
Efficient Multicast on Myrinet Using
Link-Level Flow Control

�

Raoul A.F. Bhoedjang Tim Rühl Henri E. Bal
Vrije Universiteit, Amsterdam, The Netherlands�

raoul, tim, bal � @cs.vu.nl

Abstract

This paper studies the implementation of efficient mul-
ticast protocols for Myrinet, a switched, wormhole-routed,
Gigabit-per-second network technology. Since Myrinet
does not support multicasting in hardware, multicast ser-
vices must be implemented in software. We present a new,
efficient, and reliable software multicast protocol that uses
the network interface to efficiently forward multicast traf-
fic. The new protocol is constructed on top of reliable, flow-
controlled channels between pairs of network interfaces. We
describe the design of the protocol and make a detailed com-
parison with a previous multicast protocol. We show that
our protocol is simpler and scales better than the previous
protocol. This claim is supported by extensive performance
measurements on a 64-node Myrinet cluster.

1. Introduction

The importance of efficient multicast implementations
is well understood. Multicasting occurs in many commu-
nication patterns, ranging from a straightforward broad-
cast to the more complicated all-to-all exchange. Message-
passing systems like MPI [7] directly support such patterns
by means of collective communication services and thus
rely on an efficient multicast implementation.

We study the implementation of efficient multicast proto-
cols for Myrinet, a switched, wormhole-routed, Gigabit-per-
second network technology [3]. Today’s wormhole-routed
networks, including Myrinet, do not support reliable multi-
casting in hardware; multidestination wormhole routing is a
hard problem and the subject of ongoing research [10, 16].
Meanwhile, multicast services must be implemented in soft-
ware.

In this paper, we present an efficient and reliable mul-
ticast protocol for Myrinet. Like most software multicast�

This research is supported in part by a PIONIER grant from the Nether-
lands Organization for Scientific Research (N.W.O.).

schemes, our protocol forwards multicast packets along
spanning trees, which allows packets to travel to different
destinations in parallel. In most spanning-tree protocols
packet forwarding is performed by processors: a processor
receives a packet, delivers it to the application, and sends
it to its children in the tree. Our protocol, in contrast, uses
the network interface (NI) to forward multicast packets, thus
avoiding expensive host-NI interactions. While several re-
searchers have proposed NI-level multicast schemes [10, 11,
13, 17], few implementations exist. Moreover, several pro-
posals ignore flow control, which is one of the key issues in
implementing a reliable multicast. Even if the network hard-
ware is reliable (as for Myrinet), flow control is needed to
avoid receiver buffer overruns.

Our protocol has been implemented as part of a commu-
nication substrate called LFC (for Link-level Flow Control).
LFC is targeted at developers of communication software
for parallel systems and provides reliable, packet-based,
point-to-point and multicast communication. Using LFC,
we have ported MPI [7], Orca [2], and other systems to
Myrinet.

LFC implements flow control at the network interface
level. By implementing reliable, flow-controlled, communi-
cation channels between pairs of network interfaces the mul-
ticast protocol is greatly simplified. To avoid buffer dead-
locks, LFC’s basic multicast protocol restricts the shapes of
multicast trees. By default, LFC uses binomial spanning
trees, which give good overall performance.

This paper makes the following contributions. First, we
show that NI-level flow control allows a simple and ef-
ficient multicast implementation. LFC avoids using cen-
tralized components, needs no special mechanism to deal
with buffer overflow on NIs, and uses a single flow con-
trol scheme for unicast and multicast traffic. To illustrate
these issues, we make a detailed comparison with a previ-
ous multicast implementation for Myrinet. This implemen-
tation, FM/MC [17], is one of the few NI-level multicast im-
plementations that we are aware of and clearly demonstrated
the performance advantage of implementing multicast at the
NI level.

Second, we show how LFC’s basic multicast protocol
can be extended with a deadlock recovery mechanism, such
that arbitrary multicast trees can be used. Most store-and-
forward multicast protocols restrict the topology of multi-
cast trees to avoid buffer deadlocks. This is unfortunate,
because it is well known that the optimal shape of a mul-
ticast tree depends on the communication behavior at the
application level [4, 12, 13]. LFC assumes that deadlocks
are infrequent and uses deadlock recovery instead of avoid-
ance. When an NI suspects deadlock, it uses a slower, but
deadlock-free protocol, which uses extra NI buffers to build
escape paths [8].

Third, we evaluate the performance of LFC’s multicast
protocol on a Myrinet cluster. We show that LFC achieves
both low latency (59 µs on 61 processors) and high through-
put (13.3 MB/s on 61 processors). We study the perfor-
mance impact of different multicast tree topologies and the
deadlock recovery algorithm. Finally, we compare the per-
formance of LFC and FM/MC.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the Myrinet architecture and summarizes
FM/MC’s multicast protocol. In Section 3, we describe
LFC and its basic multicast protocol. This protocol is com-
pared (qualitatively) to FM/MC’s multicast protocol. Sec-
tion 4 extends the basic protocol with a deadlock recovery
scheme that removes restrictions on the multicast trees that
are present in the basic protocol. In Section 5, we demon-
strate that LFC’s multicast protocol achieves good perfor-
mance and in most cases outperforms FM/MC. Section 6
discusses related work and Section 7 concludes the paper.

2. Multicasting on Myrinet

Before describing LFC’s multicast protocol, we summa-
rize the Myrinet architecture and the FM/MC multicast pro-
tocol. FM/MC was implemented as an extension of Illinois
Fast Messages 1.1 [15]. Both FM/MC and LFC implement
multicast at the NI level, but their multicast protocols are
very different, so it is interesting to compare these protocols
and their performance.

