
ReducingData and Control Transfer Overhead
thr ough Network-Interface Support

RaoulA. F. Bhoedjang KeesVerstoep Henri E. Bal Tim Rühl
CornellUniversity Vrije Universiteit DataDistilleries
Ithaca,NY, USA Amsterdam,TheNetherlands Amsterdam,TheNetherlands

raoul@cs.cornell.edu
�
versto,bal� @cs.vu.nl t.ruhl@datadistilleries.com

Abstract

This paperdescribesgenericNI-level mechanismsthat
reducedata and control transferoverheadsin user-level
communicationsystems.Thesemechanismsreducepolling
overheadwithout reducingthroughput,improve multicast
performance, and reducethe frequencyof network and
timer interrupts.They haveall beenimplementedin a fam-
ily of low-level Myrinet communicationsystems.We illus-
tratetheperformanceimpactof thesemechanismsusingmi-
crobenchmarksandparallel-applicationmeasurements.

1. Intr oduction

This paperdescribesandevaluatesmechanismsthat re-
duce the data and control transfer overheadsassociated
with three importantcomponentsof user-level communi-
cationsystems:polling, interrupts,andmulticast.Our im-
plementationsof thesemechanismsuseMyrinet’s [7] pro-
grammablenetwork interface(NI) to performsimple, but
crucialtasks.

User-level communicationsystemsallow processesto
detectand processincoming messageswithout kernel in-
volvementby meansof polling. A poll usually involves
readingoneor two wordsandis thereforemuchlessexpen-
sivethananinterrupt.Nevertheless,anaiveimplementation
canreducecommunicationperformanceby introducingun-
necessaryI/O bus transfers,which canincreasethecostof
apoll. Section3 comparesdifferentpolling mechanismand
describesan optimizationcalledpacket shifting that yields
a fastpoll andputsno unnecessaryloadon theI/O bus.

Many user-level communicationsystemsneglect multi-
cast[6] or provideit asanafterthoughtby layeringit on top
of message-basedpoint-to-pointprimitives. Several sys-
temshave demonstratedthe potentialperformanceadvan-
tageof NI-level multicastsupport[5, 16]. Section4 com-
paresdifferentmulticaststrategiesandshows thatNI-level

multicastsupportreducesmulticastlatency, increasesmul-
ticastthroughput,andimprovesapplicationperformance.

Communicationsystemsandtheir clientsrely on inter-
rupts for the asynchronousnotification of eventssuchas
packetarrival andtimerexpiration.Interrupts,however, are
expensive. Section5 shows how a hostandits NI canco-
operativelyreducethefrequency of networkandtimerinter-
rupts.In thecaseof timer interrupts,NI supportalsoallows
usto implementtimerswith microsecondgranularity. Fine-
grain timersare becomingincreasinglyimportant[2]; we
usethemto implementfastacknowledgements.

Our main contribution is to show how relatively sim-
ple NI mechanismscan reducedata and control transfer
overheadin a communicationsystem. All mechanisms
have beenimplementedin a family of communicationsys-
temsthat implementthe sameLow-level Communication
Interface (LCI). They have played an important role in
LCI’sdemonstratedcapacityto supportavarietyof parallel-
programmingsystems[4]. The mechanisms,however, are
generalandcanbeusedin any message-passingsystem.

This paper is organizedas follows. Section 2 de-
scribesLCI and its implementations.Section3 describes
anefficient implementationof polling thatdoesnot reduce
throughput.Section4 describesanefficient,NI-level multi-
castimplementation.Section5 describestwo mechanisms
that reducethe frequency of network andtimer interrupts.
Section6 discussesrelatedwork andSection7 concludes.

2. LCI

LCI is a low-level communication interface that
forms the core communicationlayer of several parallel-
programming systems. LCI provides reliable, FIFO,
packet-basedpoint-to-pointandmulticastcommunication.
Packetscanbereceivedusingpolling or interrupts.Table1
lists themainfunctionsof LCI’sprogramminginterface.

The following systemshave beenported to or imple-
mentedon LCI: CRL, a region-baseddistributed shared-



void *lci send alloc(void) Allocatesa sendpacket in NI memoryandreturnsa pointerto its datapart.
int lci group create(int *members, int nmemb) Createsamulticastgroupandreturnsa groupidentifier. Theprocessidentifiersof

all nmembmembersarespecifiedin members.
void lci ucast launch(int dst, void *pkt, int size) Transmitssizebytesof pkt to processdst.
void lci bcast launch(void *pkt, int size) Broadcastssizebytesof pkt.
void lci mcast launch(int gid, void *pkt, int size) Multicastssizebytesof pkt to all membersof groupgid.
void lci poll(void) Drainsthenetwork andcalls lci upcall() for eachincomingpacket.
void lci intr disable(void) Logically disablesnetwork interrupts.
void lci intr enable(void) Logically enablesnetwork interrupts.
int lci upcall(int src, void *pkt, int size, int mcast) LCI invokes this client-suppliedfunction onceper incomingpacket. Pkt points

to thedatajust received(sizebytes)from src; mcastindicateswhetheror not pkt
is a multicastpacket. If lci upcall() returnszero,LCI recyclespkt immediately;
otherwise,ownershipis transferredto theclient.

void lci packet free(void *pkt) Returnsownershipof receive packet pkt to LCI.

