the trajectory from
the extended configuration to the collapsed state is long.

There is a subtle difficulty in numerical computations of
the total time of a trajectory using the above formula. The
filtering of high-frequency oscillations as a function of
length makes the path considerably shorter compared to
the exact trajectory.®” An analogous problem can be found
in the estimate of the length of the coast of England using
yardsticks of different sizes.*” In our case, the estimate of

where L is the total
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the total time depends on the size of the yardstick (Al ;, ,).
The larger the length-step, the shorter is the observed time
of the trajectory. The addition of high-frequency compo-
nents (that we miss in the optimal trajectory) will make
the trajectory longer and more similar to the exact classi-
cal path. We performed a fractal analysis for a trajectory of
a short peptide in order to obtain an estimate of the time
scale.®® The calculations, however, were difficult to con-
verge even for a short blocked peptide.

For the present study of a significantly more complex
system than the blocked peptide, we consider only the
length and discuss the order of events rather than the
absolute time scale. We rely on the monotonic (but not
linear) relationship between time and length given by the
above formula. Hence, we anticipate correct temporal
ordering of folding events, but we are uncertain about the
absolute time scale.

COMPUTATIONAL PROTOCOL

In all the calculations, the molecular dynamics package
MOIL was used.*® The code is in the public domain and is
available from http://cbsu.tc.cornell.edu/software/proteins_
dynamics.htm

In addition to the usual energy, minimization and
straightforward molecular dynamics algorithms, MOIL
includes a parallel implementation (using MPI) of the
Stochastic Difference Equation. The energy function in
MOIL is the combination of AMBER*® and OPLS®° force
fields.

The calculations of the SDE path require initial and
final coordinate sets. In the present study, they are (1) an
unfolded configuration, X, from a set of unfolded struc-
tures and (2) the folded structure, X.. The preparation of
both is discussed below.

The native structure of cytochrome ¢ was taken from the
protein data bank (1HRC). Crystallographic water mol-
ecules were removed and the energy of the protein was
minimized using a conjugate gradient algorithm for 5,000
steps with the Generalized Born model mentioned ear-
lier.3'~33 The model includes the covalent bonding of the
heme group to Cys 14 and Cys 17. It does not include the
link of the heme iron to Met 80 consistent with the
unfolded state. Hence, we do not model the heme-Met bond
formation in the folding process. We justify the simplifica-
tion by the difference in time scales of bond formation and
chain organization (the first is much longer'?).

To generate unfolded configurations, ten straightfor-
ward Molecular Dynamics trajectories were run at 1,500
K. The simulation lengths were 4 ns each, and the
structures were picked every 100 psec after 2 nsec of
simulation. The run produced 200 unfolded structures
that were minimized using a conjugated gradient algo-
rithm. Of the 200 structures, 26 unfolded configurations
with RMS distances of (at least) 12A from each other were
used to represent unfolded configurations.

Given the minimized unfolded and folded structures,
minimum energy paths were calculated and used as initial
guesses for the trajectories. First, we used the SPW
(Self-Penalty Walk) functional®* to compute minimum
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energy paths with 300 grid points. Then, intermediate
structures between existing length slices were added to
increase the path representation to 900 structures. The
paths were optimized for 10,000 steps. At the end of the
calculations of the minimum energy paths, the RMS

a T T T T
—— N helix
8 ——= B0's helix ,"\\
——~- C helix / i
6}
m
I
]
i = 4 L o
2 r 4
0 L : N L
0 0.2 04 0.6 0.8 1
normalized path length
b T T
— N helix M
8 r e §0'S helix I~y
——- Chelix AN
VY
/
6} / A ’&\fa"i
V) y
7
]
/
m
T e
g,1 W )
A N/V
;I H
J H
/ 'I}
o N 4
2 //
!
,/
-
I'// &
0 L '
0 1000 2000
path length (Angstrom (amu) "*)
CB T T T T T
5r 4
4| 4
123
(]
s
-]
o
w3+ .
k]
o
[ =4
2t 4
1
0
-160 0 160 320 480 640

length separation (Angstrom x amu"?)

