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Abstract

Several new algorithms for visual correspondence based on graph cuts [7, 14,

21] have recently been developed. While these methods give very strong re-

sults in practice, they do not handle occlusions properly. Specifically, they

treat the two input images asymmetrically, and they do not ensure that a

pixel corresponds to at most one pixel in the other image. In this paper, we

present a new method which properly address occlusions, while preserving the

advantages of graph cut algorithms. We give experimental results for stereo

as well as motion, which demonstrate that our method performs well both at

detecting occlusions and computing disparities.
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1 Introduction

In the last few years, a new class of algorithms for visual correspondence

has been developed that are based on graph cuts [7, 14, 21]. These meth-

ods give very strong experimental results; for example, a recent comparative

study [23] of stereo algorithms found that one such algorithm gave the best

results, with approximately 4 times fewer errors than standard methods such

as normalized correlation. Unfortunately, existing graph cut algorithms do

not treat occlusions correctly. In this paper, we present a new graph cut algo-

rithm that handles occlusions properly, while maintaining the key advantages

of graph cuts.

Occlusions are a major challenge for the accurate computation of visual

correspondence. Occluded pixels are visible in only one image, so there is no

corresponding pixel in the other image. For many applications, it is partic-

ularly important to obtain good results at discontinuities, which are places

where occlusions often occur. Ideally, a pixel in one image should correspond

to at most one pixel in the other image, and a pixel that correspond to no

pixel in the other image should be labeled as occluded. We will refer to this

requirement as uniqueness.

Most algorithms for visual correspondence do not enforce uniqueness.

(We will discuss algorithms that enforce uniqueness when we summarize re-

lated work in section 4.) It is common to compute a disparity for each pixel

in one (preferred) image. This treats the two images asymmetrically, and

does not make full use of the information in both images. The recent algo-

rithms based on graph cuts [7, 14, 21] are typical in this regard, despite their

strong performance in practice.
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The new algorithms proposed in this paper are based on energy minimiza-

tion. Our methods are most closely related to the algorithms of [8], which

can find a strong local minimum of a natural class of energy functions. We

address the correspondence problem by constructing a problem representa-

tion and an energy function, such that a solution which violates uniqueness

will have infinite energy. Constructing an appropriate energy function is

non-trivial; for example, there are natural energy functions where it is NP-

hard to even compute a local minimum. We consider a different natural

energy function, and show how to use graph cuts to compute a strong local

minimum.

This paper begins with a discusion of the expansion move algorithm of

[8]. We then give an overview of our algorithm, in which we discuss our

problem representation and our choice of energy functions, and show how

this enforces uniqueness. In section 4 we survey some related work, focusing

on other algorithms that guarantee uniqueness. In section 5 we show how to

compute a local minimum of our energy function in a strong sense using graph

cuts. Experimental results from our (publically available) implementation are

given in section 6.

2 Expansion moves

Let L be the set of pixels in the left image, let R be the pixels in the right

image, and let P be the set of all pixels: P = L ∪ R. The pixel p will

have coordinates (px, py). In the classical approach to stereo, the goal is to

compute, for each pixel in the left image, a label fp which denotes a disparity
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value for a pixel p. The energy minimized in [8] is the Potts energy1 of [20]

E(f) =
∑
p∈L

Dp(fp) +
∑

p,q∈N
Vp,q · T (fp �= fq). (1)

Here Dp(fp) is a penalty for the pixel p to have the disparity fp, N is a

neighborhood system for the pixels of the left image and T (·) is 1 if its

argument is true and 0 otherwise. Minimizing this energy is NP-hard, so [8]

gives two approximation algorithms. They involve the notion of moves.

Consider a particular disparity (or label) α. A configuration f ′ is said to

be within a single α-expansion move of f if for all pixels p ∈ L either f ′
p = fp

or f ′
p = α. Now consider a pair of disparities α, β, α �= β. A configuration

f ′ is said to be within a single αβ-swap move of f if for all pixels p ∈ L,

fp �∈ {α, β} implies f ′
p = fp.