Table 1. LCI’s programming interface (slightl y simplified)

memory(DSM) system[10]; MPICH [9], an implementa-
tion of the MPI message-passingstandard;Manta, a par-
allel Java system[11]; and Orca, an object-basedDSM
system[3]. Thesesystemshave differentcommunication
requirementsand generatedifferent communicationpat-
terns[4]. Specifically, they differ in theirmessage-sizedis-
tributions, in whetherthey requireinterrupt-driven packet
delivery or multicast, and in whether they communicate
mainlysynchronouslyor asynchronously.

The LCI implementations run on a 128-node
Myrinet/Linux cluster. Each node containsa 200 MHz
Intel PentiumProprocessorwith 128Mbyte of DRAM. A
Myrinet NI is attachedto the host’s 32-bit, 33 MHz PCI
bus. The NI hasa 33 MHz LANai 4.1 RISC processor,
1 Mbyte of SRAM, andthreeDMA engines.The NIs are
connectedvia a 3D grid of 8-portswitchesandfull-duplex
1.28 Gbit/s links. Myrinet providesno hardwaresupport
for multicast.Eachimplementationgivesat mostoneuser
processaccessto theMyrinet NI. NI accessis unprotected.

The NI-supportedmechanismsdescribedin this pa-
perhave beenimplementedin threeLCI implementations:
LCI-ni, LCI-host, and LCI-mixed. (In previous publica-
tions[5, 6], LCI-ni is calledLFC.) Theterm’LCI’ is some-
timesusedin statementsthatpertainto all implementations.
A detailedcomparisonof theimplementationsis givenelse-
where[4]; herewe summarizetheirmaincharacteristics.

LCI-ni makesaggressive useof the Myrinet hardware.
LCI-ni doesnot implementretransmission,assumingthat
the hardwareneitherdropsnor corruptspackets. To pre-
ventNI-level buffer overflows,LCI-ni runsanNI-level flow
control protocol. Moreover, LCI-ni usesMyrinet’s pro-
grammableNI to provide an efficient multicastimplemen-
tation [5]. LCI-host implementsboth retransmissionand
multicastforwardingon the host. LCI-mixeddoesnot im-
plementretransmission(like LCI-ni) andimplementsmul-
ticastforwardingon thehost(likeLCI-host).

Figure1 illustratesLCI’s controlanddataflow pathfor

point-to-pointpackets. This path is identical in all three
implementations.To senda point-to-pointpacket, an LCI
clientcallslci sendalloc() to allocatea1 Kbytesendbuffer
in NI memory(step1 in Figure 1) andusesprogrammed
I/O to copy datainto this buffer (step2). Next, the client
calls lci ucastlaunch(), which createsa senddescriptorin
NI memory(step3). Whenthe NI finds the descriptor, it
transmitsthe packet (step4). The receiving NI copiesthe
packet to pinnedhostmemory, usingDMA (step5).

If network interruptsareenabled,the receiving NI may
generatea network interrupt(step6; seealsoSection5.1).
Thekerneldispatchesnetwork interruptsasUnix signalsto
thereceiverprocess.Eachsignalis processedby LCI’s sig-
nalhandler, whichcallsapolling routineto processpackets
queuedin hostmemory.

If interruptsare disabled,packets in host memoryare
detectedthroughpolling. The polling routine, lci poll(),
passeseach packet to a client-supplied upcall routine
named lci upcall() (step 7). This routine processesthe
packet in a client-definedway andtheneitherreleasesthe
packet or queuesit for further processing. Since host
buffers arestoredin pinnedmemory—a relatively scarce
resource—clients should not queuepackets unnecessar-
ily. Queuedpacketsmustbe releasedexplicitly by calling
lci packet free().

3. NI-Level Packet Shifting

Packet shifting is an NI-supportedmechanismthat re-
ducesthecostof polling without reducingthroughput.It is
usedby all LCI implementations.