2.1. Myrinet

Myrinet is a high-speed, wormhole-routed, switched
LAN technology [3]. Myrinet network interfaces are at-
tached to the host system’s I/O bus and connect to each
other via crossbar switches and high-speed links. Packets
are wormhole-routed from one NI to another through a se-
ries of crossbar switches. Due to hardware flow control,
Myrinet does not drop packets unless receiving NIs fail to
drain the network.

Myrinet network interfaces have a programmable RISC
processor (LANai), three DMA engines, and fast SRAM

memory. The DMA engines are used to send to the network,
receive from the network, and transfer data to and from host
memory. All data transfers between the host and the network
are staged through the NI’s memory, which also holds the
code and data for the program that controls the NI.

To avoid operating system overheads, the network in-
terface’s memory is mapped into the virtual address space
of processes that use Myrinet. This allows the processor
to move both data and commands to the NI’s memory us-
ing programmed I/O (PIO). The NI, on the other hand, can
access host memory only via DMA. Neither FM/MC nor
LFC implements protection or device sharing between pro-
cesses. These issues have been addressed in various other
projects [5, 9].

2.2. The FM/MC multicast protocol

A detailed description of the FM/MC protocol is given
in [17]. Below, we describe how FM/MC addresses the is-
sues that arise in the design of a reliable multicast protocol.

Reliability and flow control. Reliability and flow
control are closely related. In general, packet loss can have
two different causes: unreliable hardware or receiver-side
buffer overruns. The Myrinet hardware does not drop pack-
ets, but packets may be lost or corrupted when a receiving
NI processes incoming packets more slowly than they ar-
rive. Given a flow control scheme that stalls senders be-
fore receiver buffer overruns can occur, reliability can be ob-
tained without retransmitting packets. Multicast flow con-
trol, however, is difficult, because buffer space is needed at
multiple receivers, not just one.

FM/MC uses the following protocol. Each receiver allo-
cates two types of buffers in host memory: one set of buffers
is used for unicast messages, the other for multicast mes-
sages. An equal part of a host’s unicast receive buffers is
allocated to each sender. These unicast buffers are man-
aged by a standard sliding window protocol that runs on the
host. Multicast buffers, in contrast, are not partitioned stati-
cally among senders. Instead, a central credit manager, run-
ning on one of the NIs, keeps track of the number of free
multicast buffers on each host. Before a process can multi-
cast a message, it must obtain credits from the credit man-
ager. To avoid the overhead of a credit request-reply pair for
every multicast message, hosts can request multiple credits
and cache them. Once consumed, credits are returned to the
credit manager by means of a rotating token.

At the network interface level, no software flow control
is present. Each NI contains a single receive queue for all
inbound packets. When this queue fills up, FM/MC moves
part of the receive queue to host memory to make space for
inbound packets. Eventually, senders will run out of credits
and the pressure on receiving NIs will drop; packets can then
be copied back to NI memory and processed further. The

idea is that this type of swapping to host memory will only
occur under exceptional conditions, and it is assumed that
swapping will not take too much time.

Deadlock. A multicast packet requires buffer space at
all its destinations. This buffer space can be obtained before
sending the packet or it can be obtained more dynamically,
as the packet travels from one node in the spanning tree to
another. The first approach, used by FM/MC, is conceptu-
ally simple, but requires a global protocol to reserve buffers
at all destination nodes. The latter approach introduces the
danger of buffer deadlocks. A sender may know that its mul-
ticast packet can reach the next node in the spanning tree,
but does not know if the packet can travel further once it has
reached that node.

In FM/MC, the credit and swapping mechanism avoid
buffer deadlocks at the NI level: when NI buffers fill up,
they are copied to host memory. The centralized credit
mechanism guarantees that buffer space is available on the
host. Also, since packets are not forwarded from host mem-
ory, there is no risk of buffer deadlock at the host level.

Multicast tree topology. Many different tree topolo-
gies have been described in the literature [4, 12, 13]. De-
pending on the type of multicast traffic generated by an ap-
plication, one topology gives better performance than an-
other. Shallow trees, for example, are best for low latency,
because the path to each leaf in the multicast tree is short.
Deep trees, on the other hand, give better throughput, be-
cause internal nodes need to forward packets fewer times,
so they use less time per multicast. Our goal in this paper
is not to invent or analyze a particular topology that is opti-
mal in some sense. We simply note that since no single tree
shape is optimal under all circumstances, it is desirable that
a multicast protocol does not prohibit topologies that are ap-
propriate for the application at hand.

FM/MC uses a binary tree (per sender) to forward multi-
cast packets; it was established empirically that binary trees
give good overall performance [17]. FM/MC’s protocol,
however, allows the use of arbitrary trees.

Division of labor between host and network interface.
Programmable network interface processors typically are an
order of magnitude slower than the host they connect to.
Common sense therefore dictates that complicated protocol
tasks be left to the host processor. Nevertheless, the pro-
grammability of an NI allows a number of simple, but ef-
fective optimizations.

FM/MC uses the NI for packet forwarding and credit
management. NI-level packet forwarding is the key to its
good performance. Both latency and throughput are im-
proved because multicast packets need not travel to the host
before they can be forwarded. Unicast flow control is per-
formed entirely on the host. The multicast flow control pro-
tocol, however, uses one NI to manage credits and all NIs to
forward the credit garbage collection token.

FM/MC’s protocol has several disadvantages, some of
which were identified in [10]. An important problem is that
all credit traffic flows to and from the credit manager. This
may increase multicast latencies and introduces a potential
bottleneck. FM/MC is pessimistic in that it reserves buffers
on all hosts before starting a multicast (but optimistic in that
it never reserves NI buffers). Since only host buffers are
subject to flow control, the NI may need to swap its receive
buffers to host memory under heavy load. Finally, FM/MC
uses two different flow control mechanisms: one for unicast
and another for multicast. The two protocols cannot share
each other’s buffers.