The crucial fact about these moves is that for a given configuration f

it is possible to efficiently find a strong local minimum of the energy; more

precisely, the lowest energy configuration within a single α-expansion or αβ-

swap move of f , respectively. These local improvement operations rely on

graph cuts. The expansion algorithm consists entirely of a sequence of α-

expansion local improvement operations for different disparities α, until no

α-expansion can reduce the energy. Similarly, the swap algorithm consists

entirely of a sequence of αβ-swap local improvement operations for pairs of

disparities α, β, until no αβ-swap can reduce the energy.

This formulation, unfortunately, does not handle occlusions properly.

First, two pixels in the left image can easily be mapped into the same pixel

1In fact, they consider a more general energy but this is the simplest case that works

very well in practice.
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in the right image. Furthermore, this assumes that each pixel in the left

image is mapped into some pixel in the right image. In reality, pixels in the

left image can be occluded and thus not correspond to any pixel in the right

image.

3 Overview of the new algorithm

3.1 Problem representation

Let A be the set of (unordered) pairs of pixels that may potentially corre-

spond. For stereo with aligned cameras, for example, we have

A = { 〈p, q〉 | py = qy and 0 ≤ qx − px < k }.

(Here we assume that disparities lie in some limited range, so each pixel in L
can potentially correspond to one of k possible pixels in R, and vice versa.)

The situation for motion is similar, except that the set of possible disparities

is 2-dimensional.

The goal is to find a subset of A containing only pairs of pixels which

correspond to each other. Equivalently, we want to give each assignment

a ∈ A a value fa which is 1 if the pixels p and q correspond, and otherwise

0.

We will call the assignments in A that have the value 1 active. Let

A(f) be the set of active assignments according to the configuration f . Let

Np(f) be the set of active assignments in f that involve the pixel p, i.e.

Np(f) = {〈p, q〉 ∈ A(f)}. We will call a configuration f unique if each pixel
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is involved in at most one active assignment, i.e.

∀p ∈ P |Np(f)| ≤ 1.

Note that those pixels for which |Np(f)| = 0 are precisely the occluded pixels.

It is possible to extend the notion of α-expansions to our representation.2

For an assignment a = 〈p, q〉 let d(a) be its disparity: d(a) = (qx − px, qy −
py), and let Aα be the set of all assignments in A having disparity α. A

configuration f ′ is said to be within a single α-expansion move of f if A(f ′)

is a subset of A(f) ∪Aα. In other words, some currently active assignments

may be deleted, and some assignments having disparity α may be added.

3.2 Energy function

Now we define the energy for a configuration f . To correctly handle unique

configurations we assume that for non-unique configurations the energy is

infinity and for unique configurations the energy is of the form

E(f) = Edata(f) + Eocc(f) + Esmooth(f). (2)

The three terms here include

• a data term Edata, which results from the differences in intensity be-

tween corresponding pixels;

• an occlusion term Eocc, which imposes a penalty for making a pixel

occluded; and

2It is also possible to extend the notion of an αβ-swap, as discussed in [16]. However, the

resulting algorithm gives significantly less good experimental results than α-expansions.
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• a smoothness term Esmooth, which makes neighboring pixels in the same

image tend to have similar disparities.

The data term will be Edata(f) =
∑

a∈A(f) D(a); typically for an assignment

a = 〈p, q〉, D(a) = (I(p) − I(q))2, where I gives the intensity of a pixel. The

occlusion term imposes a penalty Cp if the pixel p is occluded; we will write

this as

Eocc(f) =
∑
p∈P

Cp · T (|Np(f)| = 0).

The nontrivial part here is the choice of smoothness term. It is possible

to write several expressions for the smoothness term. The smoothness term

involves a notion of neighborhood; we assume that there is a neighborhood

system on assignments

N ⊂ {{a1, a2} | a1, a2 ∈ A) }.

