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Abstract

Optimization is a powerful paradigm for expressing and solving problems in a wide range

of areas, and has been successfully applied to many vision problems. Discrete optimization

techniques are especially interesting, since by carefully exploiting problem structure they often

provide non-trivial guarantees concerning solution quality. In this paper we briefly review dy-

namic programming and graph algorithms, and discuss representative examples of how these

discrete optimization techniques have been applied to some classical vision problems. We focus

on the low-level vision problem of stereo; the mid-level problem of interactive object segmenta-

tion; and the high-level problem of model-based recognition.

Keywords: Combinatorial Algorithms, Vision and Scene Understanding, Artificial Intelligence,

Computing Methodologies

1 Optimization in computer vision

Optimization methods play an important role in computer vision. Vision problems are inherently

ambiguous and in general one can only expect to make “educated guesses” about the content of

images. A natural approach to address this issue is to devise an objective function that measures the

quality of a potential solution and then use an optimization method to find the best solution. This

approach can often be justified in terms of statistical inference, where we look for the hypothesis

about the content of an image with the highest probability.

It is widely accepted that the optimization framework is well suited to deal with noise and

other sources of uncertainty such as ambiguities in the image data. Moreover, by formulating
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problems in terms of optimization we can easily take into account multiple sources of information.

Another advantage of the optimization approach is that in principle it provides a clean separation

between how a problem is formulated (the objective function) and how the problem is solved (the

optimization algorithm). Unfortunately the optimization problems that arise in vision are often

very hard to solve.

In the past decade there has been a new emphasis on discrete optimization methods, such

as dynamic programming or graph algorithms, for solving computer vision problems. There are

two main differences between discrete optimization methods and the more classical continuous

optimization approaches commonly used in vision [83]. First, of course, these methods work with

discrete solutions. Second, discrete methods can often provide non-trivial guarantees about the

quality of the solutions they find. These theoretical guarantees are often accompanied by strong

performance in practice. A good example is the formulation of low-level vision problems such as

stereo using Markov Random Fields [92, 97] (we will discuss this in detail in section 7).

1.1 Overview

This survey covers some of the main discrete optimization methods commonly used in computer

vision, along with a few selected applications where discrete optimization methods have been par-

ticularly important. Optimization is an enormous field, and even within computer vision it is a

ubiquitous presence. To provide a coherent narrative rather than an annotated bibliography, our

survey is inherently somewhat selective, and there are a number of related topics that we have omit-

ted. We chose to focus on a dynamic programming and on graph algorithms, since they share two

key properties: first, they draw on a body of well-established, closely inter-related techniques, which

are typically covered in an undergraduate course on algorithms (using a textbook such [24, 60]);

and second, these methods have had a significant and increasing impact within computer vision

over the last decade. Some topics which we do not explicitly cover include constrained optimization

methods (such as linear programming) and message passing algorithms (such as belief propagation).

We begin by reviewing some basic concepts of discrete optimization and introducing some

notation. We then summarize two classical techniques for discrete optimization, namely graph al-

gorithms (section 3) and dynamic programming (section 4); along with each technique, we present

an example application relevant to computer vision. In section 5 we describe how discrete optimiza-

tion techniques can be used to perform interactive object segmentation. In section 6 we discuss
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the role of discrete optimization for the high-level vision problem of model-based recognition. In

section 7 we focus on the low-level vision problem of stereo. Finally in section 8 we describe a few

important recent developments.

2 Discrete optimization concepts

An optimization problem involves a set of candidate solutions S and an objective function E :

S → R that measures the quality of a solution. In general the search space S is defined implicitly

and consists of a very large number of candidate solutions. The objective function E can either

measure the goodness or badness of a solution; when E measures badness, the optimization problem

is often referred to as an energy minimization problem, and E is called an energy function. Since

many papers in computer vision refer to optimization as energy minimization, we will follow this

convention and assume that an optimal solution x ∈ S is one minimizing an energy function E.

The ideal solution to an optimization problem would be a candidate solution that is a global

minimum of the energy function, x∗ = arg minx∈S E(x). It is tempting to view the energy function

and the optimization methods as completely independent. This suggests designing an energy func-

tion that fully captures the constraints of a vision problem, and then applying a general-purpose

energy minimization technique.

However, such an approach fails to pay heed to computational issues, which have enormous

practical importance. No algorithm can find the global minimum of an arbitrary energy function

without exhaustively enumerating the search space, since any candidate that was not evaluated

could turn out to be the best one. As a result, any completely general minimization method, such

as genetic algorithms [47] or MCMC [76], is equivalent to exhaustive search. On the other hand,

it is sometimes possible to design an efficient algorithm that solves problems in a particular class,

by exploiting the structure of the search space S and the energy function E. All the algorithms

described in this survey are of this nature.

Efficient algorithms for restricted classes of problems can be very useful since vision problems

can often be plausibly formulated in several different ways. One of these problem formulations, in

turn, might admit an efficient algorithm, which would make this formulation preferable. A natural

example, which we will discuss in section 7, comes from pixel labeling problems such as stereo.

Note that in general a global minimum of an energy function might not give the best results in

terms of accuracy, because the energy function might not capture the right constraints. But if we
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use an energy minimization algorithm that provides no theoretical guarantees it can be difficult to

decide if poor performance is due to the choice of energy function as opposed to weaknesses in the

minimization algorithm.

There is a long history of formulating pixel labeling problems in terms of optimization, and some

very complex and elegant energy functions have been proposed (see [41] for some early examples).

Yet the experimental performance of these methods was poor, since they relied on general-purpose

optimization techniques such as simulated annealing [6, 41]. In the last decade, researchers have

developed efficient discrete algorithms for a relatively simple class of energy functions, and these

optimization-based schemes are viewed as the state of the art for stereo [21, 92].

2.1 Common classes of energy functions in vision

As previously mentioned, the problems that arise in computer vision are inevitably ambiguous,

with multiple candidate solutions that are consistent with the observed data. In order to eliminate

ambiguities it is usually necessary to introduce a bias towards certain candidate solutions. There

are many ways to describe and justify such a bias. In the context of statistical inference the bias is

usually called a prior. We will use this term informally to refer to any terms in an energy function

that impose such a bias.

Formulating a computer vision problem in terms of optimization often makes the prior clear.

Most of the energy functions that are used in vision have a general form that reflects the observed

data and the need for a prior,

E(x) = Edata(x) + Eprior(x). (1)

The first term of such an energy function penalizes candidate solutions that are inconsistent with

the observed data, while the second term imposes the prior.

We will often consider an n-dimensional search space of the form S = Ln, where L is an arbitrary

finite set. We will refer to L as a set of labels, and will use k to denote the size of L. This search

space has an exponential number, kn, of possible solutions. A candidate solution x ∈ Ln will be

written as (x1, . . . , xn) where xi ∈ L. We will also consider search spaces S = L1× · · · ×Ln, which

simply allows the use of a different label set for each xi.

A particularly common class of energy functions in computer vision can be written as

E(x1, . . . , xn) =
∑

i

Di(xi) +
∑
i,j

Vi,j(xi, xj). (2)
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Many of the energy functions we will consider will be of this form. In general the terms Di are

used to ensure that the label xi is consistent with the image data, while the Vi,j terms ensure that

the labels xi and xj are compatible.

Energy functions of the form given in equation (2) have a long history in computer vision. They

are particularly common in pixel labeling problems, where a candidate solution assigns a label to

each pixel in the image, and the prior captures a spatial smoothness assumption.

For these low-level vision problems, the labels might represent quantities such as stereo depth

(see section 7), intensity, motion, texture, etc. In all of these problems, the underlying data is

ambiguous, and if each pixel is viewed in isolation it is unclear what the correct label should be.

One approach to deal with the ambiguity at each pixel is to examine the data at nearby pixels

and then independently choose its label. If the labels are intensities, this often corresponds to a

simple filtering algorithm (e.g., convolution with a Gaussian). For stereo or motion, such algorithms

are usually referred to as area-based; a relatively early example is provided by [46]. Unfortunately,

these methods have severe problems near object boundaries, since the majority of pixels near a

pixel p may not support the correct label for p. This shows up in the very poor performance of

area-based methods on the standard stereo benchmarks [92].

Optimization provides a natural way to address pixel labeling problems. The use of optimization

for such a problem appears to date to the groundbreaking work of [48] on motion. They proposed

a continuous energy function, where a data term measures how consistent the candidate labeling

is with the observations at each pixel, and a prior ensures the smoothness of the solution. Note

that their prior preferred labelings that are globally smooth; this caused motion boundaries to be

oversmoothed, which is a very important issue in pixel labeling problems. The energy minimization

problem was solved by a continuous technique, namely the calculus of variations.

Following [48], many energy functions were proposed, both for motion and for other pixel

labeling problems. An interesting snapshot of the field is provided by [82], who point out the

ties between the smoothness term used by [48] and the use of Tikhonov regularization to solve

inverse problems [98]. Another important development was [41], which showed that such energy

functions have a natural statistical interpretation as maximizing the posterior probability of a

Markov Random Field (MRF). This paper was so influential that to this day many authors use

the terminology of MRF’s to describe an optimization approach to pixel labeling problems (see

[18, 52, 63, 97] for a few examples).
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A very different application of energy functions of the form in equation (2) involves object

recognition and matching with deformable models. One of the earliest examples is the pictorial

structures formulation for part-based modeling in [36]. In this case we have an object with many

parts and a solution corresponds to an assignment of image locations to each part. In the energy

function from [36] a data term measures how much the image data under each part agrees with a

model of the part’s appearance, and the prior enforces geometrical constraints between different

pairs of parts. A related application involves boundary detection using active contour models [3, 56].

In this case the data term measures the evidence for a boundary at a particular location in the

image, and the prior enforces smoothness of the boundary. Discrete optimization methods are quite

effective both for pictorial structures (see section 6.3) and for active contour models (section 5.2).

The optimization approach for object detection and recognition makes it possible to combine

different sources of information (such as the appearance of parts and their geometric arrangement)

into a single objective function. In the case of part-based modeling this makes it possible to

aggregate information from different parts without relying on binary decision coming from an

individual part detector. The formulation can also be understood in terms of statistical estimation,

where the most probable object configuration is found [34].