3. LFC flow control and multicast

3.1. Link-level flow control

In contrast with other high-performance communication
substrates (e.g., [15]), which minimize the amount of pro-
tocol code executed on the network interface, LFC care-
fully exploits Myrinet’s programmable NI to implement
flow control, to forward multicast traffic, and to reduce the
overhead of network interrupts.

Unlike FM/MC, LFC implements peer-to-peer flow con-
trol at the network interface level. The flow control protocol
guarantees that no NI will send or forward a packet to an-
other NI before it knows that the receiving NI can store the
packet.

LFC runs a straightforward sliding window protocol be-
tween each pair of network interfaces. Each NI dedicates
part of its memory to receive buffers and assigns an equal
number of buffers to each NI in the system. An NI that needs
to transmit a packet to another NI may only do so when it
has at least one send credit for the receiving NI. Each send
credit for a particular NI corresponds to a receive buffer on
that NI. Credits can be returned to their senders in two ways:
by means of an explicit credit update message (when a low-
water mark is reached); or by means of piggybacking (when
a packet happens to travel back to the sender).

Figure 1 illustrates LFC’s send path. The host copies
message data into a free packet from the send buffer pool and
enqueues a send descriptor in the send queue. The send de-
scriptor contains the packet’s destination and a reference to
the packet. The NI, which polls the send queue, inspects the
send descriptor. When credits are available for the specified
destination, the descriptor is moved to the transmit queue;
the packet will be transmitted when the descriptor reaches
the head of this queue. When no send credits are available,
the descriptor is added to a blocked-sends queue associated
with the packet’s destination. When credits flow back from
some destination, descriptors are moved from that destina-
tion’s blocked-sends queue to the transmit queue. Since the
blocked-sends queue is always checked before other packets

��
��	�	�	�	�	�		�	�	�	�	�		�	�	�	�	�	
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
���������������������������
��

send
queue

transmit queue

blocked-sends queues

send buffer pool

network interface

Figure 1. Send path and data structures.

can consume credits, packets are transmitted and received in
FIFO order.

Receiving hosts are responsible for posting (via a shared
queue) free host receive buffers to the NI. When no buffers
are available, the NI simply does not copy packets to the host
and does not release the packet’s buffer space. Eventually,
senders will be stalled and remain stalled until the host posts
new buffers.

The sliding window protocol is essentially identical to
the host-level protocol that Fast Messages (and FM/MC)
uses for point-to-point messages. It is simple and efficient;
LFC achieves similar point-to-point latencies as Fast Mes-
sages (10 µs, on the same hardware), which uses the host-
level variant. Since the protocol preserves the reliability of
the underlying hardware by avoiding receiver buffer over-
runs, senders need not buffer packets for retransmission, nor
need they manage any timers. The main disadvantage of the
protocol is that it statically partitions the available receive
buffer space among all senders, so it needs more NI mem-
ory as the number of processors is increased.

3.2. Basic multicast protocol

LFC’s multicast protocol is implemented on top of the re-
liable, NI-level protocol described above; it uses the same
flow control mechanism and the same buffers. The proto-
col operates as follows. Each NI contains a table that spec-
ifies for each sender how packets from that sender must be
forwarded along the multicast tree. Each sender has its own
multicast tree. The NI uses the table to find the forwarding
destinations of each multicast packet that it needs to send for
its host or that arrives from the network. When the NI has
to forward a packet, it creates a send descriptor for each for-
warding destination. From then on, exactly the same pro-
cedure is followed as for a unicast packet. The packet will
only be transmitted to a forwarding destination if credits are

��
������������ ��������������������

��������������������
����� � �

!�!�!"�"�"#�#�#�##�#�#�#$�$�$�$$�$�$�$%�%�%�%%�%�%�%&�&�&&�&�& '�'�'�''�'�'�'(�(�((�(�()�)�)*�*�* +�+�+,�,�,
-�-�-.�.�./�/�/0�0�0

1�1�12�2�2
3�3�34�4�4

5�5�56�6�6 7�7�7�78�8�8�8 9�9�9�9:�:�:
;�;�;�;;�;�;�;<�<�<�<<�<�<�<

=�=�=>�>�> ?�?�?@�@�@AAA
A
BBB
B

CCC
C
DDD
D

E�E�EF�F�F G�G�GH�H�H I�I�IJ�J�J
K�K�KL�L�L M�M�M�MN�N�N�NO�O�OP�P�PQQQ

Q R�R�R�RS�S�ST�T�T�TU�U�U FM/MC

V�V�VW�W�WNI

LFC

P0 P1 P2

P0 P1 P2 mcast
host shared

shared

Figure 2. Buffering in LFC and FM/MC.

available for that destination; otherwise, the send descriptor
is moved to the destination’s blocked-sends queue.

3.3. Protocol comparison

LFC and FM/MC offer similar multicast functionality:
both provide a reliable, flow-controlled multicast primitive
that preserves the (FIFO) ordering among multicast pack-
ets that originate from the same sender. Internally, however,
LFC and FM/MC differ significantly in the ways they per-
form buffer management, flow control, and the tree topology
they use. Below, we discuss these issues in more detail.

Figure 2 shows how LFC and FM/MC allocate receive
buffers. At the network interface level, FM/MC uses a
single queue of NI buffers for all inbound network pack-
ets, while LFC logically partitions its NI buffers among all
senders. FM/MC’s shared-buffer approach at the NI level
is attractive when the amount of NI memory is small, be-
cause the number of buffers need not grow with the num-
ber of nodes in the system. Given a reasonable amount of
memory on the NI and a modest number of nodes, however,
partitioning buffers at this level poses no problems, and ob-
viates the need for FM/MC’s buffer swapping mechanism.
On our 64-node system, LFC allocates 8 NI receive buffers
(each 1 KB) per sender, which amounts to 0.5 MB per NI.
With 8 credits, senders rarely run out of credits.