One obvious choice is

Esmooth(f) =
∑

{a1,a2}∈N ,a1,a2∈A(f)

Va1,a2, (3)

where the neighborhood system N consists only of pairs {a1, a2} such that

assignments a1 and a2 have different disparities. N can include, for example,

pairs of assignments {〈p, q〉, 〈p′, q′〉} for which either p and p′ are neighbors

or q and q′ are neighbors, and d(〈p, q〉) �= d(〈p′, q′〉). Thus, we impose a

penalty if two close assignments having different disparities are both present

in the configuration. Unfortunately, we show in the appendix that not only

is minimizing this energy is NP-hard, but also that finding a local minimum

of this function (i.e., a minimum among all configurations within a single

α-expansion of the initial configuration) is NP-hard as well.
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We propose a different smoothness term, which makes it possible to use

graph cuts to efficiently find a minimum of the energy among all configura-

tions within a single α-expansion of the initial configuration. The smoothness

term is

Esmooth(f) =
∑

{a1,a2}∈N
Va1,a2 · T (f(a1) �= f(a2)). (4)

The neighboorhood system here consists only of pairs {a1, a2} such that

assignments a1 and a2 have the same disparities. It can include, for example,

pairs of assignments {〈p, q〉, 〈p′, q′〉} for which p and p′ are neighbors, and

d(〈p, q〉) = d(〈p′, q′〉). Thus, we impose a penalty if one assignment is present

in the configuration, and another close assignment, having the same disparity,

is not. Although this energy is different from the previous one it enforces

the same constraint: if disparities of adjacent pixels are the same then the

smoothness penalty is zero, otherwise it has some positive value.

Intuitively, this energy allows the use of graph cuts because it has a

similar form to the Potts energy of equation 1. However, it is the Potts

energy on assignments rather than pixels; as a consequence, none of the

previous algorithms based on graph cuts can be applied.

4 Related work

Most work on motion and stereo does not explicitly consider occlusions. For

example, both correlation-based approaches and energy minimization meth-

ods based on regularization [19] or Markov Random Fields [11] are typically

formulated as labeling problems, where each pixel in one image must be

assigned a disparity. This privileges one image over the other, and does
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not permit occlusions to be naturally incorporated. One common solution

with correlation is called cross-checking [5]. This computes disparity twice,

both left-to-right and right-to-left, and marks as occlusions those pixels in

one image mapping to pixels in the other image which do not map back to

them. This method is common and easy to implement, and we will do an

experimental comparison against it in section 6.

Similarly, it is possible to incorporate occlusions into energy minimization

methods by adding a label that represents being occluded. There are several

difficulties, however. It is hard to design a natural energy function that incor-

porates this new label, and to impose the uniqueness constraint. In addition,

these labeling problems still handle the input images asymmetrically.

However, there are a number of papers that elegantly handle occlusions

in stereo using energy minimization [2, 4, 10]. These papers focus on compu-

tational modeling to understanding the psychophysics of stereopsis; in con-

trast, we are concerned with accurately computing disparity and occlusion

for stereo and motion.

There is one major limitation of the algorithms proposed by [2, 4, 10]

which our work overcomes. These algorithms makes extensive use of the or-

dering constraint, which states that if an object is to the left of another in one

stereo image, it is also to the left in the other image. The advantage of the or-

dering constraint is efficiency, as it permits the use of dynamic programming.

However, the ordering constraint has several limitations. First, depending on

the scene geometry, it is not always true. Second, the ordering constraint is

specific to stereo, and cannot be used for motion. Third, algorithms that use

the ordering constraint essentially solve the stereo problem independently for
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Figure 1: An example of two images with 4 pixels each. Here L = {p,q,r,s}
and R = {w,x,y,z}. Solid lines indicate the current active assignments, and

dashed lines indicated the assignments being considered.

each scanline. While each scanline can be solved optimally, it is unclear how

to impose some kind of inter-scanline consistency. Our method, in contrast,

minimizes a natural 2-dimensional energy function, which can be applied to

motion as well as to stereo.