249

distance between sequential structures was of the order of
0.6—0.8A.

The total energy of the system is required in the SDEL
formulation and it was estimated from equilibrium runs at
300 K. It was the average energy of 20-psec equilibration
runs at both the folded and unfolded states (E = —6,400
kcal/mol). A simulated annealing protocol was then used to
minimize the target function 7' for the 900-structure paths.
The simulated annealing was done in cycles of 200 steps
and a total of 2,000 steps was used for each path. The
typical gradient of the target function by the end of the run
was about 10 amu-kcal/mol/A. Further conjugate gradient
optimization using an additional 1,000 steps did not
change the coordinates in a significant way.

In the SDEL computations, a parallel code was used.
The parallelization of the SDE algorithm is quite simple?®
since the coupling of different length slices (and the level of
message passing between parallel processors) is small.
From the perspective of communication overhead of a
parallel computer, the worst-case scenario is having a
single length slice on one processor, p,. In this case, and
independent of the total number of length slices, p,
communicates with four processors, (p;.q, Pp+o). If the
communication is made in parallel, then the communica-
tion is independent of the number of processors. Serially, it
is proportional to the number of computing nodes. The last
is the correct model for our typical computing environ-
ment: a cluster of PC-s.

We further note that the overall execution time is
dominated by the calculation of the molecular forces and
not by the communication. Even in a relatively slow
network (like one finds in a typical cluster), the calcula-
tions were done efficiently, since the communication time
is only a few percents of the total execution time.?®

The calculations were done on both: (1) the Dell-Edge
Windows-2000 cluster of the Cornell Theory Center (36
CPUs were used for a single path calculation), and (2) the
authors’ LINUX cluster with 45 CPUs for a single path
calculation. It took about 48 h to optimize a single folding
trajectory. The calculation of a single path on each of the
above systems required about the same time since the
Windows-2000 nodes (Intel P3 1 GHz) are faster than the
LINUX CPUs, (Intel P3 600 MHz).

RESULTS

We present the results of the 26 folding trajectories that
we computed. We describe individual trajectories but also
present averages, and probability densities.

Fig. 1. The number of hydrogen bonds (HB) of a given helix (N, C, or
the 60’s helix) as a function of the path length. (A carbonyl oxygen and
amide hydrogen form a hydrogen bond if their separation is 3A or less.)
The average of the 26 trajectories is reported. Two plots are shown. a:
The path length is normalized to one and then the averages are
performed. b: The absolute lengths of the paths are used. It is not obvious
which one is a better measure of the properties of the average and,
therefore, both are shown. Also shown (c) is the distribution of length
intervals between the formation of the N and C helices and the formation
of the 60’s helix. The distribution is determined from the complete set of
trajectories. Most of the length differences are positive indicating that the
N and C helices form first.
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Fig. 2. A contour plot summarizing the folding progress along two
“reaction coordinates™ the radius of gyration and the length of the
trajectory. The contours are the maximal values of the logarithm of the
probability as a function of the above two variables. Note that the
parameterization of a reaction coordinate as a function of length is
perhaps the least biased. The radius of gyration is roughly parallel to the
length for most of the length values. However, towards the end of the
process, folding is independent of the radius of gyration, which is no
longer a good reaction coordinate.

We measure the progress of the folding process by the
path length. In Figure 1(a,b) we show the number of
hydrogen bonds for each of the three helices as a function
of the path length. It is clear from the plot that after a
significant incubation period (at 40% of the trajectory
length no substantial new secondary structure was formed),
the N helix forms first and is followed by the C helix. The
60’s helix is closing last.

Figure 1a,b presents averages. To appreciate the devia-
tions of individual trajectories from those averages, we
also consider a histogram of length differences in Figure
1c. The length difference between the formations of the
60’s helix and the N and C helix are binned and plotted. A
positive length difference indicates that the pair N/C forms
first; a negative length interval suggests that the 60’s helix
forms first. The individual trajectories show a broad range
of length differences with only a small fraction (three
trajectories of a total of 26) with negative length differ-
ences.