At the host level, the situation has almost been reversed.
FM/MC allocates a fixed number of unicast buffers per
sender and has another, separate class of multicast buffers.
Senders are not given a fixed number of multicast buffers;
instead, multicast buffer space must be requested from the
credit manager. LFC, in contrast, does not partition its host
buffers.

LFC and FM/MC also differ markedly in the way flow
control is implemented. A multicast credit in FM/MC rep-
resents a buffer on every receiving host and is obtained by
sending a request to the centralized credit manager. So,
FM/MC always waits until every receiver has space before
sending the next multicast packet(s). LFC, in contrast, does
not distinguish between unicast and multicast credits and
does not employ a centralized credit manager. The sender
of a multicast packet does not need to wait for space on all
receiving hosts or NIs, but only needs credits for its chil-

dren in the multicast tree. No request messages are needed
to obtain these credits: receivers know when senders are low
on credits and send credit update messages without receiv-
ing explicit requests. In FM/MC, credits are not returned to
senders, but to the credit manager.

The reason that multicast flow control in LFC is so much
simpler, is that LFC decouples host buffers and NI buffers.
In FM/MC, host buffers must act as a backing store for
NI buffers. Reliability is only guaranteed when there are
enough host buffers. To make sure enough host buffers are
available, FM/MC uses the centralized credit manager. Mul-
ticast flow control cannot be integrated easily with unicast
flow control, because the decision to forward a packet is
taken on the NI, where the flow control information is not
available. One solution is to let the host forward multicast
packets, but this is expensive; the other solution is to move
the flow control protocol to the NI, which is what LFC does.

Finally, we consider the types of multicast trees em-
ployed by both protocols. FM/MC uses binary trees, but
its protocol is in no way tied to this topology. In contrast,
LFC’s multicast protocol (as described so far), is suscepti-
ble to deadlock when an arbitrary topology is used. When
each sender’s multicast tree is a linear chain, for example,
deadlock can easily occur.

By default, LFC uses binomial spanning trees to forward
multicast packets. Such trees restrict the routes that pack-
ets take to the routes prescribed by e-cube routing, which is
deadlock-free [6]. In the next section, we show how LFC’s
multicast protocol can be extended with a deadlock recovery
mechanism, thus allowing arbitrary multicast trees.

Summarizing, LFC’s multicast protocol has important
advantages over FM/MC. The most important advantage is
its simplicity. A single flow control scheme is used for uni-
cast and multicast traffic; there are no centralized compo-
nents in the protocol; and there is no need to swap buffers
back and forth between host and NI. The price to pay for this
simplicity is the restriction on the tree topologies that can
be used, but this restriction can be removed (see Section 4).
With respect to performance, we note that LFC never sends
credit requests and that credits are returned directly to their
senders without waiting for a token to come by. Also, mul-
ticast packets can be forwarded as soon as credits are avail-
able for the next hop.

4. Deadlock recovery

To allow LFC to use arbitrary multicast trees, we have ex-
tended LFC’s multicast protocol with a deadlock recovery
mechanism. When an NI suspects deadlock, it switches to
a slower, but deadlock-free protocol. This protocol requires
P X 1 extra buffers on each NI, where P is the number of
NIs used by the application. Each NI owns one extra buffer
on every other NI. The buffers owned by an NI form a ded-

icated deadlock channel on which only the owner may ini-
tiate communication. Deadlock channels are used to ensure
forward progress when deadlock is suspected.

4.1. Deadlock detection

Deadlock recovery is triggered when a network interface
suspects deadlock. LFC uses only local information to de-
tect potential deadlocks, so no communication is needed
to detect deadlocks. Multiple NIs can detect (and recover
from) a deadlock simultaneously. While simultaneous re-
coveries do not interfere, they can be inefficient [14].

The detection algorithm is simple: each NI assumes
deadlock as soon as it finds that it has run out of send credits
for some destination that it needs to send a packet to. That
is, nonempty blocked-sends queues signal deadlock imme-
diately. Since a deadlock need not involve all NIs, we must
monitor each individual queue; progress on some, but not
all queues does not guarantee freedom of deadlock. Check-
ing for a nonempty blocked-sends queue is efficient, but may
signal deadlock sooner than a timeout-based mechanism. In
Section 5 we evaluate the overhead of our detection mecha-
nism.

When an NI has signaled a potential deadlock, it initiates
a recovery action. No new recoveries are started while a pre-
vious recovery is still in progress. When a recovery termi-
nates, the NI that initiated it will search for other nonempty
blocked-sends queues and start a new recovery if it finds
one. To avoid livelock, the blocked-sends queues are served
in a round-robin fashion.

4.2. Deadlock recovery

The deadlock recovery algorithm must satisfy two re-
quirements. Obviously, it must ensure forward progress.
This is done using the extra deadlock buffers. Second, it
must preserve the order among packets that are multicast on
the same spanning tree.

The recovery protocol is illustrated in Figure 3. In this
figure, vertices represent NIs and edges represent commu-
nication channels. Dashed edges represent channels where
the parent has no credits for the child. When network in-
terface R suspects deadlock, it selects a blocked packet p at
the head of one of its blocked-sends queues and determines
the multicast tree T that this packet is being forwarded on.
The destination D of packet p forms the root of a deadlocked
subtree, indicated with black vertices in Figure 3. The dead-
locked subtree is a subtree of T in which parents do not have
credits for their children and thus cannot forward packets of
T . During a recovery, every node in the deadlocked subtree
will be allowed to forward one packet to all its children in T .