3.1. Polling on Myrinet

Polling is the control-transfermechanismof choice in
mostuser-level communicationsystems,becauseinterrupts

2



Network interface

1

4

5

3 6

NI control
program

2

User data

Host

7

User process

Figure 1. Data and contr ol transf er in LCI

areexpensive. On a 200MHz PentiumProrunningLinux,
for example,dispatchingan interrupt to a kernel interrupt
handlercostsapproximately8 µs. Dispatchingto a user-
level signal handlercostsan additional17 µs. This cost
exceedsLCI-ni’ sone-waynull latency (12µs).

A simpleway to implementpolling on Myrinet is to let
theNI incrementavariablein its memoryandto let thehost
readthevariable.Thisis inefficient,however,becauseevery
poll maycausean I/O bus transfer. This transferincreases
thetime to executethepoll.

On architectureswith cache-coherentDMA, theseI/O
bustransferscanbeavoidedby letting theNI updateavari-
able in cachedhostmemory. Eachtime the NI hastrans-
ferredapacketto hostmemory, it updatesahostvariableby
meansof a second,smallDMA transfer. Thehostpolls by
readingthisvariablefrom its localmemory. If pollsareexe-
cutedfrequently, theflagwill bemovedinto thedatacache.
Failedpolls arethereforeinexpensive andgenerateneither
memorynor I/O traffic. Whenthe NI writes the flag, the
hostwill incur a cachemissandreadthe flag’s new value
from memory. Ona200MHz PentiumPro,theschemejust
describedcosts5 nanosecondsfor a failedpoll (i.e.,acache
hit) and74 nanosecondsfor a successfulpoll (i.e., a cache
miss).For comparison,eachpoll in thesimplescheme(i.e.,
anI/O bustransfer)costs467nanoseconds.

3.2. Polling in LCI

LCI usesanoptimizedvariantof theDMA-basedpolling
approachdescribedabove. In LCI, eachhostreceivebuffer
containsastatusfield thatindicateswhetherthecontrolpro-
gramhascopieddatainto the buffer. Receive buffers are
organizedin a queue. During a poll, LCI teststhe status
field of the buffer at the headof the queue. Whenthe NI
receivesa packet, it mustcopy the packet’s payloadinto a
hostreceivebuffer andsetthatbuffer’sstatusfield to FULL.
For efficiency, LCI folds both actionsinto a single DMA
transfer. This is illustratedin Figure2, which alsoshows
thesimplerimplementationthatusestwo DMA transfers.

Combined data and
status DMA transfer

Displacement field
Status field (E=EMPTY, F=FULL)

Packet buffer in host memory

E

Data DMA transfer

F

Packet buffer in network interface memory

Header Payload F

Status DMA transfer

Figure 2. Packet shifting

Thesimplestway to avoid two DMA transfersis to copy
thewholeNI packetbuffer to hostmemory, but this is inef-
ficient for packetswith a smallpayload.To avoid transfer-
ring theemptypartof anNI receive buffer, thestatusfield
mustbe storedright after the packet’s payload. (If it were
storedin front of thedata,thehostcouldbelieve it received
a packet beforeall of that packet’s datahadarrived.) The
positionof the FULL word thereforedependson thesizeof
thepacket’s payload.Thehost,however, needsto know in
advancewhereto poll for the statusfield. LCI therefore
transfersthepacket’spayloadandtheFULL wordto theend
of the host buffer. In addition, LCI transfersa word that
holdsthe payload’s displacementrelative to the beginning
of thehostreceive buffer. Usingthedisplacement,thehost
candirectlycomputethestartof thepacket’sdata.

This packet shifting requiresonly a few simplecalcula-
tionson theNI, workswell for largeandsmallpackets,and
allows thehostto poll withoutgeneratingI/O bustraffic.

3.3. PerformanceImpact

Figure3 shows theimpactof differentpolling strategies
on small-messagethroughput,an important performance
metricfor communicationsystemsthatsupportparallelpro-
gramming. ’Packet shifting’ and’ProgrammedI/O’ attain
the highestthroughput. With ’ProgrammedI/O,’ the host
polls a counterin NI memory. This strategy achieveshigh
throughput,but increasesthe latency of individual polls.
The’Full packet’ strategy alwaysusesasingleDMA trans-
fer to copy anentire1 Kbyte NI receive buffer to thehost,
irrespectiveof theactualpayload.Thisyieldspoorthrough-
put for small packetsand throughputremainsworsethan
with packetshiftinguntil packetsarenearlyfull. The’Dou-
ble DMA’ strategy always usestwo DMA transfers,one
for the dataandonefor the FULL word. This yields poor
throughput,especiallyfor packetsthat aremorethanhalf-
full. The’Static split’ strategy is a combinationof ’Double

3



0� 200� 400� 600� 800� 1000

Message size (bytes)�
0

20

40

60

T
hr

ou
gh

pu
t (

M
by

te
/s

ec
on

d)

�
Programmed I/O
Packet shifting
Full packet
Static split, 512 bytes
Double DMA

Figure 3. Comparison of polling strategies

DMA’ (for packetswith a payloadof lessthan512 bytes)
and’Full packet’ (for packetswith a largerpayload).This
strategy outperforms’Full packet’ for small payloads,but
still lagsbehind’Packetshifting’ for largerpayloads.