It is also of interest to examine the radius of gyration as
a function of path length (Fig. 2). In Figure 2, we plot the
logarithm of the two-dimensional probability, P(R,,,, 1), as
a function of the radius of gyration, R_,,, and trajectory
length, [. It is not surprising that the distribution of the
radius of gyration is broader at the beginning and is more
focused at the end of the trajectories (the folded state).
Perhaps more interesting is the flattening out of the
monotonic (almost linear) decrease in the value of the
radius of gyration at the end of the process suggesting that
the last folding step is done at a relatively constant volume
that cannot be accounted for using R_, as a reaction
coordinate.

Another useful projection of the progress of cytochrome ¢
folding is presented in Figure 3. The logarithm of the
two-dimensional probability, P(R,,,, H), as a function of
the radius of gyration, K, ,, and the number of residues in
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Fig. 3. A contour plot summarizing the folding progress along two
reaction coordinates: The radius of gyration and the number of residues in
helical conformations. The calculations of the contours (that are the
logarithm of the probability as a function of these coordinates) use
averages over the 26 trajectories and over all the 900 length slices of each
trajectory. Also shown are the experimental measurements of Akiyama et
al.’* The first two experimental points show changes primarily in the
radius of gyration (little change in the secondary structure content) that
are followed by the parallel formation of secondary structure and further
reduction of the radius of gyration. These qualitative features are in
agreement with the simulation. Quantitatively, the secondary structure
forms in the experiment at a somewhat larger radius of gyration than the
theoretical calculations.

a helical conformation, H, is shown. A “helical” conforma-
tion was defined as negative (¢, ) values, the backbone
dihedral angles. This plot is timely; since the recent
experimental analysis of Akiyama et al.'* examined simul-
taneously these two coordinates and their results are
presented as four black circles in Figure 3. The computa-
tional results are presented using a double average: (1) an
average over the 26 folding trajectories, and (2) an average
over all the length slices.

The plot is striking in its separation into two kinetic
phases. Phase one includes an early collapse in which the
radius of gyration decreases without significant formation
of new secondary structure. In the second phase, further
collapse of the chain is observed with the parallel forma-
tion of secondary structure. The experimental points of
Akiyama et al.'* are qualitatively similar to the simula-
tions.

The two distinct processes are even clearer in Figure 4 in
which we follow the sequence of events as a function of the
trajectory length. In Figure 4(a), we show the logarithm of
the probability for the first fifth of the trajectory, in Figure
4(b) for the second fifth and so on. In the first three length
slices, the trajectory progresses only along the radius of
gyration with no significant increment in the marginal
content of secondary structure. Only in the last two fifths
is secondary structure formed in parallel to further reduc-
tion in the radius of gyration. Sequential snapshots of the
trajectory progress (compared to the average in Fig. 3)
make it possible to separate in an unambiguous way
equilibrium and dynamics.

Another interesting projection of the multi-dimensional
folding process onto two dimensions is in Figure 5(a—e), in
which we follow the formation of hydrogen bonds and
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Fig. 4. A series of contour plots as a function of the trajectory length.
Every slice is an average over one fifth of the trajectory. a: An average
over the first fifth. b: An average over the second fifth, and so on. The
contour plots are of the logarithm of the probability to observe the
trajectory at a given radius of gyration R, and secondary structure H.
Note that in the first few panels, the progress of folding is primarily along
the radius of gyration.

no. helical residues

native contacts as a function of the trajectory length. The
sequence of events suggests a late formation of both, with
earlier formation of the secondary structure. The emerging
picture, which is not inconsistent with available experimen-
tal data (see Discussion), is of a chain collapse with little
formation of secondary structure to a radius of gyration
below 18A. Then substantial secondary structure starts to
form in parallel to the slower accumulation of native
contacts and further (slower) compactness of the protein
chain.