Our algorithm is based on graph cuts, which can be used to efficiently

minimize a wide range of energy functions. Originally, [12] proved that if

there are only two labels the global minimum of the energy can be efficiently

computed by a single graph cut. Recent work [7, 14, 21] has shown how to

use graph cuts to handle more than two labels. The resulting algorithms have

been applied to several problems in early vision, including image restoration

and visual correspondence. While graph cuts are a powerful optimization

method, the methods of [7, 14, 21] do not handle occlusions gracefully. In

addition to all the difficulties just mentioned concerning occlusions and en-

ergy minimization, graph cut methods are only applicable to a limited set

of energy functions. In particular, previous algorithms cannot be used to

minimize the energy E that we define in equation 2.
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The most closely related work consists of the recent algorithms based on

graph cuts of [13, 8, 15]. These methods also cannot minimize our energy E.

[13] uses graph cuts to explicitly handle occlusions. They handle the input

images symetrically and enforce uniqueness. Their graph cut construction

actually computes the global minimum in a single graph cut. The limitation

of their work lies in the smoothness term, which is the L1 distance. This

smoothness term is not robust, and therefore does not produce good discon-

tinuities. They prove that their construction is only applicable to convex

(i.e., non-robust) smoothness terms. In addition, we will prove that mini-

mizing our E is NP-hard, so their construction clearly cannot be applied to

our problem.

The graph cut algorithms proposed by [8] are restricted to the labeling

problem, which makes it difficult to handle occlusions. It is possible to add

an “occluded” label to the algorithm, as [15] does. Unfortunately, [15] re-

ports that this does not give particularly good results, especially in occluded

textureless regions.

5 Our expansion move algorithm

We now show how to efficiently minimize E with the smoothness term (4)

Esmooth(f) =
∑

{a1,a2}∈N
Va1,a2 · T (f(a1) �= f(a2)).

among all unique configurations using graph cuts. The output of our method

will be a local minimum in a strong sense. In particular, consider an input

configuration f and a disparity α. Another configuration f ′ is defined to be

within a single α-expansion of f if some assignments in f become inactive,
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1. Start with an arbitrary unique configuration f

2. Set success := 0

3. For each disparity α

3.1. Find f̂ = arg min E(f ′) among unique f ′ within single

α-expansion of f
3.2. If E(f̂) < E(f), set f := f̂ and success := 1

4. If success = 1 goto 2

5. Return f

Figure 2: The steps of the expansion algorithm

and some assignments with disparity α become active (a formal definition is

given at the start of section 5.3).

Our algorithm is very straightforward (figure 2); we simply select (in a

fixed order or at random) a disparity α, and we find the unique configura-

tion within a single α-expansion move (our local improvement step). If this

decreases the energy, then we go there; if there is no α that decreases the

energy, we are done.

The critical step in our method is to efficiently compute the α-expansion

with the smallest energy. In this section, we show how to use graph cuts

to solve this problem. It is possible to build a special-purpose graph to

provably solve this particular energy minimization problem; a construction

is given in [17]. Instead, however, we take a much simpler and more elegant

approach, by making use of some recent results [18] that provide a general-

purpose construction for minimizing a wide class of energy functions using

graph cuts.
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Figure 3: The graph corresponding to figure 1. There are links between all

vertices and the terminals, which are not shown. Edges without arrows are

bidirectional edges with the same weight in each direction; edges with arrows

have different weights in each direction.

5.1 Graph cuts

Let G = 〈V, E〉 be a weighted graph with two distinguished terminal vertices

{s, t} called the source and sink. A cut C = Vs,V t is a partition of the

vertices into two sets such that s ∈ Vs and t ∈ V t. (Note that a cut can also

be equivalently defined as the set of edges between the two sets.) The cost

of the cut, denoted |C|, equals the sum of the weights of the edges between

a vertex in Vs and a vertex in V t.

The minimum cut problem is to find the cut with the smallest cost. This

problem can be solved very efficiently by computing the maximum flow be-

tween the terminals, according to a theorem due to Ford and Fulkerson [9].

There are a large number of fast algorithms for this problem (see [1], for

example). The worst case complexity is low-order polynomial; however, in

practice the running time is nearly linear for graphs with many short paths

between the source and the sink, such as the one we will construct.
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5.2 Graph construction

We will use a result from [18] which says that for energy functions of binary

variables of the form

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑
i<j

Ei,j(xi, xj) (5)

it is possible to construct a graph for minimizing E if and only if each term

Ei,j satisfies the following condition:

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0) (6)

If these conditions are satisfied then the graph G is constructed as follows.