All variantsachieve their peakthroughputwith 1 Kbyte
messagesandmaintainthatthroughputfor largermessages,
with theexceptionof somedipscausedby fragmentation.

4. NI-Level Multicast Forwarding

LCI providesa reliable,FIFO multicastprimitive. Mul-
ticastis usedto implementcollective communicationoper-
ationsin message-passingsystemsandto updatereplicated
datain DSM systems[3]. SinceMyrinet doesnot support
multicastin hardware,communicationsystemsmustimple-
mentmulticastservicesin software. This is usuallydone
by meansof a spanning-treemulticastprotocol. In sucha
protocol,thesenderandreceiversareorganizedinto a mul-
ticasttree. Thesenderis the root of the treeandtransmits
eachmulticastpacket to all its children(a subsetof there-
ceivers). Thesechildren, in turn, forward eachpacket to
their children,andsoon. Tree-basedprotocolsallow pack-
ets to travel in parallelalongthe branchesof the treeand
thereforeusuallyhave logarithmiccomplexity.

4.1. Host-Level Multicast Forwarding

Most communicationsystemsimplementmulticastfor-
warding using point-to-point message-passingprimitives.
Eachhost in the multicasttreereceivesan incomingmul-
ticast as a point-to-pointmessageand then forwardsthis
messageto its children.

LCI-host and LCI-mixed use an optimized versionof
this scheme.First, both implementationsforward individ-
ual packetsratherthanentiremessages:forwardingbegins
assoonasthefirst packetof amultipacketmessagehasbeen
received. Systemsthat layer multicastingover message-
basedpoint-to-pointprimitives delay forwarding until an

entiremessagehasbeenreceived,which increaseslatency
andreducesthroughputfor multipacket messages.Second,
duringforwarding,bothimplementationscopy packetsback
to the NI only once,even when they forward to multiple
children.Insteadof copying thedatamultiple times,multi-
ple senddescriptorsarecreated,instructingthe NI to send
the samepacket to multiple destinations.Together, these
optimizationsallow LCI-hostandLCI-mixedto attainfairly
goodmulticastthroughput(seeSection4.3).

4.2. NI-Level Multicast Forwarding

Evenwith theoptimizationsdescribedabove,host-level
forwarding has drawbacks. First, since each reinjected
packet wasalreadyavailablein NI memory, host-level for-
wardingresultsin an unnecessaryhost-to-NIdatatransfer
ateachinternaltreenodeof themulticasttree(seeFigure4,
left). Second,if one host doesnot poll the network in a
timelymanner, multicastdeliverywill bedelayedin awhole
subtree.Insteadof relying on polling, the NI canraisean
interrupt, but interruptsare expensive. Third, the critical
sender-receiverpathincludesthehost-NIinteractionsof all
the nodesbetweenthe senderand the receiver. Thesein-
teractionsconsistof copying the packet to the host, host
processing,andreinjectingthepacket.

To solve theseproblems,LCI-ni usesNI-level multicast
forwarding.Figure4 contrastshost-level (left) andNI-level
(right) forwarding.NI-level forwardingdoesnotrequirethe
host-to-NIdatatransferandremovestheNI-to-hosttransfer
from thecritical path: a packet canbe forwardedindepen-
dently of the NI-to-hostcopy. Here,we describeonly the
datatransferbehavior of this NI-level multicastprotocol.
Deadlockavoidanceand the implementationof reliability
aredescribedelsewhere[4, 5].

LCI-ni attachesaspecialmulticasttagto multicastpack-
ets,which is recognizedby all NIs. Whenan NI receives
a multicastpacket, it looksup thepacket’s forwardingdes-
tinationsin a tablestoredin NI memory. Eachsenderhas
its own multicasttree;by default, all implementationsuse
binary trees. The NI transmitsthe packet from its NI re-
ceive buffer to all forwardingdestinationswithout making
any internaldatacopies.After startingthefirst of thesefor-
warding transfers,the NI also startsa DMA transferthat
copiesthepacketto hostmemory. (TheNI canperformtwo
DMA transferssimultaneously.)