2.2 Guarantees concerning solution quality

One of the most important properties of discrete optimization methods is that they often provide

some kind of guarantee concerning the quality of the solutions they find. Ideally, the algorithm

can be shown to compute the global minimum of the energy function. While we will discuss a

number of methods that can do this, many of the optimization problems that arise in vision are

NP-hard (see the appendix of [20] for an important example). Instead, many algorithms look for

a local minimum — a candidate that is better than all “nearby” alternatives. A general view of

a local minimum, which we take from [2], is to define a neighborhood system N : S → 2S that

specifies for any candidate solution x the set of nearby candidates N(x). Using this notation, a

local minimum solution with respect to the neighborhood system N is a candidate x∗ such that

E(x∗) ≤ minx∈N(x∗)E(x).

In computer vision, it is common to deal with energy functions with multiple local minima.

Problems with a single minimum can often be addressed via the large body of work in convex

optimization (see [13] for a recent textbook). Note that for some optimization problems, if we pick
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the neighborhood system N carefully a local minimum is also a global minimum.

A local minimum is usually computed by an iterative process, where an initial candidate is im-

proved by explicitly or implicitly searching the neighborhood of nearby solutions. This subproblem

of finding the best solution within the local neighborhood is quite important. If we have a fast

algorithm for finding the best nearby solution within a large neighborhood, we can perform this

local improvement step repeatedly.1 There are a number of important vision applications where

such an iterated local improvement method has been employed. For example, object segmentation

via active contour models [56] can be performed in this way, where the local improvement step uses

dynamic programming [3] (see section 5.2 for details). Similarly, low-level vision problems such as

stereo can be solved by using min-cut algorithms in the local improvement step [20] (see section 7).

While proving that an algorithm converges to a strong local minimum is important, this does

not directly imply that the solution is close to optimal. In contrast, an approximation algorithm for

an optimization problem is a polynomial time algorithm that computes a solution x̂ whose energy

is within a multiplicative factor of the global minimum. It is generally quite difficult to prove such

a bound, and approximation algorithms are a major research area in theoretical computer science

(see [60] for a particularly clear exposition of the topic). Very few approximation algorithms have

been developed in computer vision; the best known is the expansion move algorithm of [20]. An

alternative approach is to provide per-instance bounds, where the algorithm produces a guarantee

that the solution is within some factor of the global minimum, but where that factor varies with

each problem instance.

The fundamental difference between continuous and discrete optimization methods concerns the

nature of the search space. In a continuous optimization problem we are usually looking for a set

of real numbers and the number of candidate solutions is uncountable; in a discrete optimization

problem we are looking for an element from a discrete (and often, finite) set. Note that there is

ongoing work (e.g., [14]) that explores the relationship between continuous and discrete optimization

methods for vision.

While continuous methods are quite powerful, it is uncommon for them to produce guarantees

concerning the absolute quality of the solutions they find (unless, of course, the energy function

is convex). Instead they tend to provide guarantees about speed of convergence towards a lo-

cal minimum. Whether or not guarantees concerning solution quality are important depends on
1[2] refers to such algorithms as very large-scale neighborhood search techniques; in vision they are sometimes

called move-making algorithms [71].
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the particular problem and context. Moreover, despite their lack of such guarantees, continuous

methods can perform quite well in practice.

2.3 Relaxations

The complexity of minimizing a particular energy function clearly depends on the set it is being

minimized over, but the form of this dependence can be counterintuitive. In particular, sometimes it

is difficult to minimize E over the original discrete set S, but easy to minimize E over a continuous

set S ′ that contains S. Minimizing E over S ′ instead of S is called a relaxation of the original

problem. If the solution to the relaxation (i.e., the global minimum of E over S ′) happens to occur

at an element of S, then by solving the relaxation we have solved the original problem. As a general

rule, however, if the solution to the relaxation does not lie in S, it provides no information about

the original problem beyond a lower bound (since there can be no better solution within S than

the best solution in the larger set S ′). In computer vision, the most widely used relaxations involve

linear programming or spectral graph partitioning.

Linear programming provides an efficient way to minimize a linear objective function subject to

linear inequality constraints (which define a polyhedral region). One of the best-known theorems

concerning linear programming is that when an optimal solution exists it can be achieved at a

vertex of the polyhedral region defined by the inequality constraints (see, e.g., [23]). A linear

program can thus be viewed as a discrete optimization problem over the vertices of a polyhedron.

Yet linear programming has some unusual features that distinguish it from the methods that we

survey. For example, linear programming can provide a per-instance bound (see [67] for a nice

application in low-level vision). Linear programming is also the basis for many approximation

algorithms [60]. There is also a rich mathematical theory surrounding linear programs, including

linear programming duality, which plays an important role in advanced optimization methods that

don’t explicitly use linear programming algorithms.

Linear programming has been used within vision for a number of problems, and one recent ap-

plication that has received significant interest involves message passing methods. The convergence

of belief propagation on the loopy graphs common in vision is not well understood, but several

recent papers [101, 102] have exposed strong connections with linear programming.

Spectral partitioning methods can efficiently cluster the vertices of a graph by computing a

specific eigenvector of an associated matrix (see, e.g., [54]). These methods are exemplified by
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the well-known normalized cut algorithm in computer vision [96]. Typically a discrete objective

function is first written down, which is NP-hard to optimize. With careful use of spectral graph

partitioning, a relaxation of the problem can be solved efficiently. Currently there is no technique

that converts a solution to the relaxation into a solution to the original discrete problem that is

provably close to the global minimum. However, despite the lack of such guarantee these methods

can perform well in practice.

2.4 Problem reductions

A powerful technique, which we will use throughout this survey paper, is the classical computer

science notion of a problem reduction [38]. In a problem reduction, we show how an algorithm

that solves one problem can also be used to solve a different problem, usually by transforming an

arbitrary instance of the second problem to an instance of the first.2

There are two ways that problem reductions are useful. Suppose that the second problem

is know to be difficult (for example, it may be NP-hard, and hence widely believed to require

exponential time). In this case, the problem reduction gives a proof that the first problem is

at least as difficult as the second. However, discrete optimization methods typically perform a

reduction in the opposite direction, by reducing a difficult appearing problem to one that can be

solved quickly. This is the focus of our survey.

One immediate issue with optimization is that it is almost “too powerful” a paradigm. Many

NP-hard problems fall within the realm of discrete optimization. On the other hand, problems

with easy solutions can also be phrased in terms of optimization; for example, consider the problem

of sorting n numbers. The search space consists of the set of n! permutations, and the objective

function might count the number of pairs that are mis-ordered. As the example of sorting should

make clear, expressing a problem in terms of optimization can sometimes obscure the solution.

Since the optimization paradigm is so general we should not expect to find a single algorithm

that works well on most optimization problem. This leads to the perhaps counter-intuitive notion

that to solve any specific problem it is usually preferable to use the most specialized technique that

can be applied. This ensures that we exploit the structure of the specific problem to the greatest

extent possible.
2We will only consider reductions that do not significantly increase the size of the problem (see [38] for more

discussion of this issue).
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3 Graph algorithms

Many discrete optimization methods have a natural interpretation in terms of a graph G = (V, E),

given by a set of vertices V and a set of edges E (vertices are sometimes called nodes, and edges are

sometimes called links). In a directed graph, each edge e is an ordered pair of vertices e = (u, v),

while in an undirected graph the vertices in an edge e = {u, v} are unordered. We will often

associate a non-negative weight we to each edge e in a graph. We say that two vertices are

neighbors if they are connected by an edge. In computer vision, the vertices V usually correspond

to pixels or features such as interest points extracted from an image, while the edges E encode

spatial relationships.

A path from a vertex u to a vertex v is a sequence of distinct vertices starting at u and ending

at v such that for any two consecutive vertices a and b in the sequence either (a, b) ∈ E or {a, b} ∈ E

depending on whether or not the graph is directed. The length of a path in a weighted graph is

the sum of the weights associated with the edges connecting consecutive vertices in the path. A

cycle is defined like a path except that the first and last vertices in the sequence are the same. We

say that a graph is acyclic if it has no cycles. An undirected graph is connected if there is a path

between any two vertices in V. A tree is a connected acyclic undirected graph.

Now consider a directed graph with two distinguished vertices s and t called the terminals. An

s-t cut is a partition of the vertices into two components S and T such that s ∈ S and t ∈ T .3 The

cost of the cut is the sum of the weights on edges going from vertices in S to vertices in T .

A matching M in an undirected graph is a subset of the edges such that each vertex is in at

most one edge in M . A perfect matching is one where every vertex is in some edge in M . The

weight of a matching M in a weighted graph is the sum of the weights associated with edges in M .

We say that a graph is bipartite if the vertices can be partitioned into two sets A and B such that

every edge connects a vertex in A to a vertex in B. A perfect matching in a bipartite graph defines

a one-to-one correspondence between vertices in A and vertices in B.

3.1 Shortest path algorithms

The shortest paths problem involves finding minimum length paths between pairs of vertices in a

graph. The problem has many important applications and it is also used as a subroutine to solve a

variety of other optimization problems (such as computing minimum cuts). There are two common
3There is also an equivalent definition of a cut as a set of edges, which some authors use [14, 20].
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versions of the problem: (1) in the single-source case we want to find a shortest path from a source

vertex s to every other vertex in a graph; (2) in the all-pairs case we look for a shortest path

between every pair of vertices in a graph. Here we consider mainly the single-source case as this is

the one most often used in computer vision. We discuss its application to interactive segmentation

in section 5.1. We note that in general solving the single-source shortest paths problem is not

actually harder than computing a shortest path between a single pair of vertices.

The main property that we can use to efficiently compute shortest paths is that they have an

optimal substructure property: a subpath of a shortest path is itself a shortest path. All of the

shortest paths algorithms use this fact.

The most well known algorithm for the single-source shortest paths problem is due to Dijkstra

[31]. For a directed graph Dijkstra’s algorithm runs in O(|E| log |V|) time assuming that there is at

least one edge touching each node in the graph. The algorithm assumes that all edge weights are

non-negative and builds shortest paths from a source in order of increasing length.