We add a node vi for each variable xi. For each term Ei(xi) and Ei,j(xi, xj)

we add edges with these weights:

Edges for Ei

If E(1) > E(0) then we add an edge (s, vi) with the weight E(1) − E(0),

otherwise we add an edge (s, vi) with the weight E(0) − E(1).

Edges for Ei,j

• if E(1, 0) > E(0, 0) then we add an edge (s, vi) with the weight E(1, 0)−
E(0, 0), otherwise we add an edge (vi, t) with the weight E(0, 0) −
E(1, 0);

• if E(1, 0) > E(1, 1) then we add an edge (vj, t) with the weight E(1, 0)−
E(1, 1), otherwise we add an edge (s, vj) with the weight E(1, 1) −
E(1, 0);
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• the last edge that we add is (vi, vj) with the weight E(0, 1)+ E(1, 0)−
E(0, 0) − E(1, 1).

We have omitted indices i, j in Ei and Ei,j for simplicity of notation.

Of course it is not necessary to add edges with zero weights. Also, when

several edges are added from one node to another, it is possible to replace

them with one edge with the weight equal to the sum of weights of individiual

edges.

Every cut on such a graph corresponds to some configuration x = (x1, . . . , xn),

and vice versa: if vi ∈ Vs then xi = 0, otherwise xi = 1. Edges on a graph

were added in such a way that the cost of any cut is equal to the energy of

the corresponding configuration plus a constant. Thus, the minimum cut on

G yields the configuration that minimizes the energy.

5.3 α-expansion

In this section we will show how to convert our energy function for the α-

expansion operation into the form of equation 5. Note that it is not necessary

to use only terms Ei,j for which i < j since we can swap the variables if

necessary without affecting condition 6.

In an α-expansion, active assignments may become inactive, and inactive

assignments whose disparity is α may become active. Suppose that we start

off with a unique configuration f 0. The active assignments for a new con-

figuration within one α-expansion will be a subset of Ã = A0 ∪ Aα, where

A0 = { a ∈ A(f 0) | d(a) �= α } and Aα = { a ∈ A | d(a) = α }.
Thus, any configuration f within a single α-expansion of the initial con-

figuration f 0 can be encoded by a binary vector x = {x(a) | a ∈ Ã}. We
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will use the following formula for correspondence between binary vectors and

configurations:

∀a ∈ A0 f(a) = 1 − x(a)

∀a ∈ Aα f(a) = x(a)

∀a /∈ Ã f(a) = 0

(7)

Let us denote a configuration defined by a vector x as fx. Thus, we have the

energy of binary variables:

Ẽ(x) = Ẽdata(x) + Ẽocc(x) + Ẽsmooth(x) + Ẽunique(x)

where

Ẽdata(x) = Edata(f
x),

Ẽocc(x) = Eocc(f
x),

Ẽsmooth(x) = Esmooth(f
x),

Ẽunique(x) = Eunique(f
x).

(Eunique(f) encodes the uniqueness constraint: it is zero if f is unique, and

infinity otherwise). Let’s consider each term separately, and show that each

satisfies condition (6).

1. Data term.

Ẽdata(x) =
∑

a∈A(fx)

D(a) =
∑
a∈Ã

fx(a) · D(a)

A single term Ea(x) = fx(a) · D(a) depends only on one variable x(a).

Therefore, condition (6) is not violated.
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2. Occlusion term.

Ẽocc(x) =
∑
p∈P

Cp · T (|Np(f
x)| = 0)

Let us consider a single term Ep(x) = Cp · T (|Np(f
x)| = 0). Two cases are

possible:

2A. There is at most one assignment in Ã entering p. Then Ep(x) depends

on at most one binary variable, so condition (6) is not violated.