4.3. PerformanceImpact

Figure5 shows themulticastlatency andthroughputon
64processorsattainedby theLCI implementations.Thela-
tency benchmarkmeasuresthe latency to the last receiver
of a broadcast.The throughputbenchmarkmeasuresthe
throughputobserved at the sender. LCI-ni clearly attains

4



Host Host

Network interface Network interface

Figure 4. Multicast forwar ding strategies

0� 200� 400� 600� 800� 1000

Message size (bytes)�
0

50

100

150

200

250

La
te

nc
y 

(m
ic

ro
se

co
nd

s)

�

64 processors,
no receiver copy

LCI-host
LCI-mixed
LCI-ni

256� 1K� 4K� 16K� 64K	 256K� 1M

Message size (bytes)�

0

5

10

15

20

T
hr

ou
gh

pu
t (

M
by

te
/s

ec
on

d)

�

64 processors,
with receiver copy

LCI-ni
LCI-mixed
LCI-host

Figure 5. Multicast latenc y and thr oughput

the lowest latency. It completelyeliminatesa host-to-NI
copy andremovesanNI-to-hostcopy from thecritical path.
LCI-ni alsohasthebestthroughput,but thedifferencewith
host-level forwarding is lessdramaticthan in the latency
benchmark,becausethehost-level forwardingimplementa-
tions have beenheavily optimized. Moreover, this bench-
markdoesnot show theimpactof spendinghost-processor
cyclesonmulticastforwarding.

Figure 6 illustratesthe impact of different forwarding
strategies on two MPI applications,ASP and QR. Both
applicationswere run on 64 processorsand their perfor-
manceis dominatedby broadcasttraffic. Thesemeasure-
mentsuse two MPI implementations,both of which are
basedon MPICH [9], a widely usedMPI implementation.
One implementation,called ’MPICH’ in Figure 6, uses
MPICH’sdefaultbroadcastimplementation,which, in turn,
usesMPI’s point-to-pointprimitivesto forwardentiremes-

LCI-ni
LCI-host

MPICH
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

ex
ec

ut
io

n 
tim

e

ASP/MPI

LCI-ni
LCI-host

MPICH
0.0

0.5

1.0

1.5
QR/MPI

Figure 6. Comparison of multicast strategies

sagesat the host level. The point-to-pointprimitivesare
implementedon top of LCI’s point-to-pointpacket trans-
missionfacility; LCI’sbroadcastandmulticastarenotused.
We modified this implementationto usebinary broadcast
treesinsteadof binomial trees,so that the implementation
wouldusethesametreesastheothertwo implementations.

TheotherMPI implementationusesLCI’s broadcastin-
steadof MPICH’sdefaultbroadcast.Weranthis implemen-
tation on LCI-host and LCI-ni; thesevariantsare labeled
’LCI-host’ and’LCI-ni’ in Figure6. Both variantsforward
packetsratherthanmessages,but LCI-hostforwardson the
host,while LCI-ni forwardson theNI.

The All-pairs ShortestPath (ASP) programfinds the
shortestpathbetweenall nodesin a graph. In eachitera-
tion, oneprocessorbroadcastsa 4 Kbyte matrix row. The
algorithm iteratesover all of this processor’s rows before
switching to anotherprocessor’s rows. Consequently, the
currentsendercanpipelinethebroadcastsof its rows. Due
to this pipelining, receiversareoften still working on one
iterationwhenbroadcastpackets for the next iterationar-
rive. MPICH and LCI-host do not processthesepack-
ets until the receivers invoke a receive primitive. Conse-
quently, the senderis stalled,becauseacknowledgements
do not flow back in time. To improve performance,we
augmentedASP with application-level polling statements
(MPI probe()). Figure 6 shows the improved numbers.
With LCI-ni, theproblemdoesnotoccur, becauseacknowl-
edgementsaresentby theNI, not by thehostprocessor.

Even with application-level polling in LCI-host and
MPICH, LCI-ni performsbetter. Theremainingdifference
is dueto theprocessoroverheadcausedby failedpolls and
host-level forwarding: the time spenton theseactivities is
not availableto theapplication.

QR is a parallelimplementationof QR matrix factoriza-
tion. In eachiteration,onecolumn,the Householdervec-
tor H, is broadcastto all processors,which updatetheir
columnsusing H. At the end of eachiteration, QR uses
a Reduce-To-All collective operationto selectthe House-
holdervectorfor the next iteration. Performanceis domi-
natedby the broadcastsof columnH. As with ASP, host-
level forwarding increasesprocessoroverhead. In addi-
tion, the implementationsbasedon host-level forwarding

5



aresensitive to their higherbroadcastlatency. At the start
of eachiteration, eachreceiving processormust wait for
an incoming broadcast.The broadcastingprocessorcan-
not pipeline multiple broadcasts,becausethe Reduce-to-
All synchronizesall processorsin eachiteration.Message-
basedforwarding,usedin MPICH’s default broadcastim-
plementation,exacerbatesthe latency problemand slows
down QRby morethan50%.