Dijkstra’s algorithm assumes that all edge weights are non-negative. In fact, computing shortest-

paths on an arbitrary graph with negative edge weights is NP-hard (since this would allow us to find

hamiltonian paths [68]). However, there is an algorithm that can handle graphs with some negative

edge weights, as long as there are no negative length cycles. The Bellman-Ford algorithm [24] can

be used to solve the single-source problem on such graphs in O(|E||V|) time. The method is based

on dynamic programming (see section 4). It sequentially computes shortest paths that uses at most

i edges in order of increasing i. The Bellman-Ford algorithm can also be used to detect negative

length cycles on arbitrary graphs. This is an important subroutine for computing minimum ratio

cycles and has been applied to image segmentation [53] and deformable shape matching [93].

The all-pairs shortest paths problem can be solved using multiple calls to Dijkstra’s algorithm.

We can simply solve the single-source problem starting at every possible node in the graph. This

leads to an overall method that runs in O(|E||V| log |V|) time. This is a good approach to solve

the all-pairs shortest paths problem in sparse graphs. If the graph is dense we are better off using

the Floyd-Warshall algorithm. That algorithm is based on dynamic programming and runs in

O(|V|3) time. Moreover, like the Bellman-Ford algorithm, it can be used as long as there are no

negative length cycles in the graph. Another advantage of the Floyd-Warshall method is that it

can be implemented in just a few lines of code and does not rely on an efficient priority queue data

structure (see [24]).
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3.2 Minimum cut algorithms

The minimum cut problem (“min-cut”) is to find the minimum cost s-t cut in a directed graph.

On the surface, this problem may look intractable. In fact, many variations on the problem, such

as requiring that more than two terminals be separated, are NP-hard [28].

It is possible to show that there is a polynomial-time algorithm to compute the min-cut, by

relying on results from submodular function optimization. Given a set U and a function f defined

on all subsets of U , consider the relationship between f(A)+f(B), and f(A∩B)+f(A∪B). If the

two quantities are equal (such as when f is set cardinality), the function f is said to be modular.

If f(A) + f(B) ≥ f(A ∩B) + f(A ∪B), f is said to be submodular. Submodular functions can be

minimized in high-order polynomial time [91], and have recently found important applications in

machine vision [64, 66] as well as areas such as spatial statistics [69].

There is a close relationship between submodular functions and graph cuts (see, e.g., [27]).

Given a graph, let U be the nodes of the graph, and f(A) be the sum of the weights of the edges

from nodes in A to nodes not in A. Such an f is called a cut function, and the following argument

shows it to be submodular. Each term in f(A ∩B) + f(A ∪B) also appears in f(A) + f(B). Now

consider an edge that starts at a node that is in A, but not in B, and ends at a node in B, but not

in A. Such an edge appears in f(A) + f(B) but not in f(A ∩B) + f(A ∪B). Thus, a cut function

f is not modular. A very similar argument shows that the cost of a s-t cut is also a submodular

function: U consists of the non-terminal nodes, and f(A) is the weight of the outgoing edges from

A ∪ {s}, which is the cost of the cut.

While cut functions are submodular, the class of submodular functions is much more general.

As we have pointed out, this suggests that special-purpose min-cut algorithms would be preferable

to general-purpose submodular function minimization techniques [91] (which, in fact, are not yet

practical for large problems). In fact, there are very efficient min-cut algorithms.

The key to computing min-cuts efficiently is the famous problem reduction of Ford and Fulkerson

[37]. The reduction uses the maximum flow problem (“max-flow”), which is defined on the same

directed graph, but the edge weights are now interpreted as capacity constraints. An s-t flow is

an assignment of non-negative values to the edges in the graph, where the value of each edge is no

more than its capacity. Furthermore, at every non-terminal vertex the sum of values assigned to

incoming edges equals the sum of values assigned to outgoing edges.

Informally speaking, most max-flow algorithms repeatedly find a path between s and t with
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spare capacity, and then increase (augment) the flow along this path. For a particularly clear

explanation of max-flow and its relationship to min-cut see [60]. From the standpoint of computer

vision, max-flow algorithms are very fast, and can even be used for real-time systems (see, e.g.,

[65]). In fact, most of the graphs that arise in vision are largely grids, like the example shown

in Figure 1. These graphs have many short paths from s to t, which in turn suggests the use of

max-flow algorithms that are specially designed for vision problems, such as [16].

3.3 Example application: binary image restoration via graph cuts

There are a number of algorithms for solving low-level vision problems that compute a minimum

s-t cut on an appropriately defined graph. This technique is usually called “graph cuts” (the term

appears to originate in [19]).4 The idea has been applied to a number of problems in computer

vision, medical imaging and computer graphics (see [17] for a recent survey). We will describe the

use of graph cuts for interactive object segmentation in section 5.3, and for stereo in section 7.1.

However, their original application to vision was for binary image restoration [42].

Consider a binary image where each pixel has been independently corrupted (for example, the

output of an error-prone document scanner). Our goal is to clean up the image. This can be

naturally formulated as an optimization problem of the form defined by equation (2). The labels

are binary, so the search space is {0, 1}n where n is the number of pixels in the image, and there

are 2n possible solutions. The function Di provides a cost for labeling the i-th pixel using one

of two possible values; in practice, this cost would be zero for it to have the same label that was

observed in the corrupted image, and a positive constant λ for it to have the opposite label. The

simplest choice for Vi,j(xi, xj) is a 0-1 valued function, which is 1 just in case pixels i and j are

adjacent and xi 6= xj . Putting these together we see that E(x1 . . . , xn) equals λ times the number

of pixels that get assigned a value different from the one observed in the corrupted image, plus

the number of adjacent pixels with different labels. By minimizing this energy we find a spatially

coherent labeling that is similar to the observed data.

This energy function is often referred to as the Ising model (its generalization to more than

2 labels is called the Potts model). [42] showed that the problem of minimizing this energy can

be reduced to the min-cut problem on an appropriately constructed graph.5 The graph is shown

in Figure 1, for a 9-pixel image. In this graph, the terminals s, t correspond to the labels 0 and
4Despite the similar names graph cuts are not closely related to normalized cuts.
5As [66] points out the actual construction dates back at least 40 years, but [42] first applied it to images.
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Figure 1: Cuts separating the terminals (labeled 0 and 1) in this graph correspond to binary

labelings of a 3 by 3 image. The dark nodes are the pixel vertices. This graph assumes the usual

4-connected neighborhood system among pixels.

1. Besides the terminals, there is one vertex per pixel; each such pixel vertex is connected to

the adjacent pixel vertices, and to each terminal vertex. A cut in this graph leaves each pixel

vertex connected to exactly one terminal vertex. This naturally corresponds to a binary labeling.

With the appropriate choice of edge weights, the cost of a cut is the energy of the corresponding

labeling.6 The weight of edges cut between pixel vertices will add to the number of adjacent pixels

with different labels; the weight of edges cut between pixel vertices and terminals will sum to λ

times the number of pixels with opposite labels to those observed in the input data.

It is important to realize that this construction depends on the specific form of the Ising model

energy function. Since the terminals in the graph correspond to the labels, the construction is

restricted to 2 labels. As mentioned above, the natural multi-terminal variants of the min-cut

problem are NP-hard [28]. In addition, we cannot expect to be able to efficiently solve even simple

generalizations of the Ising energy energy function, since minimizing the Potts energy function with

3 labels is NP-hard [20].

3.4 Bipartite matching algorithms

In the minimum weight bipartite matching problem we have a bipartite graph with V = A∪B and

weights we associated with each edge. The goal is to find a perfect matching M with minimum total
6There are two ways to encode the correspondence between cuts and labelings. If pixel p gets labeled 0, this can

be encoded by cutting the edge between the vertex for p and the terminal vertex for 0, or to leaving this edge intact

(and thus cutting the edge to the terminal vertex for 1). The different encodings lead to slightly different weights for

the edges between terminals and pixels.
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weight. Perfect matchings in bipartite graphs are particularly interesting because they represent

one-to-one correspondences between elements in A and elements in B. In computer vision the

problem of finding correspondences between two sets of elements has many applications ranging

from three-dimensional reconstruction [30] to object recognition [9].

The bipartite matching problem described here is also known as the assignment problem. We

also note that there is a version of the problem that involves finding a maximum weight matching

in a bipartite graph, without requiring that the matching be perfect. That problem is essentially

equivalent to the one described here (they can be reduced to each other) [68].

We can solve the bipartite matching problem in O(n3) time using the Hungarian algorithm [80],

where n = |A| = |B|. That algorithm relies on linear programming duality and the relationship

between matchings and vertex covers to sequentially solve a set of intermediate problems, eventually

leading to a solution of the original matching problem.

One class of practical algorithm for bipartite matching rely on the following generalization of

the maximum-flow problem. Let G be a directed graph with a capacity ce and weight we associated

with each edge e ∈ E . Let s and t be two terminal nodes (the source and the sink) and let f

be an s-t flow with value f(e) on edge e. The cost of the flow is defined as
∑

e∈E(f(e) ∗ we). In

the minimum-cost flow problem we fix a value for the flow and search for a flow of that value with

minimum cost. This problem can be solved using an approach similar to the Ford-Fulkerson method

for the classical max-flow problem, by sequentially finding augmenting paths in a weighted residual

graph. When the capacities are integral this approach is guaranteed to find a minimum-cost flow

with integer values in each edge.

The bipartite matching problem on a graph can be reduced to a minimum-cost flow problem.

We simply direct the edges in E so they go from A to B and add two nodes s and t such that there

is an edge of weight zero from s to every node in A and to t from every node in B. The capacities

are all set to one. An integer flow of value n in the modified graph (n = |A| = |B|) corresponds to

a perfect matching in the original graph, and the cost of the flow is the weight of the matching.

4 Dynamic programming

Dynamic programming [8] is a powerful general technique for developing efficient discrete opti-

mization algorithms. In computer vision it has been used to solve a variety of problems including

curve detection [3, 39, 77], contour completion [95], stereo matching [5, 79], and deformable object
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matching [4, 7, 25, 34, 32].