2B. There is more than one assignment in Ã entering p. Then there are

exactly two such assignments - a1 ∈ A0 and a2 ∈ Aα, since both A0 and

Aα correspond to unique configurations. Therefore, Ep(x) depends on two

variables - x(a1) and x(a2). Ep(x(a1), x(a2)) = Cp if both assignments a1

and a2 are passive (i.e. x(a1) = 1, x(a2) = 0), and Ep(x(a1), x(a2)) = 0

otherwise. Thus, condition (6) holds:

Ep(0, 0) + Ep(1, 1) = 0 ≤ Cp = Ep(0, 1) + Ep(1, 0)

3. Smoothness term.

Ẽsmooth =
∑

{a1,a2}∈N
Va1,a2 · T (fx(a1) �= fx(a2))

Let us consider a single term Ea1,a2(x) = Va1,a2 · T (fx(a1) �= fx(a2)). Two

cases are possible:

3A. At least one of the assignments a1, a2 is not in Ã. Then Ea1,a2(x)

depends on at most one variable and, therefore, condition (6) is not violated.

3B. Both assignments a1 and a2 are in Ã; then Ea1,a2(x) depends on

two variables x(a1) and x(a2). a1 and a2 have the same disparity (because

{a1, a2} ∈ N ); therefore, either they are both in A0 or they are both in Aα.
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In both cases T (fx(a1) �= fx(a2)) = T (x(a1) �= x(a2)). Thus, condition (6)

holds:

Ea1,a2(0, 0) + Ea1,a2(1, 1) = 0 ≤ 2Va1,a2 = Ea1,a2(0, 1) + Ea1,a2(1, 0)

4. Uniqueness term.

Ẽunique(x) =
∑
p∈P

T (|Np(f
x)| > 1) · ∞

Let us consider a single term Ep(x) = T (|Np(f
x)| > 1) · ∞. Two cases are

possible:

4A. There is at most one assignment in Ã entering p. Then Ep(x) ≡ 0.

4B. There is more than one assignment in Ã entering p. Then there are

exactly two such assignments - a1 ∈ A0 and a2 ∈ Aα, since both A0 and

Aα correspond to unique configurations. Therefore, Ep(x) depends on two

variables - x(a1) and x(a2). Ep(x(a1), x(a2)) = ∞ if both assignments a1

and a2 are active (i.e. x(a1) = 0, x(a2) = 1), and Ep(x(a1), x(a2)) = 0

otherwise. Thus, condition (6) holds:

Ep(0, 0) + Ep(1, 1) = 0 ≤ ∞ = Ep(0, 1) + Ep(1, 0)

5.4 Example

A small example illustrating our construction is shown in figure 1. The cur-

rent set of assignments is shown with solid lines; dashed lines represent the

new assignments we are considering (i.e., α = 2). In the current configura-

tion, the pixels s and x are occluded, and the proposed expansion move will

not change their status.
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The corresponding graph is shown in figure 3. The 3 nodes in the top row

form A0 and the two nodes in the bottom row form Aα. Note, for example,

that the edge from 〈p, w〉 to 〈p, y〉 has weight ∞, since these two assignments

cannot both be active.

6 Experimental results

Our experimental results involve both stereo and motion. Our optimization

method does not have any parameters except for the exact choice of E. We

selected the labels α in random order, and we started with an initial solution

in which no assignments are active. For our data term D we made use of the

method of Birchfield and Tomasi [3] to handle sampling artifacts. The choice

of Va1,a2 was designed to make it more likely that a pair of adjacent pixels

in one image with similar intensities would end up with similar disparities.

If a1 = 〈p, q〉 and a2 = 〈r, s〉, then Va1,a2 was implemented as an empirically

selected decreasing function of max(|I(p) − I(r)|, |I(q)− I(s)|) as follows:

Va1,a2 =

{
3λ if max(|I(p) − I(r)|, |I(q)− I(s)|) < 8,

λ otherwise.
(8)

The occlusion penalty was chosen to be 2.5λ for all pixels. Thus, the

energy depends only on one parameter λ. For different images we picked λ

empirically.

We compared the results with the expansion algorithm described in [8]

with the additional explicit label ’occluded’, since this is the closest related

work. For the data with ground truth we obtained some recent results due

to Zitnick and Kanade [25]. We also implemented correlation using the L1
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Left image Our results Ground truth

L1 correlation Results from [8] Results from [25]

Figure 4: Stereo results on Tsukuba dataset. Occluded pixels are shown in

red.