We will now explain the protocol in more detail. First, R
marks the selected packet p with a deadlock flag and trans-

E

D

R

F

Figure 3. Deadlocked subtree.

mits it to D, where it will occupy one of the extra buffers.
When an NI (e.g., D) receives a packet with this flag set,
it belongs to the deadlocked subtree. Such an NI clears the
flag and adds the packet to the blocked-sends queues for all
its children in T . It then forwards, to each child, the first
blocked packet (for that child) that belongs to T . This could
be the packet just enqueued, but it could also be another
packet sent earlier on T . Selecting the first packet in the
blocked-sends queue preserves FIFOness between packets
on the same tree. The NI transmits the packets to its chil-
dren, setting the deadlock flag again only when no credits
are available for some child. This way, the deadlocked sub-
tree is extended. In Figure 3, D sets the deadlock flag in the
packet sent to E, but not in the packet sent to F.

Using this algorithm, an NI that receives a packet with the
deadlock flag set, will always forward, to each of its chil-
dren in T , a packet of T (not necessarily the same packet
that it received and not necessarily the same packet to all
children). The key observation is that this will free at least
one packet of T . The NI will tell its parent in T , by means
of an acknowledgement packet, that it has freed a buffer. It
will only do so, however, when it has received acknowledge-
ments from all children that it added to the deadlocked sub-
tree. That is, acknowledgements are propagated and merged
in reverse direction along the deadlocked subtree. In Fig-
ure 3 one acknowledgement is sent for each black arrow, but
in the opposite direction. When NI R receives an acknowl-
edgement, it knows that its deadlock buffers on all NIs in
the deadlocked subtree are free and it may initiate another
recovery.

5. Performance evaluation

Below, we evaluate the performance of the basic proto-
col (without deadlock recovery) and the impact of deadlock
recovery under conditions of light and heavy loads. In addi-
tion, we compare the performance of LFC and FM/MC. The
fairly large number of nodes (64) in our cluster allows us to
compare the scalability of LFC and FM/MC.

All experiments described below were performed on a
cluster of 64 200 MHz Pentium Pros running BSD/OS 3.0.

Each processor has 64 MB of DRAM, on-chip L1 caches
(8 KB data and 8 KB instruction), and a unified L2
cache (256 KB). Each network interface has a 37.5 MHz
LANai 4.1 processor and 1 MB of SRAM. The NIs are in-
terconnected in a hypercube topology using sixteen 8-port
switches and 2 Y 1.28 Gbit/s cables. Each NI connects to
its host’s PCI bus (33 MHz, 32 bits wide).

At the sending side, both LFC and FM/MC move data
from the host to the NI using programmed I/O. Receiv-
ing NIs use cache-coherent DMA transfers to move pack-
ets to host memory. Packets are received through polling
and copied once after they have been DMAed. While LFC
allows packets to be processed without being copied, most
client systems make at least one copy, so we feel this extra
copy makes the benchmarks more representative.

5.1. Performance of the basic multicast protocol

We first examine the performance of LFC’s basic multi-
cast protocol. For the following measurements, deadlock re-
covery has been disabled. We use 1 KB packets and allocate
8 send credits per sender per destination.

Figure 4 shows the latency (top) and throughput (bottom)
for various message sizes and various numbers of proces-
sors. In both cases, we use binomial spanning trees. We re-
port the latency observed by the last receiver of each (empty)
multicast message. With 4 nodes, we obtain a latency of
22 µs; with 61 nodes1, the latency is 59 µs.

Throughput is measured using a straightforward blast
test. We report the throughput observed by the sender. With
4 nodes, the peak throughput is 42.9 MB/s; with 61 nodes,
the peak throughput is 13.3 MB/s. Note that the 4-processor
throughput curve declines when the message size reaches
the size of the L2 cache (256 KB). At this point, the receiv-
ing processors, which copy data into a receive buffer, start to
suffer from L2 capacity misses. The resulting memory traf-
fic interferes with the NI’s DMA transfers to host buffers.
This does not occur for larger numbers of processors, be-
cause the incoming packets do not arrive at a sufficiently
high rate to interfere with the host’s memory copy.

5.2. Impact of deadlock recovery and tree shape

An interesting question is how much overhead the dead-
lock recovery scheme adds to the basic multicast protocol.
We first examine the case in which no deadlock recovery is
needed. In Figure 5, we show throughput results for the ba-
sic multicast protocol (BP) and the protocol with deadlock
recovery (DR) for three packet sizes (512 bytes, 1 KB, and
2 KB). Receiver buffer space is kept constant at 0.5 MB.
We use 61 processors and the same deadlock-free binomial
spanning tree as before, so no true deadlocks can occur.

1At the time of writing, only 61 out of 64 processors were available.

 2 8 3
2

 1
28

 5
12 2
K

 8
K

10

100

M
ul

tic
as

t l
at

en
cy

 (
m

ic
ro

se
c)

 4 procs.
 8 procs.
16 procs.
32 procs.
61 procs.

4 16 64 25
6

1K 4K 16
K

64
K

25
6K 1M

Message size (bytes)Z
0

10

20

30

40

M
ul

tic
as

t t
hr

ou
gh

pu
t (

M
B

/s
)

[

Figure 4. Multicast latency and throughput.

Since our deadlock recovery scheme makes a local, conser-
vative decision, however, it may still signal deadlock. In this
experiment, processors that are near the root frequently initi-
ate deadlock recovery. In the case of 1024-byte packets, for
example, almost 25% of all multicasts results in a deadlock
recovery action initiated by the root or a processor near the
root. As the figure shows, however, this has only a modest
impact on single-sender throughput. This is due to the small
size of the deadlocked subtrees; in this example, an average
of 1.3 (out of 60) packets per multicast is transmitted via a
deadlock recovery channel.