The basic idea of dynamic programming is to decompose a problem into a set of subproblems,

such that (A) given a solution to the subproblems, we can quickly compute a solution to the original

problem, and (B) the subproblems can be efficiently solved recursively in terms of each other. An

important aspect of dynamic programming is that the solution of a single subproblem is often used

multiple times, for solving several larger subproblems. Thus in a dynamic programming algorithm

we need to “cache” solutions to avoid recomputing them later on. This is what makes dynamic

programming algorithms different from classical recursive methods.

Similar to shortest paths algorithms, dynamic programming relies on an optimal substructure

property. This makes it possible to solve a subproblem using solutions of smaller subproblems.

In practice we can think of a dynamic programming algorithm as a method for filling in a table,

where each table entry corresponds to one of the subproblems we need to solve. The dynamic

programming algorithm iterates over table entries and computes a value for the current entry using

values of entries that it has already computed. Often there is a simple recursive equation which

defines the value of an entry in terms of values of other entries, but sometimes determining a value

involves a more complex computation.

4.1 Dynamic programming on a sequence

Suppose we have a sequence of n elements and we want to assign a label from L to each element in

the sequence. In this case we have a search space S = Ln where a candidate solution (x1, . . . , xn)

assigns label xi to the i’th element of the sequence. A natural energy function for sequence labeling

can be defined as follows. Let Di(xi) be a cost for assigning the label xi to the i’th element of

the sequence. Let V (xi, xi+1) be a cost for assigning two particular labels to a pair of neighboring

elements. Now the cost of a candidate solution can be defined as

E(x1, . . . , xn) =
n∑

i=1

Di(xi) +
n−1∑
i=1

V (xi, xi+1). (3)

This objective function measures the cost of assigning a label to each element and penalizes “in-

compatible” assignments between neighboring elements. Usually Di is used to capture a cost per

element that depends on some input data, while V encodes a prior that is fixed over all inputs.

Optimization problems of this form are common in a number of vision applications, including in

some formulations of the stereo problem as discussed in section 7.2, and in visual tracking [29].
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The MAP estimation problem for a general hidden Markov model [84] also leads to an optimization

problem of this form.

Now we show how to use dynamic programming to quickly compute a solution (x∗1, . . . , x
∗
n)

minimizing an energy function of the form in equation (3). The algorithm works filling in tables

storing costs of optimal partial solutions of increasing size. Let Bi[xi] denote the cost of the best

assignment of labels to the first i elements in the sequence with the constraint that the i’th element

has the label xi. These are the “subproblems” used by the dynamic programming procedure. We

can fill in the tables Bi in order of increasing i using the recursive equations,

B1[x1] = D1(x1), (4)

Bi[xi] = Di(xi) + min
xi−1

(Bi−1[xi−1] + V (xi−1, xi)) . (5)

Once the Bi are computed, the optimal solution to the overall problem can be obtained by taking

x∗n = arg minxn Bn[xn] and tracing back in order of decreasing i,

x∗i = arg min
xi

(
Bi[xi] + V (xi, x

∗
i+1)

)
. (6)

Another common approach for tracing back the optimal solution involves caching the optimal

(i− 1)’th label as a function of the i’th label in a separate table when computing Bi,

Ti[xi] = argmin
xi−1

(Bi−1[xi−1] + V (xi−1, xi)) . (7)

Then, after we compute x∗n we can track back by taking x∗i−1 = Ti[x∗i ] starting at i = n. This

simplifies the tracing back procedure at the expense of a higher memory requirement.

The dynamic programming algorithm runs in O(nk2) time. The running time is dominated by

the computation of the tables Bi. There are O(n) tables to be filled in, each table has O(k) entries

and it takes O(k) time to fill in one table entry using the recursive equation (5).

In many important cases the dynamic programming solution described here can be sped up

using the distance transform methods in [33]. In particular in many situations (including the signal

restoration application described below) L is a subset of R and the pairwise cost is of the form

V (xi, xj) = |xi − xj |p or V (xi, xj) = min(|xi − xj |p, τ) for some p > 1 and τ > 0. In this case the

distance transform methods can be used to compute all entries in Bi (after Bi−1 is computed) in

O(k) time. This leads to an overall algorithm that runs in O(nk) time, which is optimal assuming

the input is given by an arbitrary set of nk costs Di(xi). In this case any algorithm would have to

look at each of those costs, which takes at least O(nk) time.
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4.2 Relationship to shortest paths

Many dynamic programming algorithms can be viewed as solving a shortest path problem in a

graph. Here we outline the construction for the dynamic programming method from above, for

minimizing the energy in equation (3). Figure 2 illustrates the underlying graph. One could solve

the optimization problem by building the graph described here and using a generic shortest paths

algorithm. However, both theoretically and in practice it is often more efficient to implement the

dynamic programming solution directly. While the dynamic programming method runs in O(nk2)

time, using a generic algorithm such as Dijkstra’s shortest paths we get an O(nk2 log(nk)) method.

The problem is that Dijkstra’s algorithm is more general than necessary since it can handle graphs

with cycles. This illustrates the benefit of using the most specific algorithm possible to solve an

optimization problem.

Let G be a directed graph with nk + 2 vertices V = {(i, xi) | 1 ≤ i ≤ n, xi ∈ L} ∪ {s, t}. The

case for n = 5 and k = 4 is shown in Figure 2. Except for the two distinguished vertices s and t,

each vertex (i, xi) in this graph corresponds an assignment of a label to an element of the sequence.

We have edges from (i, xi) to (i+1, xi+1) with weight Di+1(xi+1)+V (xi, xi+1). We also have edges

from s to (1, x1) with weight D1(x1). Finally we have edges from (n, xn) to t with weight zero.

In this graph a path from s to t contains exactly one vertex per element in the sequence, which

corresponds to assigning a label to each element. It is easy to show that the length of the path

is exactly the cost of the corresponding assignment. More generally, the length of a shortest path

from s to (i, xi) equals the value Bi[xi] in equation (5). We conclude that a shortest path from s

to t corresponds to a global minimum of the energy function E.

4.3 Extensions

The dynamic programming procedure described above can be generalized to broader class of energy

functions. For example suppose each element in a sequence can get a label from a different set,

i.e. S = L1 × · · · × Ln. Let Di(xi) be a cost for assigning the label xi ∈ Li to the i’th element.

Let Vi(xi, xi+1) be a cost for assigning the labels xi ∈ Li and xi+1 ∈ Li+1 to the i’th and i + 1’th

elements respectively. In this case there is a different pairwise cost for each pair of neighboring

elements. We can define an energy function assigning a cost to a candidate solution (x1, . . . , xn)

by taking the sum of the individual costs Di and the pairwise costs Vi. A global minimum of this

energy can be found using a modified version of the recursive equations shown above. Let ki = |Li|.
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elements being labeled

labels

Figure 2: Paths in this graph correspond to assignments of labels to 5 elements in a sequence. Each

of the columns represents an element. Each of the rows represents a label. A path from s to t

goes through one vertex per column, which corresponds to an assignment of labels to elements. A

shortest path from s to t corresponds to a labeling minimizing the energy in equation (3)

Now the table Bi has ki entries and it takes O(ki−1) time to fill in one entry in this table. The

algorithm runs in O(nk2) time, where k = max ki.

Another class of energy functions that can be solved using a modified version of the method

described here is one where the prior also includes an explicit cost, H(xi, xi+1, xi+2), for assigning

particular labels to three consecutive elements in a sequence.

Consider an energy function of the form

E(x1, . . . , xn) =
n∑

i=1

Di(xi) +
n−1∑
i=1

V (xi, xi+1) +
n−2∑
i=1

H(xi, xi+1, xi+2) (8)

This type of energy has been used in active contour models [3], where D is defined by the image

data, V captures a spring model for the contour and H captures a thin-plate spline model (see

section 5.2). In this case the dynamic programming algorithm builds n − 1 tables with k2 entries

each. The entry Bi[xi−1, xi] denotes the cost of the best assignment of values to the first i elements

in the sequence with the constraint that the i−1’th element has the label xi−1 and the i’th element

has the label xi. These entries can be defined using recursive equations,

B2[x1, x2] = D1(x1) +D2(x2) + V (x1, x2), (9)

Bi[xi−1, xi] = Di(xi) + V (xi−1, xi) + min
xi−2

(Bi−1[xi−2, xi−1] +H(xi−2, xi−1, xi)) . (10)

Now the Bi can be computed in order of increasing i as before. After the tables are filled in we can

find a global minimum of the energy function by picking (x∗n−1, x
∗
n) = arg min(xn−1,xn)Bn[xn−1, xn]
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and tracing back in order of decreasing i,

x∗i = arg min
xi

(
Bi+1[xi, x

∗
i+1] +H(xi, x

∗
i+1, x

∗
i+2)

)
.

This method takes O(nk3) time. In general we can minimize energy functions that explicitly take

into account the labels of m consecutive elements in O(nkm) time.

4.4 Example application: 1-D signal restoration via dynamic programming

As an example consider the problem of restoring a one-dimensional signal. We assume that a signal

s is defined by a finite sequence of regularly spaced samples s[i] for i from 1 to n. Figures 3(a)

and 3(b) show a clean signal and a noisy version of that signal. The goal here to estimate the

original signal s[i] from its noisy version n[i]. In practice we look for a signal s[i] which is similar

to n[i] but is smooth in some sense. The problem can be formulated using an objective function of

the form in equation (3).

We can define the restored signal in terms of an assignment of labels to the sequence of sample

points. Let L be a discretization of the domain of s (a finite subset of R). Now take Di(xi) =

λ(xi − n[i])2 to ensure that the value we assign to the i’th sample point is close to n[i]. Here λ

is a non-negative constant controlling the relative weighting between the data and prior cost. The

form of V depends on the type of smoothness constraint we want to impose on s. If we assume s is

smooth everywhere we can take V (xi, xi+1) = (xi−xi+1)2. If we assume that s is piecewise-smooth

we can take V (xi, xi+1) = min((xi − xi+1)2, τ) where τ controls the maximum cost we assign to

a “discontinuity” in the signal. This second choice of V is often called the weak string model in

vision, following [11], who popularized this model and its solution via dynamic programming.