5. NI-Level Interrupt Management

Many communicationsystemsuseandsometimesneed
interruptsto signal the completionof a packet’s transmis-
sion, the arrival of a packet, or the expiration of a timer.
Unfortunately, interruptsareexpensive. Below we describe
two NI-supportedmechanismsthat help reducethe fre-
quency of receive and timer interrupts. In both cases,the
hostusespolling whenthis is practical. The NI monitors
thehost’s polling frequency andgeneratesinterruptswhen
thehostfails to poll within a certainperiodof time.

5.1. The Polling Watchdog

Many parallel-programmingsystemsneedasynchronous
messagedelivery. Processesin DSM systems,for exam-
ple, needto respondto cache-updateor cache-invalidation
requeststhatgenerallyarrive at unpredictabletimes. Inter-
ruptsarea simplesolution,but generatingan interrupt for
eachincomingpacket is usuallynot necessary. Even in a
DSM system,many messages,in particular responsesto
requests,arrive at moreor lesspredictabletimes. Ideally,
thesemessagesshouldbereceivedthroughpolling.

LCI implementationsuse a polling watchdog [12] to
avoid generatinginterruptsunnecessarily. This mechanism
delays interruptsin the hope that the target processwill
soonpoll the network. Wherethe original polling watch-
dogproposalby Maquelinet al. is a hardwaredesign,LCI
usesMyrinet’s programmableNI to implementa software
polling watchdog. Briefly, the NI startsa watchdogtimer
when it receivesa packet. The NI generatesan interrupt
only if thehostdoesnot poll beforethetimerexpires.

LCI’s polling watchdogcooperateswith LCI’s network-
interruptmanagementmechanism.Recall that LCI clients
maydynamicallydisableandenablenetwork interrupts.For
efficiency, LCI usesoptimistic interrupt protection [14]:
lci intr disable() and lci intr enable() toggle the interrupt
statusflag in host memory, without synchronizingwith
the NI, the sourceof network interrupts. Consequently,
the NI may generatean interrupt after the host called
lci intr disable(). Thekernelwill thendispatcha signalto
theuserprocess.LCI’s signalhandler, however, alwaysre-
turnswithout processingpacketsif the interruptstatusflag
in hostmemoryindicatesthatinterruptsaredisabled.

LCI startsthewatchdogtimereachtimeapacketarrives
andthetimer is not alreadyrunningon behalfof anearlier
packet. If thetimerexpires,theNI decideswhetherit should
generatean interrupt. This decisionis basedon two vari-
ablesin hostmemory: the interruptstatusflag anda count
of thenumberof packetsprocessedby thehost. Whenthe
timer expires, the NI copiesboth variablesto NI memory
usinga single,small DMA transfer. If the packet counter
indicatesthatthehosthasprocessedall packetsdeliveredto
it by theNI, thentheNI cancelsthepolling watchdogtimer.
If theinterruptstatusflagindicatesthatthehostrecentlydis-
abledinterruptsor if thepacketcountershows thatthehost
consumedsomeof the packetsdeliveredto it, thenthe NI
doesnot generateaninterrupt,but restartsthetimer. Other-
wise,theNI generatesaninterruptandrestartsthetimer.

Sincethe NI may reada stalecopy of the interruptsta-
tusflag, it maydecidenot to generatean interruptafter the
hostre-enabledinterrupts.Thisis notaproblem,becausein
this casetheNI alwaysrestartsits watchdogtimer andwill
generatetheinterruptata latertime.

Figure 7 shows the impact of different watchdogde-
lays on the performanceof threeCRL applicationsrun on
64 processors:Barnes,FFT, and Radix. CRL is a soft-
wareDSM system[10], which weportedto LCI. Processes
can sharememory regions of a user-definedsize. Pro-
cessesenclosetheir accessesto sharedregionsby calls to
the CRL runtime system,which implementscoherentre-
gion caching. Eachreador write miss generatesa small
requestto a region’shomenode, zeroor moreinvalidations
from the homenodeto othersharers,anda reply from the
homenodeto thenodethatmissed.CRL normallyusesnet-
work interrupts,but disablesnetwork interruptsandpolls
whenit waitsfor a reply to anoutstandingrequest.

For all applications,performancedegradeswhenthein-
terruptdelaygrows larger thanapproximately100 µs. In
fact, Radix and Barnesdo not terminatewhen interrupts
arecompletelydisabled,unlessexplicit polls areaddedto
theapplication.Suchpolls, however, arenot partof CRL’s
applicationprogramminginterface. Alwaysgeneratingan
interruptimmediately(the ’No delay’ datapoints)alsode-
gradesperformance.A delayassmall as1 µs alreadypre-
ventsmany interruptsandimprovesperformance.Interest-
ingly, a largerangeof delaysworkswell for theseapplica-
tions.Maquelinetal. [12] reportedsimilar results.