Disparities Occlusions

Method Errors Gross errors False negatives False positives

Our results 6.7% 1.9% 42.6% 1.1%

Boykov, Veksler & Zabih [8] 6.7% 2.0% 82.8% 0.3%

Zitnick & Kanade [25] 12.0% 2.6% 52.4% 0.8%

Correlation 28.5% 12.8% 87.3% 6.1%

Figure 5: Error statistics on Tsukuba dataset.
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First image Second image

Horizontal motion (our method) Horizontal motion (method of [8])

Vertical motion (our method) Vertical motion (method of [8])

Figure 6: Motion results on the flower garden sequence. Occluded pixels are

shown in red.
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Left image Right image

Horizontal motion (our method) Horizontal motion (method of [8])

Figure 7: Stereo results on the meter image. Occluded pixels are shown in

red.
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Left image Right image

Horizontal motion (our method) Horizontal motion (method of [8])

Figure 8: Stereo results on the SRI tree sequence. Occluded pixels are shown

in red.
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First image Second image

Horizontal motion (our method) Horizontal motion (method of [8])

Vertical motion (our method) Vertical motion (method of [8])

Figure 9: Motion results on the cat sequence. Occluded pixels are shown in

red.
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distance. Occlusions were computed using cross-checking, which computes

matches left-to-right and right-to-left, and then marks a pixel as occluded if

it maps to a pixel that does not map back to it. We used a 13 by 13 window

for correlation; we experimented with several other window sizes and other

variants of correlation, but they all gave comparable results.

Quantitative comparison of various methods was made on a stereo image

pair from the University of Tsukuba with hand-labeled integer disparities.

The left input image and the ground truth are shown in figure 4, together

with our results and the results of various other methods. The Tsukuba

images are 384 by 288; in all the experiments with this image pair we used

16 disparities.

We have computed the error statistics, which are shown in figure 5. We

used the ground truth to determine which pixels are occluded. For the first

two columns, we ignored the pixels that are occluded in the ground truth.

We determined the percentage of the remaining pixels where the algorithm

did not compute the correct disparity (the “Errors” column), or a disparity

within ±1 of the correct disparity (“Gross errors”). We considered labeling

a pixel as occluded to be a gross error. The last two columns show the error

rates for occlusions.

Our method also performs well on the real imagery with ground truth

in the dataset of [22] (this dataset includes the Tsukuba images, as well as

other simpler images). However, the methodology used by [22] to evaluate

algorithms ignores occluded pixels, which is the main strength of our algo-

rithm.

We have also experimented with a number of standard sequences without
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ground truth. The results from the flower garden (motion) sequence are

shown in figure 6, and the CMU meter and SRI tree (stereo) results are

shown in figures 7 and 8. For comparison we have shown the results from

the expansion algorithm of [8]. In addition, results are shown in figure 9 for

a very challenging sequence involving the non-rigid motion of a kitten in a

windy garden.

Our implementation, which is available on the web at

http://www.cs.cornell.edu/People/vnk, makes use of a new max flow

algorithm specifically designed for vision applications [6]. The running times

for our algorithm are order of a minute for stereo. For example, on the

Tsukuba data set our algorithm takes 68 seconds, for a 384 × 288 image with

16 disparities. This involves iterating the algorithm until convergence, which

takes on the average about 3.3 cycles depending on the starting position

and the order in which disparities α are selected. The results from a single

iteration are only slightly worse. These numbers were obtained using a 500

Megahertz Pentium-III.

We have also experimented with the parameter sensitivity of our method.

Since there is only one parameter, namely λ in equation 8, it is easy to

experimentally determine the algorithm’s sensitivity. The table below shows

that our method is relatively insensitive to the exact choice of λ.