Figure 3 shows the result of restoring a noisy signal using these two choices for the pairwise

costs. Note that with either choice for the pairwise cost we can use the distance transform methods

mentioned above to find an optimal solution to the restoration problem in O(nk) time. Here n is

the number of samples in the signal and k is the number of discrete choices for the value of the

signal in each sample point.

4.5 Dynamic programming on a tree

The dynamic programming techniques described above generalize to the situation where the set of

elements we want to label are connected together in a tree structure. We will discuss an application

of this technique for object recognition in section 6.3.

20



(a) (b) (c) (d)

Figure 3: (a) A one-dimensional signal. (b) Noisy version of the signal. (c) Restoration using the

prior V (xi, xi+1) = (xi−xi+1)2. (d) Restoration using the prior V (xi, xi+1) = min((xi−xi+1)2, τ).
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Figure 4: Dynamic programming on a tree. A tree where the root is labeled r and every other

node is labeled with its depth. The dashed vertices are the descendents of the bold vertex. The

best labels for the dashed verticies can be computed as a function of the label of the bold vertex.

Let G be tree where the vertices V = {v1 . . . , vn} are the elements we want to label and the

edges in E indicate which elements are directly related to each other. As before, let Di(xi) be a cost

for assigning label xi to the i’th element. For each edge {vi, vj} ∈ E we let Vij(xi, xj) = Vji(xj , xi)

be a cost for assigning two particular labels xi and xj to the i’th and j’th element respectively.

Now an objective function can be defined by analogy to the sequence case,

E(x1, . . . , xn) =
n∑

i=1

Di(xi) +
∑

{vi,vj}∈E

Vij(xi, xj). (11)

An optimal solution can be found as follows. Let vr be an arbitrary root vertex in the graph (the

choice does not affect the solution). From this root, each vertex vi has a depth di which is the

number of edges between it and vr (the depth of vr is zero). The children, Ci, of vertex vi are the

vertices connected to vi that have depth di + 1. Every vertex vi other than the root has a unique

parent, which is the neighboring vertex of depth di − 1. Figure 4 illustrates these concepts.

We define n tables Bi each with k = |L| entries such that Bi[xi] denotes the cost of the best

labeling of vi and its descendents assuming the label of vi is xi. These values can be defined using
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the recursive equation,

Bi[xi] = Di(xi) +
∑

vj∈Ci

min
xj

(Bj [xj ] + Vij(xi, xj)) . (12)

For vertices with no children we have, Bi[xi] = Di(xi). The other tables can be computed in terms

of each other in decreasing depth order. Note that Br[xr] is the cost of the best labeling of the

whole graph, assuming the label of the root is xr.

After all tables are computed we can find a global minimum of the energy function by picking

x∗r = arg minxr Br[xr] and tracing back in order of increasing depth,

x∗i = arg min
xi

(
Bi[xi] + Vij(xi, x

∗
j )
)
,

where vj is the parent of vi. The overall algorithm runs in O(nk2) time. As in the case for

sequences, distance transform techniques can often be used to obtain an O(nk) time algorithm [34].

This speedup is particularly important for the pictorial structure matching problem discussed in

section 6.3. In that problem k is on the order of the number of pixels in an image and a quadratic

algorithm is not practical.

We note that dynamic programming can also be used to minimize energy functions defined over

certain graphs with cycles [4, 32]. Although the resulting algorithms are less efficient they still

run in polynomial time. This method is called non-serial dynamic programming. Its asymptotic

running time depends exponentially on a measure of graph connectivity called treewidth; trees have

treewidth 1, while a square grid with n nodes has treewidth O(
√
n). When the underlying graph is

not a path, the problem can not usually be solved via shortest paths algorithms, because there is

no way to encode the cost of a solution in terms of the length of a path in a reasonably sized graph.

However, a generalization of Dijkstra’s shortest paths algorithm to such cases was first proposed in

[61] and more recently explored in [35].

4.6 Matching sequences via dynamic programming

Let A = (a0, . . . , an−1) and B = (b0, . . . , bm−1) be two sequences of elements. Here we consider the

problem of finding a set of correspondences between A and B that respects the natural ordering

of the elements. This is an important problem that arises both in stereo matching [5, 79] (see

section 7.2) and in matching deformable curves [7, 94] (see section 6.2).
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A

B

a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5

Figure 5: Matching two sequences, A and B, with the ordering constraint. Matchings satisfying

the ordering constraint lead to pairings with no crossing. The solid lines show a valid matching.

The dotted line shows an extra correspondance that would violate the ordering constraint.

Intuitively we want to consider correspondences between A and B that do not involve crossings,

as shown in Figure 5. The precise definition is that if ai is matched to bj and i′ > i then ai′ can

only be matched to bj′ such that j′ > j. This is often called the ordering constraint.

Correspondences that satisfy the ordering constraint are equivalent to alignments defined by

putting the two sequences on top of each other after inserting spaces in each one. This is exactly the

sequence alignment approach commonly used in biology for comparing DNA sequences. It is also

related to dynamic time warping methods used in speech recognition to compare one-dimensional

signals. When a person says a word in two different speeds there is a correspondence between the

two sounds that satisfies the ordering constraint. In vision time warping methods have been used

to recognize activities such as hand gestures [81].

Here we assume that there is a cost C(ai, bj) for matching ai to bj . There is also a cost ε for

leaving an element of A or B unmatched. Our goal is to find a valid set of correspondences that

minimizes the total sum of costs. This can be done by finding a shortest path in a graph.

Let G be a directed graph where the nodes in V are the points in an n+ 1 by m+ 1 grid. There

are two types of edges in E . Diagonal edges connect nodes (i, j) to nodes (i + 1, j + 1). These

edges have weight C(ai, bj). Horizontal and vertical edges connect nodes (i, j) to nodes (i + 1, j)

and (i, j + 1). These edges have weight ε. Paths from (0, 0) to (n,m) in G correspond to valid

matchings between A and B in a simple way: if a path follows a diagonal edge out of (i, j) we

match ai with bj . If a path takes a horizontal edge out of (i, j) we leave ai unmatched, while a

vertical step out of (i, j) corresponds to leaving bj unmatched. Its not hard to show that the length

of a path is equal to the cost of the corresponding matching. Since the graph is acylic we can

compute shortest paths from (0, 0) to (n,m) in O(nm) time using dynamic programming. The
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graph described here does not have to be constructed explicitly. In practice we define a table of

values D[i, j] to represent the distance from (0, 0) to node (i, j). We can fill in the entries in the

table in order of increasing i and j value using the recursive equation,

D[i, j] = min(D[i− 1, j − 1] + C(ai−1, bj−1), D[i− 1, j] + ε,D[i, j − 1] + ε).

After D is filled in we can find the optimal set of correspondences between A and B by implicitly

tracing the shortest path from (0, 0) to (n,m).

5 Discrete optimization algorithms for interactive segmentation

Interactive segmentation is an important problem in computer vision where discrete optimization

techniques have had a significant impact. The goal is to allow a user to quickly separate a particular

object from the rest of the image. This is done via an iterative process, where the user has the

opportunity to correct or improve the current segmentation as the algorithm progresses. We will

describe three different ways in which discrete optimization techniques can be used for interactive

segmentation: intelligent scissors [78], which relies on shortest paths; active contour models [3, 56],

which use dynamic programming; and GrabCut [87], which uses graph cuts.

Segmentation, of course, is a major topic in computer vision, and there are a number of common

issues that segmentation algorithms face. For example, it is very difficult to evaluate a segmentation

algorithm.7 One of the advantages of interactive segmentation, which makes it more tractable, is

that it involves a human user, rather than being fully automatic.

5.1 Intelligent scissors (shortest paths)

One way to perform interactive segmentation is for the user to select a few points on the boundary

of the target object while an algorithm completes the gaps between selected points. However, a user

may not know in advance how many points they need to select before the algorithm can complete

the gaps accurately. With intelligent scissors a user starts by selecting a single point on the object

boundary and then moves the mouse around. As the mouse pointer moves, a curve is drawn from

the initial boundary point to the current mouse location; hopefully the curve will lie along the

object boundary. [78] pointed out that this problem can solved via shortest paths in a graph. The

graph in question has one vertex per pixel, and the edges connect a pixel to the 8 nearby pixels.
7Note that two recent papers [65, 75] provided hand-labeled segmentations for hundreds of images.
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Let G be a graph where the vertices V are the pixels in the image, and the edges E connect

each pixel to its 8 closest neighbors. The whole trick to intelligent scissors is to make the weight

of an edge small when it lies along an object boundary. There are a number of ways in which this

can be accomplished, but the basic idea of [78] is to use features that detect intensity edges, since

these tend to occur on the boundary. For example, we can let the weight of an edge connecting

neighboring pixels be near zero if the image gradient is high along this edge, while the weight is

high if the image gradient is low. This encourages shortest paths in G to go along areas of the

image with high gradient magnitude. It also encourages the path to be straight.

Given an initial pixel p we can solve a single-source shortest paths problem in G to get an

optimal curve from p to every other image pixel. As the user moves the mouse around we draw the

optimal curve from p to the current mouse position. At any point in time the user can click the

mouse button to select the current curve. The process then restarts with a new initial point defined

by the current mouse location. In practice this process allows a user to select accurate boundaries

with very little interaction. Further ideas described in [78] include on-the-fly training of the specific

type of boundary being traced, and a mechanism for segmentation without mouse clicks.

Figure 6 shows an example of boundary tracing using the approach, created using the livewire

plugin for the ImageJ toolbox.

5.2 Active contour models (dynamic programming)

Active contour models [56] are a popular tool for interactive segmentation, specially in medical

image analysis. In this setting the user specifies an initial contour close to a target object. The

active contour then seeks a nearby boundary that is consistent with the local image features (which

typically means that it lies along intensity edges), and which is also spatially smooth.

While the original paper [56] viewed active contours as continuous curves, there is an advantage

to taking a discrete approach, since the problem can then be solved via dynamic programming [3].

Under this view, a contour is represented by a sequence of n control points that define a closed or

open curve (via a polygon, or some type of spline). A candidate solution specifies a position for

each control point, from a set of k possible positions. We can write such a candidate solution as

(x1, . . . , xn) and there are kn candidate solutions.