5.2. Fine-Grain Timers

LCI-host usestimers to scheduleretransmissionsand
fastacknowledgements.Recall that LCI storesall outgo-
ing datain sendbuffersin NI memory(seeFigure1). Since
LCI-hostimplementsaretransmission-basedreliability pro-
tocol, it mustbuffer thesepacketsuntil they have beenac-
knowledged.SinceNI memoryis small,however, acknowl-

6



ND 1 10 100�
Interrupt delay (microseconds)�

0

2

4

6

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

1 10 100� 1000

Barnes/CRL�

LCI-ni
LCI-mixed
LCI-host

N
o 

D
el

ay

ND 1 10 100�
Interrupt delay (microseconds)�

0.00

0.05

0.10

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

�

1 10 100� 1000

FFT/CRL

LCI-ni
LCI-mixed
LCI-host

N
o 

D
el

ay

ND 1 10 100�
Interrupt delay (microseconds)�

0.0

0.2

0.4

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

1 10 100� 1000

Radix/CRL

LCI-ni
LCI-mixed
LCI-host

N
o 

D
el

ay

Figure 7. Impact of interrupt delay on application perf ormance

edgementsmust flow back before the senderruns out of
sendbuffer space.Receiverscouldexplicitly acknowledge
eachincoming datapacket, but piggybackingis more ef-
ficient. In the absenceof return traffic, however, fast ex-
plicit acknowledgementsareneeded.Eachreceiver there-
foremaintainsaper-sendertimer, whichis startedwhenever
adatapacketarrivesfrom somesender. Whenthetimerex-
pires,anexplicit acknowledgementis sent.If apacket trav-
elsbackto thesenderbeforethetimeout,anacknowledge-
mentwill bepiggybackedandthetimerwill becanceled.

The granularityof operatingsystemtimers,typically at
leastten milliseconds,is too coarsefor this acknowledge-
menttimer. LCI-host thereforeusesanNI-supportedvari-
antof softtimers [2] to implementfine-graintimers.Instead
of relyingonly onOStimersignals,thehostpolls theclock
(in our case,theCPUtimestampcounter). LCI-hostpolls
theclockeachtimeanLCI routineentersLCI’s timermod-
ule andduring timer interrupts. Unlike soft timers,which
useOS timers asa backupmechanismagainstinfrequent
polling, LCI-host lets the NI generateperiodic clock in-
terrupts. The NI, however, generatestheseinterruptsonly
whena timer is actuallyrunningor whenthe hosthasnot
recentlypolledtheclock. This is checkedby fetchinghost
state(usingasmallDMA transfer)beforegeneratingthepe-
riodic interrupt. This statecontainsa countof the number
of runningtimersandthetimeof thelastclock poll.

Figure8 shows the impactof differentclock granulari-
tieson theperformanceof a FastFourierTransform(FFT)
on CRL and on 64 processors.The horizontalaxis indi-
catesthe time T betweenclock interrupts. If a timer has
beenstarted,the NI will generatea clock interrupt every
T microseconds,unlessthehostfrequentlypolls theclock.
We configuredLCI-hostwith 64 NI sendbuffers. FFT per-
forms all-to-all exchangesof matrix blocks. During these
exchanges,processorsrun out of sendbuffers unlessthey
receive timely acknowledgements.Figure8 shows clearly
thatperformancedegradeswhenthe clock periodis larger
than1 millisecond.

0� 2000 4000 6000 8000 10000�
Timer granularity (microseconds)�

0.0

0.1

0.2

0.3

0.4

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

�

FFT execution time�

Figure 8. Impact of timer gran ularity

6. RelatedWork

Mukherjeeet al. proposedcacheabledeviceregisters to
reducethe costof polling. A cacheabledevice register is
a specialdevice statusregister that is sharedbetweenthe
NI andthehost[13]. Currenthardware,however, doesnot
providethesesharedregisters.

Several NI-level multicast protocols have been pro-
posed[5, 8, 16]. Noneof thecitedpapers,however, demon-
stratesthe application-level performanceadvantageof NI-
level multicasting. Somepaperscomparehost-level and
NI-level multicastingusingmicrobenchmarks,but they use
host-level multicastschemesthat are lessaggressive than
theschemeusedby LCI-hostandLCI-mixed.

ResearchsystemssuchastheAlewife [1] haveattempted
to reducethe nominal cost of an interrupt. Even without
hardwaresupport,operatingsystemscandispatchinterrupts
moreefficiently by saving lessprocessorstate(andlessof-
ten) [15]. Theseproposals,however, have not found their
way into commercialarchitecturesandoperatingsystems.