Figure 6 (left) shows the impact of tree shape on single-
sender multicast throughput. We compare binomial span-
ning trees, binary trees, and linear chains. We use a large
number of processors (61), because that is when we expect
the performance characteristics of different tree shapes to be
most visible. In all cases, deadlock recovery was enabled,
because with binary trees and chains, deadlocks can occur
when multiple senders multicast concurrently.

First, we consider the impact of tree shape on single-
sender throughput. In this case, no deadlocks can occur and
we expect deep trees to perform well. This expectation is
confirmed in Figure 6 (left). The linear chain outperforms

4 16 64 25
6

1K 4K 16
K

64
K

25
6K 1M

Message size (bytes)Z
0

5

10

15

M
ul

tic
as

t t
hr

ou
gh

pu
t (

M
B

/s
)

[
BP (2 KB)
DR (2 KB)
BP (1 KB)
DR (1 KB)
BP (0.5 KB)
DR (0.5 KB)

Figure 5. Multicast throughput with (DR) and
without (BP) deadlock recovery.

both the binary and binomial spanning trees by a large mar-
gin; the difference between the binary tree and the binomial
spanning tree is small. With 61 nodes, the binary tree is al-
most full; it has 6 levels and 30 nodes at the last level. The
binomial spanning tree is broader and shallower: it has only
4 nodes at the last (6th) level and a maximum fanout of 6.

To test the behavior of the deadlock recovery scheme
in the case that deadlocks can occur, we performed an all-
to-all benchmark in which all senders broadcast simulta-
neously. We use the same multicast trees (binomial, bi-
nary, and chain) as in the single-sender case. The all-to-
all benchmark is a worst-case scenario for our deadlock re-
covery scheme. First, true deadlocks are likely to occur for
the trees that are not deadlock-free, especially for the chain.
Second, since all processors multicast at the same time, the
occupancy of the NIs increases because they need to for-
ward many multicast packets. As a result, senders need to
wait longer before their send credits are returned to them and
deadlock will be triggered sooner.

Figure 6 (right) shows the per-sender throughput for all
three multicast topologies (on 61 processors). First note that
the per-sender throughput is much lower than in the single-
sender case, due to contention for network resources (links,
buffers, and NI processor cycles). As expected, the chain
topology performs badly. The binomial spanning tree per-
forms better than the binary tree.

Table 1 reports the frequency of deadlock recovery (as a
fraction of the number of multicasts) and the average num-
ber of deadlock recovery packets per multicast. These statis-
tics are for an all-to-all exchange of 64 KB messages on
61 processors. From these statistics it is clear why the chain
performs badly: every multicast triggers a deadlock recov-
ery action and all children in the multicast tree are without
credits, so we are forced to always use the slow deadlock

 4

16

64

 2
56

1K

4K

 1
6K

 6
4K

 2
56

K

1M

Message size (bytes)Z

0

10

20

30

T
hr

ou
gh

pu
t (

M
B

/s
)

\

chain
binomial sp. tree
binary tree

 4

16

64

 2
56

1K

4K

 1
6K

 6
4K

Message size (bytes)Z

0.0

0.2

0.4

Figure 6. Multicast and all-to-all throughputs.

Tree shape Recoveries
per multicast

Avg. #deadlock
recovery packets

binary tree 0.362 2.7
binomial sp. tree 0.853 3.5
chain 1.000 59.9

Table 1. Deadlock recovery statistics.

channels. With binary and binomial spanning trees dead-
lock recoveries also occur frequently, but here the size of
the deadlocked subtrees is much smaller. Finally, note that
binary trees trigger fewer and smaller recoveries than bino-
mial spanning trees, but yet perform worse. Apparently, the
performance difference is not caused by the deadlock recov-
ery protocol.

Summarizing, we find that deadlock recovery is triggered
frequently, but that its effect on performance is modest when
the communication load is moderate and true deadlocks do
not occur. To reduce the number of false alarms, we are
considering a more refined, timeout-based, mechanism as
in [14].

5.3. Comparison with FM/MC

Below, we compare LFC and FM/MC using the single-
sender and all-to-all throughput benchmarks. We focus on
throughput, because throughput benchmarks stress the flow
control protocol. The difference in unicast and multicast la-
tency obtained by LFC and FM/MC is small; usually, LFC’s
latencies are slightly lower. Before turning to the measure-
ments, we discuss two factors that affect the performance of

4 16 64 25
6

1K 4K 16
K

64
K

25
6K 1M

Message size (bytes)Z

5

10

15

M
ul

tic
as

t t
hr

ou
gh

pu
t (

M
B

/s
)

[

LFC, 8 procs.
LFC, 16 procs.
FM/MC, 8 procs.
FM/MC, 16 procs.

4 16 64 25
6

1K 4K 16
K

64
K

25
6K 1M

Message size (bytes)Z

5

10

15

LFC, 32 procs.
LFC, 61 procs.
FM/MC, 32 procs.
FM/MC, 61 procs.

Figure 7. Multicast throughput comparison.

both systems: packet size and tree shape.
LFC uses variable-length packets with a maximum size

of 1 KB, whereas FM/MC uses fixed-size, 256-byte pack-
ets. Fixed-size packets are slightly easier to process than
variable-length packets, but have the disadvantage that they
have to be relatively small to avoid a large increase in la-
tency. Using small packets, however, often limits through-
put. Due to its variable-length packets, LFC achieves
both low latency and high throughput. On 61 processors,
for example, LFC obtains a peak multicast throughput of
13.3 MB/s, versus 7.7 MB/s for FM/MC. To allow a fair
comparison, we configured LFC to use 256-byte packets.
This is a disadvantage for LFC, because LFC has slightly
higher per-packet overheads which it can normally hide be-
hind its larger packets.