There is a simple energy function we can define to formalize the problem. A per-element cost

Di(xi) indicates how good a particular position is for the i’th control point. Typically Di is low

25



Figure 6: Tracing a boundary using intelligent scissors. Selected points (mouse clicks) are marked

by white squares, while the current mouse position is marked by the arrow. The image on the left

shows the shortest path from the first selected point to a point on the ear. Selecting this path

would cut through the paw of the Koala. The image on the center shows how the paw can be

selected with a few more clicks. The last image shows the result after more interaction.

where the image gradient is high, so the contour is attracted to intensity boundaries. A pairwise

cost V encodes a spring-like prior, which is usually of the form V (xi, xi+1) = α||xi − xi+1||2. This

term encourages the contour to be short.8 Finally a cost H encodes a “thin plate spline” prior,

H(xi, xi+1, xi+2) = β||xi − 2 ∗ xi+1 + xi+2||2. This term penalizes curves with high curvature.

Both V and H can be understood in terms of finite difference approximations to derivative

operators. Note that we are assuming for the moment that we have an open curve. The energy

function is of the form given in equation (8), and thus can be solved in O(nk3) time with dynamic

programming.

Active contour models provide a good example of the tradeoffs between local and global min-

imization. At one extreme, suppose that the set of possible positions for each control point was

very large (for example, each control point could be anywhere on the image). In this case the

solution is independent of the initial placement of the contour. However, because k is so large the

cost of computing an optimal solution is high. In practice, we usually consider positions for each
8The pairwise cost can also take into account the image data underneath the line segment connecting two control

points. This would encourage the entire polygonal boundary to be on top of certain image features.
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control point that are very near their initial position. The process is iterated several times, with

the previous solution defining the search neighborhood for the next iteration. This is effectively

a local improvement method with a neighborhood system where each solution has kn neighbors.

As we increase k, we find the optimal solution within a larger neighborhood, but at a greater

computational cost.

A similar tradeoff occurs once we consider closed curves. In this case there should be terms

V (xn, x1), H(xn−1, xn, x1) and H(xn, x1, x2) in the energy function. Naively, this would prohibit

the use of dynamic programming because the terms introduce cyclic dependencies in the energy

function. However, we can fix the position of x1 and x2 and find the optimal position for the other

control points using dynamic programming, and then minimize this over all k2 possible positions of

x1 and x2. This would compute the optimal solution for a closed curve in O(nk5) time. In practice

this is often too expensive, and another option is to pick two control points that are next to each

other and fix them in their current position. In O(nk3) time, this produces a curve that is optimal

over a smaller set of candidates, where all control points except two are allowed to move to any of

their k nearby positions. Thus, by reducing the neighborhood system among candidate solutions,

we can obtain a more efficient algorithm.

In practice, these optimization steps are done repeatedly until convergence. The set of possible

positions, k, is relatively small for a given iteration, but multiple iterations are performed until

convergence. If we handle closed curves by freezing the position of two control points at each

iteration, it is natural to change the chosen points between iterations. Figure 7 illustrates two

iterations of this process.

5.3 GrabCut (graph cuts)

In section 3.3 we pointed out that the global minimum of the Ising model energy function can be

efficiently computed [42]. This is a very natural energy function for capturing spatially coherent

binary labelings, of which binary image restoration is a special case. Another compelling application

of this result is the interactive segmentation technique introduced by [15] and further refined in an

application called GrabCut [87].

The graph cuts construction for spatially coherent binary labelings is easy to apply to an image;

essentially all that is required is the data term Di(xi) for the two possible labels of each pixel. For

many segmentation tasks, the natural labels are foreground and background. In [15], the user
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Step 1 Step 2
(a) (b) (c) (d)

Figure 7: Segmentation with an active contour model (snake). In each step of the optimization two

control points are fixed, and we optimize the locations of the other control points, while constraining

them to be near their previous position. Images (a) and (c) show the current position of the control

points and the search neighborhoods for the non-fixed control points in blue boxes. Images (b) and

(d) show the result of finding a global optimum of the energy within the allowable positions for the

control points. The runtime of a step depends on the size of the search neighborhoods.

marks certain pixels as foreground or background. To ensure that these pixels are given the correct

labels, the algorithm makes the relevant Di costs large enough to guarantee that the incorrect label

is never chosen. For other pixels, the data term is computed based on the marked pixels. There are

a number of ways that this can be accomplished, but typically a simple model of foreground and

background intensity is used. For example, intensity histograms can be computed from marked

foreground and background pixels, and the cost Di(xi) reflects how popular the intensity at pixel

i is among pixels marked as foreground and background. It is also reasonable to take into account

the distance from the nearest user-marked pixel.

The algorithm of [15] can be run interactively, which is important for many applications. Once

the user has marked a set of pixels, an initial segmentation is computed. The user can then refine

this segmentation by marking additional pixels as foreground or background, which in turn updates

the costs Di. Since the graph changes little from iteration to iteration, [15] describes a way to re-use

much of the underlying max-flow computation (a more general technique to accomplish this was

provided by [63]). An recent overview of the use of graph cuts for segmentation, that discusses

these issues and quite a few others, is given in [14].
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The GrabCut application [87] adds a number of refinements to the basic interactive segmen-

tation scheme of [15]. GrabCut iteratively alternates between estimating intensity models for the

foreground and background, and computing a segmentation. This EM-style use of graph cuts has

proven to be very powerful, and has been exploited in a number of applications [57, 58, 72] since it

was first used [10]. GrabCuts also supports drawing a rough boundary instead of the user marking

points inside and outside of the object, and uses sophisticated techniques for border matting.

6 Discrete optimization algorithms for object recognition

Modern object recognition algorithms often rely on discrete optimization methods to search over

correspondences between two sets of features, such as features extracted from an image and features

extracted from a model. Sections 6.1 and 6.2 describe two examples of this approach. Another

class of recognition algorithms use discrete optimization methods to implicitly search over a very

large set of possible object configurations in an image. An example of this approach is discussed

in section 6.3.

6.1 Recognition using shape contexts

[9] described a method for comparing edge maps (or binary images) which has been used in a variety

of applications. The approach is based on a three stage process: (1) a set of correspondences are

found between the points in two edge maps, (2) the correspondences are used to estimate a non-

linear transformation aligning the edge maps, and (3) a similarity measure between the two edge

maps is computed which takes into account both the similarity between corresponding points and

the amount of deformation introduced by the aligning transformation.

Let A and B be two edge maps. In the first stage of the process we want to find a mapping

π : A→ B putting each point in A in correspondence to its “best” matching point in B. For each

pair of points pi ∈ A and pj ∈ B a cost C(pi, pj) for mapping pi to pj is defined which takes into

account the geometric distribution of edge points around pi and pj . This cost is based on a local

descriptor called the shape context of a point. The descriptor is carefully constructed so that it

is invariant to translations and fairly insensitive to small deformations. Figure 8 illustrates two

points on different shapes with similar shape contexts.

Given the set of matching costs between pairs of points in A and B we can look for a map π

minimizing the total cost, H(π) =
∑

pi∈AC(pi, π(pi)), subject to the constraint that π is one-to-one
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Figure 8: The shape context at a point p is a histogram of the positions of the remaining points

relative to the position of p. Using histogram bins that are uniform over log-polar space we obtain

a reasonable amount of invariance to deformations. Here we show two points on different shapes

with similar descriptors. In this case the cost of matching the two points would be small.

and onto. This is precisely the weighted bipartite matching problem from section 3.4. To solve the

problem we build a bipartite graph G = (V, E) such that V = A ∪ B and there is an edge between

each vertex pi in A to each vertex pj in B with weight C(pi, pj). Perfect matchings in this graph

correspond to valid maps π and the weight of the matching is exactly the total cost of the map.

To handle outliers and to find correspondences between edge maps with different numbers of

points we can add “dummy” vertices to each side of the bipartite graph to obtain a new set of vertices

V ′ = A′ ∪ B′. We connect a dummy vertex in one side of the graph to each non-dummy vertex

in the other side using edges with a fixed positive weight, while dummy vertices are connected to

each other by edges of weight zero. Whenever a point in one edge map has no good correspondence

in the other edge map it will be matched to a dummy vertex. This is interpreted as leaving the

point unmatched. The number of dummy vertices in each side is chosen so that |A′| = |B′|. This

ensures that the graph has a perfect matching. In the case where A and B have different sizes some

vertices in the larger set will always be matched to dummy vertices.

6.2 Elastic curve matching

Now consider the problem of finding a set of correspondences between two curves. This is a problem

that arises naturally when we want to measure the similarity between two shapes. Here we describe

a particularly simple formulation of this problem. Similar methods have been used in [7, 73, 94].

Let A = (a0, . . . , an−1) and B = (b0, . . . , bm−1) be two sequences of points along two open

curves. It is natural to look for a set of correspondences between A and B that respect the natural

ordering of the sample points. Figure 9 shows an example. This is exactly the sequence matching
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Figure 9: Matching two curves. We can think of the goal of matching as bending and stretching

the curves to make them identical. The cost of bending is captured by the matching cost between

two points. An unmatched point in one curve corresponds to a local stretch in the other. In this

case a3, a6 and b2 are left unmatched.

problem described in section 4.6.

Different curve matching methods can be defined by choosing how to measure the cost of

matching two points on different curves, C(ai, bj). There should also be a cost ε for leaving a point

in A or B unmatched. The simplest approach for defining C(ai, bj) is to measure the difference in

the curvature of A at ai and B at bj . In this case the cost C(ai, bj) will be low if the two curves

look similar in the neighborhood of ai and bj .

When C(ai, bj) measures difference in curvature, the minimum cost of a matching between A

and B has an intuitive interpretation. It measures the amount of bending and stretching necessary

to turn one curve into the other. The costs C(ai, bj) measure amount the bending while the “gap-

costs” ε measure the amount of stretching.