This is further illustrated in Figure 6, which shows
snapshots of structures along a folding trajectory. Figure
6a shows an unfolded configuration. The chain is far from
compact and no secondary structure is observed. A struc-
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Fig. 5. Similar to Figure 4, this time for the coordinates: helix content
(measured as the number of hydrogen bonds) and number of native
contacts. Averages as before are done on fifths of the total lengths of the
26 trajectories. Note that both the native contacts and the secondary
structure form late during the folding process with the formation of the
secondary structure somewhat earlier than the formation of native
contacts.

ture from the molten globule with a radius of gyration of
16A is in Figure 6b. The N and C helices are clearly formed
while the 60’s helix is still struggling to form in accord with
the experiment.'?5%53 Note also that the overall packing
is incorrect and significant adjustment of the structure is
required to reach the native fold (Fig. 6c¢).

It was proposed (based on experimental measure-
ments®??!), that an energy barrier exists on entry to the
compact state. In Figure 7, we plot the average energy as a
function of the radius of gyration. We, indeed, observe a
small energy barrier around a radius of gyration of 184,
but the error bars are very significant. Note that this
barrier is observed without the formation of a chemical
bond between the heme iron and the histidines.
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Another interesting twist to the folding of cytochrome c,
is the possible formation of nonnative heme iron-histidine
(26 or 33) bonds. In Figure 6¢c, we show the native
structure of cytochrome ¢ and mark groups that make the
above nonnative bonds or contacts.

In Figure 8, we plot the probability of a contact between
the heme iron and the nitrogen of the histidine rings as a
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Fig. 7. The average energy (an average over the 26 trajectories) as a
function of the radius of gyration. The error bars are the standard
deviation. Note the barrier at a radius of gyration of (around) 18A. This
barrier can be used to denote the boundary between the molten globule
and the extended unfolded configurations.

function of the trajectory length. A contact is defined when
the distance between the two atoms is less than 6.5A. Also
indicated on the plot are the accumulated probabilities of
having a contact sometime during the trajectory. These
contact probabilities can be used to obtain an upper bound
for the rate of heme misligation. Note that these specific
nonnative contacts are considerably more probable at the
early stages of the folding process and diminish rapidly at
the last fifth of the process.

The nonnative contacts with the heme is a special
phenomenon for cytochrome ¢ with the advantage that
they can be probed experimentally.'®*® However, the
presence of nonnative contacts along the folding pathways
of proteins is not unique to cytochrome c. Since the overall
agreement of other observables and experimental data is
encouraging, we use the simulations to probe the dynamics
of other nonnative contacts.

In Figure 9a, we show the logarithm of the joint probabil-
ity for the radius of gyration and native contacts. In
Figure 9b, the corresponding logarithm of the distribution
of nonnative contacts is shown. Note that the two prob-
abilities have significant spatial overlaps. According to

Fig. 6. Ribbon view of cytochrome c at three different positions along
a folding trajectory, which is one of the 26 trajectories studied. The amino
acids of the N, C, and 60’s helices are in red, purple, and yellow,
respectively, the heme group is in pink, and the rest of the backbone chain
is in cyan. a: Typical extended unfolded configuration that is used to
initiate a folding trajectory. b: Compact unfolded structure (form the
molten globule state) with a radius of gyration of 16A. The terminal helices
are formed but the 60’s helix is still shaping. ¢: The native crystal structure
with a radius of gyration of 12.5A. Marked on this structure are the two
histidines (26 and 33, in orange) that are likely to form a bond with the
heme group and create misligated folding intermediates. Also marked are
residues 85 and 102 (in green) that form a nonnative contact. [A contact is
on if the distance between the geometric center of the side chains is less
than 6565A.] See text and Figures 8 and 10 for more details. Prepared using
VMD.
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Fig. 8. The probability of a contact between the heme iron and the
nitrogen atoms of histidines 26 and 33 as a function of the trajectory
length. Note also the accumulated contact probabilities over all lengths
(averaged over all trajectories) that are 0.12 for His 26 and 0.1 for His 33.
These probabilities present an upper bound for the formation of bonded
histidine-iron intermediates. They provide the reaction probability if every
encounter was reactive. Information on the reaction probability per
collision can lead to a better estimate. At present, the molecular dynamics
simulations suggest that the formation of such intermediates is feasible.