To avoid differences in performance that result from dif-
ferences in tree shape, we configured LFC to use binary
trees, just like FM/MC. Since binary trees are not deadlock-
free for LFC, we also enabled LFC’s deadlock recovery
mechanism. In a single-sender throughput benchmark, no
deadlocks can occur, so we expect little overhead from the
deadlock recovery mechanism. In the all-to-all benchmark,
however, true deadlocks can occur, so we expect perfor-
mance to suffer more noticeably.

Figure 7 shows single-sender throughputs on 8, 16, 32,
and 61 processors. For 8 processors and large messages,
FM/MC outperforms LFC, due to LFC’s larger per-packet
overheads. At 256 bytes, FM/MC begins to fragment mes-
sages, because FM/MC does not allow the user to com-
pletely fill the first packet of a message.2 This explains the

2One word is used to store an active message handler.

 4 1
6

 6
4

 2
56 1
K

 4
K

 1
6K

 6
4K

Message size (bytes)Z

1

2

A
ll-

to
-a

ll
th

ro
ug

hp
ut

 (
M

B
/s

)

[

LFC, 8 procs.
LFC, 16 procs.
FM/MC, 8 procs.
FM/MC, 16 procs.

 4 1
6

 6
4

 2
56 1
K

 4
K

 1
6K

 6
4K

Message size (bytes)Z

0.1

0.2

0.3

LFC, 32 procs.
LFC, 61 procs.
FM/MC, 32 procs.
FM/MC, 61 procs.

Figure 8. All-to-all throughput comparison.

step in FM/MC’s throughput curves. Unlike LFC, FM/MC
manages to increase its throughput while fragmenting mes-
sages; LFC always reaches its peak throughput exactly
where fragmentation starts.

With 16 processors, FM/MC’s peak throughput is better
than LFC’s, but for larger messages, FM/MC’s throughput
is the same as LFC’s throughput. With more than 16 pro-
cessors, LFC achieves much higher throughputs, which
indicates that LFC’s multicast protocol scales better than
FM/MC’s protocol.

Figure 8 shows the performance results for the all-to-
all throughput benchmark on 8, 16, 32, and 61 processors.
Again, for 8 processors and large messages, FM/MC outper-
forms LFC and at 16 processors performance is about equal.
At 32 processors, however, LFC outperforms FM/MC and
this continues to be the case for larger numbers of proces-
sors. In this benchmark, FM/MC suffers not only from its
centralized credit manager, but also from its lack of NI-level
flow control, which triggers the swapping mechanism de-
scribed in Section 2.2 and degrades performance.

6. Related work

Using the network interface instead of the host to forward
multicast traffic is not a new idea. Our NI-level protocol is
original, however, in that it integrates unicast and multicast
flow control and uses a deadlock recovery scheme to avoid
routing restrictions.

In [11], the authors propose to exploit ATM network in-
terfaces to implement collective communication operations,
including multicast. In their symmetric broadcast proto-
col, NIs use an ATM multicast channel to forward messages

to their children; multicast acknowledgements are also col-
lected via the NIs. The sending host maintains a sliding win-
dow; it appears that a single window is used per broadcast
group. LFC, in contrast, uses sliding windows between each
pair of NIs. This allows LFC to integrate unicast and multi-
cast flow control. The authors of [11] do not discuss unicast
flow control and present simulation results only.

Gerla et al. [10] also discuss using NIs for multicast
packet forwarding. Their scheme avoids deadlock by divid-
ing receive buffers in two classes. The first class is used
when messages travel to higher-numbered NIs, the second
when going to lower-numbered NIs. This scheme requires
buffer resources per multicast tree, which is problematic in
a system with many small multicast groups.

Kesavan and Panda studied optimal multicast tree shapes
for systems with programmable network interfaces [13].
They describe two packet-forwarding schemes, first-child-
first-served and first-packet-first-served (FPFS), and show
that the latter performs best. The paper does not discuss flow
control. LFC integrates FPFS with its flow control scheme.
As in FPFS, LFC forwards packets to all children as they ar-
rive, but queues packets when no buffer space is available at
the forwarding destination.

Several Myrinet-based systems employ different forms
of link-level flow control. VMMC-2 [9], for example, treats
the hardware as unreliable and saves transmitted packets in
NI memory until they have been acknowledged by the re-
ceiving NI. In a multicast setting, the network interfaces
would not only have to buffer packets that originate from
their host, but also the packets that they must forward along
the spanning tree.

AM-II [5], a protected cluster communication system,
implements part of its flow control mechanism on the net-
work interface. At that level AM-II uses multiple logical
channels and runs an alternating bit protocol on each chan-
nel. Since AM-II does not statically partition NI buffers
among senders, this scheme is augmented with a host-level
sliding window protocol and NI-level retransmission.

LFC’s multicast protocol can be implemented using any
protocol that provides reliability at the NI level. Both
VMMC-2 and AM-II provide this. Unlike VMMC-2 and
AM-II, however, LFC assumes that the hardware is reliable
and trades NI buffer space for a simpler flow control scheme
between NIs.

Deadlock in spanning tree multicast protocols is often
avoided by means of a deadlock-free routing algorithm.
Most research in this area, however, applies to routing at
the hardware level. Also, most protocols avoid deadlock
by imposing routing restrictions [6] and this is the approach
taken by LFC’s basic multicast protocol. To allow differ-
ent types of multicast trees that fit the communication pat-
tern of an application, we have added a deadlock recovery
scheme. This scheme was inspired by the DISHA proto-

col [1]. DISHA, however, is a deadlock recovery scheme
for unicast worms, whereas our scheme recovers from buffer
deadlock in a store-and-forward protocol for multicasting.