In the case of closed curves the order among points in each curve is only defined up to cyclic

permutations. There are at least two different approaches for handling the matching problem in this

case. The most commonly used approach is to independently solve the problem for every cyclic shift

of one of the curves. This leads to an O(mnk) algorithm, where k = min(m,n). An elegant and

much more efficient algorithm is described in [74] which solves all of these problems simultaneously

in O(mn log k) time. That algorithm is based on a combination of dynamic programming and

divide and conquer.
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6.3 Pictorial structures

Pictorial structures [36, 34] describe objects in terms of a small number of parts arranged in

a deformable configuration. A pictorial structure model can be represented by an undirected

graph G where the vertices correspond to the object parts and the edges represent geometric

relationships between pairs of parts. An instance of the object is given by a configuration of its

parts x = (x1, . . . , xn) where xi ∈ L specifies the location of the i’th part. Here L might be the set

of image pixels, or a more complex parameterization. For example, in estimating the configuration

of a human body, xi ∈ L could specify a position, orientation and amount of foreshortening for a

limb. Let Di(xi) be a cost for placing the i’th part at location xi in an image. The form of Di

depends on the particular kinds of objects being modeled (though typically it measures the change

in appearance); we will simply assume that it can be computed in a small amount of time. For a

pair of connected parts let Vij(xi, xj) measure the deformation of a virtual spring between parts i

and j when they are placed at xi and xj respectively.

The matching problem for pictorial structures involves moving a model around an image, looking

for a configuration where each part looks like the image patch below it, and the springs are not

too stretched. This is captured by an energy function of the form in equation (2). A configuration

with low energy indicates a good hypothesis for the object location.

Let n be the number of parts in the model and k be the number of locations in L. [34] showed

how to solve the optimization problem for pictorial structures in O(nk) time when the set of

connections between parts forms a tree and the deformation costs, Vij , are of a particular form.

Note how this running time is optimal since it takes O(nk) to evaluate Di(xi) for each part at each

location. This means that we can find the best coherent configuration for the object in the same

(asymptotic) time it would take to find the best location for each part individually.

For tree models the energy function for pictorial structures has exactly the same the form as the

energy in equation (11). The algorithm from [34] works by speeding up the dynamic programming

solution outlined in section 4.5 using generalized distance transforms.

Let f be a function from locations in a grid to R. The quadratic distance transform, Df , of f is

another function from grid locations to R, Df (x) = miny(||x− y||2 + f(y)). If f and Df are defined

in a regular grid with k locations then Df can be computed in O(k) time using computational

geometry techniques [33].

Consider the case where L corresponds to image pixels and for each pair of connected parts vi
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Figure 10: Matching a human body model to two images using the pictorial structures formulation.

The model has 10 parts connected together in a tree-structure. The connections correspond to some

of the main joints of the human body. A matching assigns a location for each part. In this case

the location of a part specifies its position, orientantion and foreshortening.

and vj there is an ideal relative displacement lij between them. That is, ideally xj ≈ xi + lij . We

can define a deformation cost Vij(xi, xj) = ||(xi + lij)−xj ||2. We can think of the tables Bi used in

the dynamic programming algorithm from section 4.5 as functions from image pixels to costs. For

the special type of deformation costs defined here, equation (12) can be expressed as,

Bi(xi) = Di(xi) +
∑

vj∈Ci

DBj (xi + lij).

In this form Bi can be computed in amortized O(k) time once DBj are computed.

Figure 10 shows the result of matching a model of the human body to two images, using a

model from [34]. In this case the model has 10 body parts that are connected together in a tree-

structure corresponding to some of the main joints in a human body. A label for a part specifies a

2D location, scale, orientation and foreshortening.

7 Discrete optimization algorithms for stereo

As described in section 2.1, energy functions of the form given in equation (2) have been applied

to pixel labeling problems for many years. Stereo is perhaps the vision problem where discrete

optimization methods have had their largest impact; historically, it was one of the earliest examples

where dynamic programming was applied [5, 79], while many top-performing methods rely on graph

cuts [92]. Most of the issues that we consider here arise in a wide range of pixel labeling problems

in early vision. This is particularly true of the graph cuts techniques we discuss, which have been
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Name Vi,j(xi, xj) Bounded? Metric? Algorithms

L2 distance (xi − xj)2 N N [52]

L1 distance |xi − xj | N Y [51, 52, 90]

Truncated L1 min(|xi − xj |,K) Y Y [20, 43, 59]

Potts model T [xi 6= xj ] Y Y [20, 59]

Figure 11: Popular choices of V and their properties, along with a few important algorithms.

Except for the Potts model, we assume that the labels xi, xj are scalars. For the first two choice

of V , the global minimum can be efficiently computed via graph cuts [51, 52, 90], under some

reasonable assumptions about the label set. The last two problems are NP-hard [20].

applied to many problems outside of stereo, as well as to problems in related fields such as computer

graphics (see [17] for a survey).

The stereo problem is easily formulated as a pixel labeling problem of the form in equation (2),

where the labels correspond to disparities. There is usually a simple way to measure the local

evidence for a label in terms of intensity differences between pixels in different images, while a prior

is used to aggregate evidence from nearby pixels.

In stereo, and pixel labeling in general, it is important to have a prior that does not oversmooth.

Both the complexity of the energy minimization problem and the accuracy of the solutions turn

out to depend heavily on the choice of prior. Here we assume that Vij = V for a pair of neighboring

pixels and zero otherwise. If V never exceeds some value, we will refer to it as bounded. Such choices

of V are sometime referred to a re-descending, robust or discontinuity-preserving (the first two terms

come from robust statistics [45]). If V is not bounded, then adjacent pixels will be forbidden to

have dramatically different labels. Such a V is believed to oversmooth boundaries, which accounts

for the generally poor performance of such methods on the standard stereo benchmarks [92] (also

see [100, Figure 3.10] for a good example of this oversmoothing effect). Some popular choices of V

are summarized in Figure 11.

If we assume V is a metric, then the energy minimization problem is called the metric labeling

problem, which was introduced by [59] and has been studied in the algorithms community. Constant

factor approximation algorithms were given by [20, 59] for the Potts model, and by [43] for the

truncated L1 distance. The approximation algorithms of [59] are based on linear programming,

and do not appear to be practical for realistic sized images, while the approximation algorithms of
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Figure 12: The basic graph cut constructions, for two pixels. (A) The graph used in section 3.3,

and by [64]. (B) The graph used by [51], for 3 labels. (C) The graph used in the expansion move

algorithm of [20].

[20, 43] rely on graph cuts.

7.1 Graph cut algorithms for pixel labeling problems

The construction that was used to reduce binary labeling problems to min-cuts, which we described

in section 3.3, uses edges between pixels and terminals to encode labelings. For a pixel p, there is

an edge between p and each terminal, and the choice of which of these edges to cut determines the

label of p. There are two known methods that generalize this construction to handle more labels

without introducing more terminals. One approach is to build a graph with additional edges per

pixel. The other is to keep the graph more or less the same, but to change the meaning of the two

labels represented by the terminals.

If we consider adding more edges per pixel, the simplest solution is to construct a chain of k−1

vertices per pixel, which gives rise to k possible edges that may be cut, one per label. Such an

encoding is the basis of the graph cut algorithms of [50, 51, 52, 89, 90]. The most general version

of these algorithms is due to [52], who showed how to find the global minimum for an arbitrary

choice of Di as long as V is a convex function of the difference between labels. The special case

where V is the L1 distance was originally solved by [51], relying on a construction very similar to

that proposed by [90]; this construction is shown for 3 labels in Figure 12(B).

The main limitation of this approach is that it is restricted to convex V , which typically leads

to oversmoothing. In addition, the graph has nk nodes, which makes its memory requirements

problematic for applications with a large number of labels.
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An alternative approach is to apply graph cuts iteratively, to define local improvement algo-

rithms where the set of candidate solutions considered in each step is very large. These methods

are defined by the notion of a “move” from an initial labeling, where every pixel can either keep its

current label or adopt a new label. Such “move-making” techniques are related to the active con-

tour technique described in section 5.2 and to the classical line-search subroutine used in continuous

optimization [83], as well as to the idea from [2] of a local minimum within a large neighborhood.

The primary difference among these algorithms concerns how a move is defined. The best-known

algorithm performs expansion moves [20], where in each step a pixel can either keep its current label

or adopt another label α, and α changes at each iteration. Other interesting algorithms include

swap moves [20] and jump moves [100].

Consider minimizing an energy function of the form given in equation (2), where we have a

current labeling x, and we seek the move with the lowest energy. Every pixel is faced with a binary

decision, either to keep its old label under x or to adopt a new label, so a move can be viewed as

a binary image (b1, . . . , bn). The energy of a move starting at x, which is the function we seek to

minimize, can be written as

Ex(b1, . . . , bn) =
∑

i

Bi(bi) +
∑
i,j

Bi,j(bi, bj). (13)

Here, Bi comes from D in the original energy E, while Bi,j comes from V . The notation Ex

emphasizes the dependence of the energy function on the initial labeling x.

The problem of minimizing energy functions of this form has been studied for a number of years

in the Operations Research community, principally by P. Hammer and his colleagues (see [12] for

a recent survey). For arbitrary Bi,j the problem is NP-hard; however, if

Bi,j(0, 1) +Bi,j(1, 0) ≥ Bi,j(0, 0) +Bi,j(1, 1) (14)

it can be minimized via graph cuts [12, 64]. This inequality is called regularity by [64], and is a

special case of submodularity.9 There is no restriction on Bi. For the expansion move, if V is a

metric then equation (14) holds. [64] gives a general-purpose graph construction for minimizing

Ex, assuming regularity. The graph has the same structure shown in Figures 1 and 12(A).

For expansion moves there is a different graph construction to minimize Ex that was originally

given [20], which is shown in Figure 12(C). Recall that in an expansion move the binary label 0
9Consider subsets of {a, b}. Submodularity says that f({a}) + f({b}) ≥ f(∅) + f({a, b}), which is regularity if we

represent the sets with indicator vectors.
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represents a pixel keeping its current label in x, while the binary label 1 represents adapting the new

label α. These two choices are asymmetric; for example, two neighboring pixels that get the binary

label 1 will end up with the same label α, and hence no cost from V , while two pixels that get the

binary label 0 can have a cost from V if they have different labels in x. This asymmetry is reflected

in the graph construction, which includes a new node plus additional edges that impose the correct

cost. This construction is slightly less efficient than applying the general-purpose technique of [64],

due to the larger size of the graph.