Figures 3 and 7, the onset of the second kinetic phase (that
we use to define the molten globule) is around 17-18A, to
the left of the energy barrier. At a radius of gyration lower
than 174, we still find significant concentration of nonna-
tive contacts at the compact state [Fig. 9b]. These nonna-
tive contacts co-exist with a smaller number of native
contacts. One possible “solution” to the high concentration
of nonnative contacts is recrossing of the molten globule
boundary, easily fixing the wrong contacts at the extended
chain configuration and reentering the “molten-globule”
state. This is similar in spirit to the annealing mechanism
proposed by Thirumalai and Lorimer for the action of
chaperones.®* It is of interest to check if a similar behavior
is found in the folding of a protein chain in the absence of
chaperon.

A sample trajectory of a non-native contact (of leucine 85
and threonine 102) is shown in Figure 10 [their positions
in the native conformation are shown in Fig. 6¢c]. The
contact was formed very early in the process and broke for
the first time near the energy barrier. Then it associates in
the “molten-globule” phase. The second dissociation of the
nonnative contact does not include a transition over the
barrier. Hence, there is sufficient structural plasticity
even in the molten globule state to enable adjustments of
contacts without the necessity to return to extended chain
configurations.

DISCUSSIONS

In this study, we report straightforward atomically
detailed simulations of the complete folding process of a
protein (cytochrome c). Experimentally, the process takes
longer than a millisecond and we are able to study it using
anovel algorithm (SDEL) to compute classical trajectories
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no. non-native contacts

Fig. 9. A study of the native and nonnative contacts as a function of
the radius of gyration. a: Contours of native contacts. b: Nonnative
contacts. If we use 18A for the size of the molten globule (as suggested by
the energy barrier in Fig. 7 and the start of secondary structure formation
in Fig. 3), we find a large number of nonnative contacts that coexists with
native contacts at the molten globule state.

at highly extended timescales. We divide the discussion of
our results into two parts: (1) comparison to experimental
data and (2) analysis of the dynamics of nonnative con-
tacts.

Many of the results presented in the last section can be
compared directly to experimental data. In Figure 1, we
focus on one main experimental observable: the early
formation of the N and C helices compared to the 60’s
helix. Numerous experiments such as hydrogen ex-
change'®!23 clearly indicated that this pair of helices
forms a folding nucleus. Figure 1, in which we used
hydrogen bonding to indicate helical structure in accord
with the hydrogen exchange experiments, is consistent
with the experimental observation. It is also interesting to
note the significant “incubation period” before the start of
helix formation. However, as we emphasized in The Algo-
rithm, it is not obvious how to correlate the length with
absolute time. The time is monotonic but not necessarily
linear with the length. The incubation may be significantly
shorter in time than what is suggested by the length
parameterization.
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Fig. 10. An example of a length history of a nonnative contact. We
consider the contact between leucine 85 and threonine 102 (shown in Fig.
6¢). A contact is formed and dissociates within the boundary of the molten
globule (18A). Note the (approximate) monotonic decrease of the radius
of gyration as a function of trajectory length.

The results in Figure 1(a,b) are an average over 26
trajectories. To appreciate the deviation from this average,
we consider the relative ordering (in length) of the forma-
tion of the helices in individual trajectories. In Figure 1c,
we show a histogram plot of the length differences between
the formation of the N/C pair and the 60’s helix. If a length
difference is positive, then the N/C pair forms first. If it is
negative, the first to form is the 60’s helix. The distribution
is clearly dominated by positive length differences; only 3
of the 26 trajectories have a negative length difference. A
sample structure from a trajectory demonstrating the
co-existence of the N/C pair before the formation of the 60’s
helix is shown in Figure 6b.

Another useful comparison to the experiment is pro-
vided in Figure 3. The experiment in reference 14 exam-
ined the correlated changes of the radius of gyration and
the secondary structure. The four experimental points
(extracted from fig. 5 of ref. 14) provide two-dimensional
information on folding pathways that in principle can
differentiate between alternative folding mechanisms.