7. Conclusions

We have presented a simple, efficient multicast proto-
col for Myrinet. The protocol uses Myrinet’s programmable
network interfaces to efficiently forward multicast packets
along a spanning tree. The key characteristic of the proto-
col is its use of hop-by-hop flow control at the network in-
terface level. This is quite different from the flow control
scheme employed by FM/MC, which uses end-to-end flow
control and a centralized credit manager for buffer reser-
vations. LFC’s protocol is simpler and has two important
advantages: multicast flow control is easily integrated with
unicast flow control (e.g., buffers can be shared) and no cen-
tralized buffer management is needed for multicast buffers.

The main disadvantage of LFC’s hop-by-hop flow con-
trol is the potential for buffer deadlocks. LFC’s basic multi-
cast protocol avoids such deadlocks by restricting the shape
of multicast trees. We have shown that this restriction can
be removed by means of a deadlock recovery scheme that
requires extra buffer space on each NI. When no deadlocks
occur, the overhead of this scheme is small.

LFC’s basic multicast protocol performs well. Due to its
use of variable-length instead of fixed-length packets, LFC
achieves much higher throughputs than FM/MC. Even when
we use equal packet sizes and the same multicast trees for
both protocols, LFC almost always outperforms FM/MC for
more than 16 processors. This performance gain is the result
of LFC’s NI-level flow control which does not use any cen-
tralized components and which avoids excessive pressure on
network interface buffers.

Acknowledgements We thank Rutger Hofman, Thilo
Kielmann, Koen Langendoen, Aske Plaat, Kees Verstoep,
and the anonymous referees for their feedback on this work.
We thank Andrew Chien and Scott Pakin for making FM
available to us.

References

[1] K. Anjan and T. Pinkston. An Efficient, Fully Adaptive
Deadlock Recovery Scheme: DISHA. In Proc. of the 22nd
Int. Symp. on Computer Architecture, pages 201–210, Santa
Margherita Ligure, Italy, June 1995.

[2] H. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langen-
doen, T. Rühl, and M. Kaashoek. Performance Evaluation of
the Orca Shared Object System. ACM Trans. on Computer
Systems, 16(1):1–40, Feb. 1998.

[3] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,
J. Seizovic, and W. Su. Myrinet: A Gigabit-per-second Local
Area Network. IEEE Micro, 15(1):29–36, 1995.

[4] J. Bruck, L. De Coster, N. Dewulf, C.-T. Ho, and R. Lauw-
ereins. On the Design and Implementation of Broadcast and
Global Combine Operations Using the Postal Model. IEEE
Trans. on Computers, 7(3):256–265, Mar. 1996.

[5] B. Chun, A. Mainwaring, and D. Culler. Virtual Network
Transport Protocols for Myrinet. In Hot Interconnects’97,
Stanford, CA, Apr. 1997.

[6] W. Dally and C. Seitz. Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks. IEEE Trans. on
Computers, 36(5):547–553, May 1987.

[7] J. Dongarra, S. Otto, M. Snir, and D. Walker. A Message
Passing Standard for MPP and Workstations. Communica-
tions of the ACM, 39(7):84–90, July 1996.

[8] J. Duato. A Necessary and Sufficient Condition for
Deadlock-Free Routing in Cut-Through and Store-and-
Forward Networks. IEEE Trans. on Parallel and Distributed
Systems, 7(8):841–854, Aug. 1996.

[9] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and K. Li.
VMMC-2: Efficient Support for Reliable, Connection-
Oriented Communication. In Hot Interconnects’97, Stan-
ford, CA, Apr. 1997.

[10] M. Gerla, P. Palnati, and S. Walton. Multicasting Protocols
for High-Speed, Wormhole-Routing Local Area Networks.
In Proc. of the SIGCOMM ’96 Symposium, pages 184–193,
Stanford University, CA, Aug. 1996.

[11] Y. Huang and P. McKinley. Efficient Collective Operations
with ATM Network Interface Support. In Proc. of the 1996
Int. Conf. on Parallel Processing, volume I, pages 34–43,
Bloomingdale, IL, Aug. 1996.

[12] R. Karp, A. Sahay, E. Santos, and K. Schauser. Optimal
Broadcast and Summation in the LogP Model. In Proc. of the
1993 Symp. on Parallel Algorithms and Architectures, pages
142–153, Velen, Germany, June 30–July 2 1993.

[13] R. Kesavan and D. Panda. Optimal Multicast with Packeti-
zation and Network Interface Support. In Proc. of the 1997
Int. Conf. on Parallel Processing, pages 370–377, Bloom-
ingdale, IL, Aug. 1997.

[14] P. López, J. Martı́nez, and J. Duato. A Very Efficient Dis-
tributed Deadlock Detection Mechanism for Wormhole Net-
works. In Proc. of the 4th Int. Symp. on High-Performance
Computer Architecture, pages 57–66, Las Vegas, NV, Feb.
1998.

[15] S. Pakin, M. Lauria, and A. Chien. High Performance Mes-
saging on Workstations: Illinois Fast Messages (FM) for
Myrinet. In Supercomputing ’95, San Diego, CA, Dec. 1995.

[16] C. Stunkel, R. Sivaram, and D. Panda. Implementing Multi-
destination Worms in Switch-based Parallel Systems: Archi-
tectural Alternatives and their Impact. In Proc. of the 24th
Int. Symp. on Computer Architecture, pages 50–61, Denver,
CO, June 1997.

[17] K. Verstoep, K. Langendoen, and H. Bal. Efficient Reliable
Multicast on Myrinet. In Proc. of the 1996 Int. Conf. on Par-
allel Processing, volume III, pages 156–165, Bloomingdale,
IL, Aug. 1996.