The expansion move algorithm has proved to be perhaps the most effective graph cuts technique.

Some of the most compelling evidence in favor of this method comes from a recent experimental

comparison of discrete optimization methods [97], which found that this method had the best

overall performance on a range of benchmarks. On their benchmarks, the expansion move algorithm

obtained solutions whose energy is within 0.018% to 3.6% of the global minimum. The algorithm

provides some interesting theoretical properties [20]; for example, if V is the Potts model, the

algorithm produces a 2-approximation, while [67] gave a generalization of the expansion move

algorithm that also provides per-instance lower bounds.

Given the success of the expansion move algorithm, there has been considerable interest in

applying it broadly. The paper that proposed the expansion move algorithm [20] proved that it

could be applied when V is a metric.10 As [64] showed, we can find the best expansion move if Ex

is regular, which is equivalent to

V (xi, α) + V (α, xj) ≥ V (xi, xj) + V (α, α). (15)

Equation (15) defines a Monge property, which has been studied for years in the theoretical com-

puter science community, and is known to be closely related to submodularity (see [22] for a

review). It is also a generalization of a metric; if we assume V (α, α) = 0, then equation (15) is just

the triangle inequality.

The largest class of energy functions where the optimal expansion move can be computed by

graph cuts is provided by [88] and by [66]. [88] showed how to incorporate certain hard constraints

(i.e., terms with infinite penalties) even though such a V violates equation (15). [66] points out

that a relaxation due to [44, 12] can compute the optimal expansion move for another class of V ’s

that violate equation (15). However, it is highly unlikely that the optimal expansion move can be
10If V is a metric, their choice of edge weights ensures that only one of the three edges connected to the new node

in Figure 12(C) will be cut in the min-cut.
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computed efficiently for an arbitrary choice of V , due to an NP-hardness result provided by [64].

It is possible to use the expansion move algorithm for an arbitrary choice of V , at the price of

no longer guaranteeing that the expansion move computed is optimal, using the methods of [88] or

[66]. In particular, it is possible to compute an expansion move that does not increase the energy.

According to [88], their method is most likely to succeed on choices of V where few terms violate

equation (15). This occurs (for instance) in some important graphics applications [1, 70] as well as

a range of recent benchmarks [97].

7.2 Dynamic programming

Suppose we consider the the stereo correspondence problem one scanline at a time (i.e., we view it

as a set of independent problems, where each problem is to find the disparities for the pixels along

a given scanline). In this case, the pixel labeling problem we obtain for each scanline is equivalent

to the sequence labeling problem from section 4.1, and it can be solved via dynamic programming.

Classical algorithms for stereo using dynamic programming ([5, 79]) often impose an additional

ordering constraint and solve the correspondence problem using the sequence matching approach

discussed in section 4.6. This additional constraint implies that certain scene configurations, such

as the “double nail”, do not occur. This is often true in practice, but not always.

The assumption that the stereo problem can be solved independently for each scanline is ap-

pealing from a computational point of view. However, this assumption usually causes dynamic

programming algorithms for stereo to give poor experimental results, since the inconsistency be-

tween adjacent scanlines produces a characteristic streaking artifact. This is clearly visible on the

Middlebury stereo benchmarks [92].

Obviously, it is desirable to have a prior that imposes spatial coherence horizontally as well

as vertically. There have been a number of attempts to enforce inter-scanline consistency while

still making use of dynamic programming. A particularly interesting example is due to [99], who

applied the tree-based dynamic programming technique described in section 4.5.

8 Recent developments

Since optimization is an important area of emphasis within computer vision, the pace of new

developments is rapid. Most ongoing work can be broadly characterized as either (a) increasing

the set of energy functions that can be efficiently solved; (b) making existing optimization methods
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more computationally efficient; or (c) showing how existing optimization techniques can be applied

to new vision applications. Strikingly few optimization problems have exact solutions, and yet their

impact has been substantial. So the highest payoff would likely come from developing methods to

minimize entirely new energy functions, although this is technically extremely challenging.

Below we briefly describe representative examples of ongoing work. Since the impact of dis-

crete optimization methods on computer vision comes primarily from their practical efficiency, any

substantial speedup is important, whether or not it comes with mathematical guarantees. One

promising approach exploits the structure of typical problem instances to reduce running time.

Finding new applications for existing discrete methods is perhaps the most active area of current

research. Higher-order cliques are a natural generalization of the energy functions we emphasized,

and serve to illustrate several important techniques. The techniques we describe below, which

draw on relaxation methods, do not solve the discrete optimization problem exactly, and there is

currently no proof that the solution computed is close to the global minimum.

8.1 Data-dependent speedups

Some existing methods can be made substantially faster in practice by taking advantages of usual

properties of the input data. For example, in dynamic programming it is not always necessary to

fill in the entire set of tables Bi described in section 4. For some problems if we use Dijkstra’s

algorithm, A* search or generalizations of these methods [35] many of the entries in these tables

will remain empty when the optimal solution is found. Similarly, coarse-to-fine methods can often

exploit regularities in the input data to good effect [86, 85].

A common property of these techniques is that they do not usually improve the worst case

running time of the energy minimization problem. Instead, they may use heuristics that significantly

speed up the computation on typical instances. For example, [40] considers the problem of road

detection and gives an algorithm inspired in the “twenty questions” game for finding the most likely

location of the road while doing as little computation as possible.

In some cases it is possible to prove good expected running time if we assume a particular

distribution on the input. The method for road detection in [26] assumes the input comes from

a particular distribution to obtain an algorithm that will quickly find an optimal or near optimal

solution with high probability. This basic idea first appeared in [55] for the problem of finding

an optimal path from the root to a leaf in a binary tree with random costs. If the costs on each
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edge are assumed to be independent [55] shows how a path of near-optimal cost can be found very

quickly with high probability.

The method in [85] is particularly interesting in the way that it combines dynamic programming

with coarse-to-fine computation to obtain an algorithm that is still polynomial in the worst case.

Consider the sequence labeling problem from section 4.1. Dynamic programming can find an

optimal labeling in O(nk2) time where n is the number of elements in the sequence and k is the

number of possible labels. Even though the running time is polynomial in the number of labels,

if this is very large the computation will be infeasible. The method in [85] constructs a series

of coarse approximations to the original problem by aggregating possible labels for each element

into “superlabels”. Initially we have a small number of possible superlabels for each element. An

optimal solution to the coarse problem is found using standard dynamic programming and the

superlabel that is assigned to an element is refined into a set of smaller superlabels to define a new

problem. The process is iterated until the optimal solution uses only singleton labels. If the coarse

problems are defined in a particular way the final solution is a global minimum of the original

problem. In many cases this leads to a much faster algorithm in practice. It is possible to prove

the method has good expected running time if we assume the input data has certain regularities,

but in the worst case the method can actually be slower than the dynamic programming solution

to the original problem.

8.2 Efficient algorithms for higher-order cliques

Many of the energy functions we have discussed are of the form given in equation (2), where the

prior involves pairs of adjacent pixels. Yet many natural priors cannot be expressed this way; for

example, to limit the curvature of a boundary requires considering three or more adjacent pixels at

a time. It is straightforward to incorporate such a constraint in a dynamic programming algorithm

for sequence labeling, as described in section 4.3, at some additional computational cost. It is much

more difficult to incorporate such constraints into the energy functions that arise in pixel labeling

problems such as stereo.

Dynamic programming cannot be easily applied to pixel labeling problems because the grid

has high treewidth. Priors that depend directly on more than two variables are referred to as

“higher-order cliques” (the term comes from the MRF literature). Certain higher-order cliques can

be handled by generalizing the graph cut methods of [20]; for example, [62] showed how to do this
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for a natural generalization of the Potts model, where a group of variables pays a uniform penalty

unless they all take on the same value.

A representative example of current research is provided by [49], which draws on several im-

portant developments in graph cuts. To use a move-making technique, such as the expansion move

algorithm, with higher-order cliques it is necessary to solve a binary problem that is more complex

than equation (13). The main result of [49] is a transformation of this more complex binary problem

into the form of equation (13), at the price of introducing additional binary variables.

There are two additional challenges that [49] addresses. First, the resulting binary problem

is usually not regular, so max flow cannot be used to solve it exactly. [49] relies on a relaxation

technique originally invented by [12], which was introduced into computer vision by [66]. This

technique (called either roof duality or QPBO) uses max flow to compute a partially optimal

solution to the binary problem. Only a subset of the variables are given a value, but if we start at

an arbitrary labeling and assign this subset their corresponding values, the energy will not increase.

This implies that there is an optimal solution that is an extension of these values. While this

relaxation method can perform well in practice, there are few theoretical guarantees (for example,

it is possible that no variable is given a value).

The second challenge that [49] addresses is that for some applications a better move-making

algorithm is needed than expansion moves or swap moves. A generalization known as fusion moves

[71] can be applied to many such problems. In a fusion move, two candidate solutions are merged

and every pixel makes a binary decision as to which candidate solution’s label to adopt. The

expansion move algorithm can be viewed as a fusion move, where one candidate solution is the

current labeling and the other assigns a single label to every pixel.

By relying on roof duality and fusion moves, [49]’s main result can be applied to several ap-

plications with higher-order cliques. While these methods use established graph cut techniques as

subroutines, they do not guarantee an exact solution. Yet they can perform quite well for practical

applications such as [103].

9 Conclusions

The power of discrete optimization techniques such as dynamic programming and graph algorithms

arises from exploiting the specific structure of important problems. These algorithms often provide

strong guarantees about the quality of the solutions they find, which allows for a clean separation
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between how a problem is formulated (the choice of objective function) and how the problem

is solved (the choice of optimization algorithm). The methods are versatile, and arise in very

different vision applications; for example, sequence matching via dynamic programming can be

used for both shape recognition and for stereo. Similarly min-cut algorithms can be used both for

stereo and binary image segmentation. These apparently unrelated problems share structure that

can be exploited by discrete optimization methods.
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