Two extreme models exist for the initiation of the folding
process: (1) The framework model® in which secondary
structure elements form first and then are assembled as
relatively rigid bodies into the correct tertiary structure,
and (2) Hydrophobic collapse? in which the chain collapses
first to a compact shape with little secondary structure,
and following the collapse the helices “grow” in relatively
compact conformations. One can imagine also intermedi-
ate cases between these extreme models.

The experimental data of Akiyama et al.'* support a
model that is more similar to the hydrophobic collapse.
The first two experimental points show a very significant
reduction in the radius of gyration without a parallel
increase in the secondary structure. Only the last two
points show growth in helical content, a growth that is
done jointly with further reduction in the radius of gyra-

A.E. CARDENAS AND R. ELBER

tion. Our study is in general agreement with the above
observation. Our average plot, and detailed length slices
(Fig. 4) clearly indicate an early collapse with no signifi-
cant formation of new secondary structure at the early
phases of the folding process. Akiyama et al.'® observed,
“This suggests that the initial collapse is not coupled with
formation of secondary structure,” in agreement with the
calculation and Figures 3 and 4. The overall agreement is,
however, not quantitative. The radius of gyration of the
native state, as measured experimentally by low angle
X-ray scattering (14A)'3'* is larger than the radius of
gyration of the crystal structure (12.5A). We used the
crystal structure to model the folded state. As a result, the
radii of gyration at the folded configuration do not agree.

Furthermore, the secondary structure content esti-
mated from CD measurements'* is higher than the native
secondary structure computed from the structure 1HRC”
of the protein data bank. Our results are consistent with
the X-ray structure, making the slopes of the second phase
(Fig. 4d,e) somewhat different.

Nevertheless, our results still agree on the existence of
two separate phases and on the approximate location of
the molten globule.

The question of when a compact state starts and when
the extended chain configurations end (or the boundaries
of the molten globule) is also of interest. In the calcula-
tions, we can use two alternative definitions. The first
option is the onset of secondary structure formation. That
is, the radius of gyration in which the “pure” hydrophobic
collapse stops. At that point, the “rate” of the collapse is
significantly smaller and it is accompanied by helix build-
up. The second option is the position of the small energy
barrier between extended chain configurations and the
collapsed state. The kinetic-geometric criterion of the first
option and the energetic measure of the second option lead
to a similar radius of the collapsed state. This suggests
that both measures are consistent. .

The initial formation of secondary structure at the onset
of the compact phase is associated with a small energy
barrier.®?! For both of these options, the estimate of the
radius of gyration of the molten globule/“compact state”
(more compact than extended chain configurations) is
around 18A. This value is in accord with the estimate of
Pollack et al.,'® suggesting that the radius of gyration of
the molten globule state is about 30% larger than the
native.

The existence of an energy barrier on entry to the
collapsed state is also consistent with the experimental
measurements®?! (Hagen and Eaton® estimated it as
9kT). We are unable to make a quantitative estimate of the
barrier height (and comparison to the experimental value)
due to a lack of statistics and an uncertainty regarding the
reaction coordinate.

An intriguing discussion is concerned with heme
misligation. Instead of forming the iron bond to Met 80, it
may form initially to one of the histidines (His 33 or His
26). This is an example of a long-lived nonnative contact
that can be observed and analyzed experimentally. While
our model does not include the formation of a chemical

16-18
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bond between the iron and the nitrogen of the histidine, we
can still perform a feasibility study for the probability that
the histidine is sufficiently near the heme iron. This
probability is clearly an upper bound for the probability of
bond formation and is extracted from the simulation in
Figure 8. Our conclusion is that relevant encounters are
possible.

Is a bond to His 33 or His 26 preferred? Hagen et al.?°
estimated the ratio of misligation to His 33 or His 26 to be
roughly equal. On the other hand, equilibrium studies of
misligation to a heme with an iron atom substituted by a
cobalt atom suggest that the ratio is 3:1.1* Our calcula-
tions of misligation are simplistic especially since the
explicit chemistry of bond formation is not included.
Keeping these difficulties in mind, we note that our results
are consistent with the measurements in Hagen et al.2°
This may suggest that using an equilibrium assumption to
describe the folding process of cytochrome c is invalid.