λ 1 3 10 30

Error 10.9% 6.7% 9.7% 11.1%

Gross errors 2.4% 1.9% 3.1% 3.6%

False neg. 42.2% 42.6% 48.0% 51.4%

False pos. 1.4% 1.1% 1.0% 0.8%
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7 Conclusions

We have presented an energy minimization formulation of the correspondence

problem with occlusions, and given a fast approximation algorithm based on

graph cuts. The experimental results for both stereo and motion appear

promising. Our method can easily be generalized to associate a cost with

labeling a particular assignment as inactive.
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Appendix A: Finding a local minimum of E with the smoothness

term (3) within a single α-expansion is NP-hard

Let’s call the problem of finding a local minimum of the energy in equation 2

with the smoothness term term (3) within a single α-expansion an expansion

problem. In this section we will show that this is an NP-hard problem by

reducing the independent set problem, which is known to be NP-hard, to the

expansion problem.

Let an undirected graph G = (V, E) be the input to the independent set

problem. The subset U ⊂ V is said to be independent if for any two nodes

u, v ∈ U the edge (u, v) is not in E . The goal is to find an independent subset

U∗ ⊂ V of maximum cardinality. We construct an instance of the expansion

problem as follows. For each node v ∈ V we create pixels l(v) ∈ L in the left
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image, r(v) ∈ R in the right image and the assignment a(v) = 〈l(v), r(v〉) ∈
A in such a way that disparities for different assignments a(u) and a(v) are

different (u, v ∈ V, u �= v). Thus, we have |L| = |R| = |A| = |V|.
The neighboring system N on assignments will be constructed from the

connectivity of the graph G: for every edge (u, v) ∈ E we add the pair of

assigments {a(u), a(v)} to N . The corresponding penalty for a discontinuity

will be Va(u),a(v) = C, where C is a sufficiently large constant (C > |V|). The

data term will be 0 for all assignments, and the occlusion penalty will be 1
2

for all pixels.

Now consider the initial configuration f 0 in which all assignments in A
are active, and consider an arbitrary disparity α. f 0 is clearly a unique

configuration. There is an obvious one-to-one correspondence between the

configurations f within a single α-expansion of f 0 and the subsets U of V.

Let f(U) be the configuration, corresponding to the subset U ⊂ V.

It’s easy to see that the data cost in the energy of the configuration f(U)

is zero, the occlusion cost is 1
2
· 2(|V| − |U|) = |V| − |U| and the smoothness

cost is zero if the subset |U| is independent, and at least C otherwise. Thus,

minimizing the energy in the expansion problem is equivalent to maximizing

the cardinality of U among the independent subsets of V.

Appendix B: Minimizing E with the smoothness term (4) is NP-

hard

It is shown in [24] that the following problem, referred to as Potts energy

minimization, is NP-hard. We are given as input a set of pixels S with a

neighborhood system N ⊂ S × S, and a set of label values V and a non-
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negative function D : S × V �→ +. We seek the labeling f : S �→ V that

minimizes

EP (f) =
∑
p∈P

D(p, f(p)) +
∑

{p,q}∈N
T (f(p) �= f(q)). (9)

We now sketch a proof that an arbitrary instance of the Potts energy min-

imization problem can be encoded as a problem minimizing the energy E

defined in equation 2 with the smoothness term (4). This shows that the

problem of minimizing E is also NP-hard.

We start with a Potts energy minimization problem consisting of S, V,

N and D. We will create a new instance of our energy minimization problem

as follows. The left image L will be S. For each label in V we will create a

disparity, such that the difference between any pair of disparities is greater

than twice the width of L. Obviously, the right image R will be very large;

for every pixel p ∈ S and every disparity, there will be a unique pixel in

R. The set A will be pairs of pixels such that there is a disparity where

they correspond. Note that two different pixels in L cannot be mapped to

one pixel in R. The penalty for occlusions Cp will be K for p ∈ P, where

K is a sufficiently large number to ensure that no pixel in P is occluded in

the solution that minimizes the energy E. The neighborhood system will be

the Potts model neighborhood system N extended in the obvious way. The

penalty for discontinuities is Va1,a2 = 1
2
.

It is now obvious that the global minimum solution to our energy mini-

mization problem will effectively assign a label in V to each pixel in S. The

energy E will be equal to EP plus a constant, so this global minimum would

solve the NP-hard Potts energy minimization problem.
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