It is also interesting that Shastry et al.'® noted a weak
dependence of the time scale of the initial collapse on pH.
Since bond formation to the heme iron is influenced by pH,
it is likely that the barrier for entry (that is not influenced
by pH) is induced by conformational constraints. The
energy barrier that we observe in our calculations can
arise only from conformational bottlenecks since we do not
model computationally chemical bond formation (between
the heme iron and the histidine nitrogen). This observa-
tion supports the suggestion made by Shastry et al.*®

The above analysis indicated that we are able to repro-
duce, at least qualitatively, a number of experimental
observations. We are, therefore, extending our analysis
below to features not easily accessible to experiment that
are nevertheless of significant interest. How important are
nonnative contacts during the folding process? Do they
slow down the process and form kinetic traps (off-pathway
intermediates)? Are they found at all? Or perhaps the
requirements from a fast folder also imply that the number
of nonnative contacts are small in number and can be
ignored. These are sample questions that we address
below in our discussion on nonnative contacts.

The Go model®® that artificially biased a contact or a
local conformation to the native state diminishes the
importance of nonnative contacts in the overall dynamics.
Is this approximation consistent with the atomically de-
tailed model of cytochrome c folding? Another mechanistic
question of interest is the elimination of nonnative con-
tacts. Is the molten globule state sufficiently flexible to
allow for structural adjustments and reformation of cor-
rect native contacts while maintaining a compact state?
Perhaps it is not necessary to leave the “compact phase”
(which is still significantly larger than the native) in order
to remove most types of nonnative contacts.

The simulations of cytochrome c¢ that we performed
indicate first that nonnative contacts play a major role in
the folding process. A typical maximal number of nonna-
tive contacts in a folding trajectory is sixty, more than half
the number of contacts in the native state (104). The
simulation also indicates a large number of nonnative
contacts in the compact state and a plastic molten globule
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Fig. 11. A plot that shows the number of hydrophobic-hydrophobic
(HH), hydrophobic-polar (HP), and polar-polar (PP) contacts as a function
of the radius of gyration. The plot is obtained as an average over the 26
folding trajectories studied here.

that can correct many nonnative contacts without a transi-
tion to extended configurations (Figs. 9 and 10).

Consider that in Figure 9b, with an estimate of the
molten globule radius of gyration of 17-184, a large
number of nonnative contacts at the compact state are
found. Hence, it is not necessary to form the majority of
native contacts before overcoming the energy barrier for
the entry to the collapsed phase. In fact, there are consider-
ably more nonnative contacts than native contacts immedi-
ately following the entry.

In Figure 10, we show one typical example for a nonna-
tive contact between leucine 85 and threonine 102. Many
other trajectories and nonnative contacts that we have
examined behave similarly. The length history of the
contact does not show a significant increase in the radius
of gyration at any length slice as the folding moves
forward. Rather, the radius of gyration decreases almost
monotonically as the reaction progresses.

To summarize, the mechanism for cytochrome c folding
that we extracted from the simulations agrees with the
overall experimental suggestions of (1) a rapid collapse to a
compact phase without significant formation of secondary
structure and (2) further “compression” of the molten
globule state with parallel formation of helices; the N and
C helices form first. We have also looked at a folding event
that so far was not probed in detail experimentally and
suggested the existence (and correction) of a large number
of nonnative contacts in the molten globule state. These
numerous nonnative contacts are easily “fixable” within
the framework of the molten globule state without the
need for transitions between the molten globule and
extended conformations. Since the formation of molten
globule is driven by a sharp increase in hydrophobic
contacts (Fig. 11), and since the majority of contacts at the
formation of the molten globule are nonnative, we con-
clude that nonnative contacts drive the formation of the
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molten globule and, as such, play a positive role in the
folding process.
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