We do not attackthe overheadof individual interrupts,
but useNI supportto reducethe interrupt frequency. LCI
optimistically delays receive interrupts in the hope that

7



a poll will soon occur. The polling watchdogproposed
by Maquelin et al. is a hardware implementationof this
idea [12]. We augmentedthe polling watchdogwith sev-
eralchecksto furtherreducetherisk of spuriousinterrupts.

Our NI-supportedfine-graintimersaresimilar to Aron
andDruschel’ssofttimers [2]. They optimizekerneltimers
by polling thehost’s clock andprocessingtimeoutsduring
systemcalls, exceptions,and interrupts. This way, they
amortizethe state-saving overheadof theseevents. Their
soft timersusethe kernel’s coarse-grainclock interruptas
a backupmechanismagainstlow polling rates. LCI pro-
videsuser-level soft timersandusestheNI asa muchmore
precisebackupsourceof timer interrupts.

7. Conclusions

We have describedNI-level optimizationsthat reduce
dataand control transferoverheadsin user-level commu-
nication systems. Packet shifting yields fast polls with-
out compromisingthroughput. NI-level multicastsupport
yields lower multicast latency, higher multicast through-
put,andbetterapplicationperformance.A naive,message-
based,host-level multicastperformsup to 50% slower at
the applicationlevel. A heavily optimized,packet-based,
host-level multicastis up to 20% slower at the application
level. Finally, we consideredtherole of thenetwork inter-
facein interruptmanagement.By allowing thehostto poll
interrupt-generatingdeviceswhenthis is convenient,inter-
rupt ratescanbereduced.To guaranteeresponsiveness,we
usethenetwork interfaceasa monitor thatgeneratesinter-
ruptswhenthehostfails to poll.

References

[1] A. Agarwal, J.Kubiatowicz,D. Kranz,B. Lim, D. Ye-
ung, G. D’Souza,andM. Parkin. Sparcle:An Evo-
lutionaryProcessorDesignfor Large-ScaleMultipro-
cessors.IEEEMicro, 13(3):48–61,June1993.

[2] M. Aron andP. Druschel.Soft Timers: Efficient Mi-
crosecondSoftwareTimer Supportfor Network Pro-
cessing.In Proc.of the17thSymp.on OperatingSys-
temsPrinciples, pages232–246,Kiawah Island Re-
sort,SC,Dec.1999.

[3] H. Bal, R. Bhoedjang,R. Hofman,C. Jacobs,K. Lan-
gendoen,T. Rühl, and M. Kaashoek. Performance
Evaluationof the OrcaSharedObjectSystem. ACM
Trans.on ComputerSystems, 16(1):1–40,Feb. 1998.

[4] R. Bhoedjang. CommunicationArchitectures for
Parallel-ProgrammingSystems. PhD thesis, Dept.
of MathematicsandComputerScience,Vrije Univer-
siteit,Amsterdam,TheNetherlands,June2000.

[5] R. Bhoedjang,T. Rühl, andH. Bal. EfficientMulticast
on Myrinet UsingLink-Level Flow Control. In Proc.

of the 1998 Int. Conf. on Parallel Processing, pages
381–390,Minneapolis,MN, Aug. 1998.

[6] R. Bhoedjang,T. Rühl, andH. Bal. User-Level Net-
work InterfaceProtocols.IEEEComputer, 31(11):53–
60,Nov. 1998.

[7] N. Boden, D. Cohen, R. Felderman,A. Kulawik,
C. Seitz, J. Seizovic, and W. Su. Myrinet: A
Gigabit-per-secondLocalAreaNetwork. IEEEMicro,
15(1):29–36,Feb. 1995.

[8] M. Gerla,P. Palnati,andS.Walton. MulticastingPro-
tocolsfor High-Speed,Wormhole-RoutingLocalArea
Networks. In Proc. of the 1996 Conf. on Commu-
nicationsArchitectures,Protocols,and Applications,
pages184–193,StanfordUniversity, CA, Aug. 1996.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A
High-Performance,Portable Implementationof the
MPI MessagePassingInterfaceStandard. Parallel
Computing, 22(6):789–828,Sept.1996.

[10] K. Johnson,M. Kaashoek,and D. Wallach. CRL:
High-PerformanceAll-Software Distributed Shared
Memory. In Proc.of the15thSymp.onOperatingSys-
temsPrinciples, pages213–226,CopperMountain,
CO,Dec.1995.

[11] J. Maassen,R. van Nieuwpoort,R. Veldema,H. Bal,
andA. Plaat. An Efficient Implementationof Java’s
RemoteMethod Invocation. In 7th Symp.on Prin-
ciples and Practice of Parallel Programming, pages
173–182,Atlanta,GA, May 1999.

[12] O. Maquelin, G. Gao, H. Hum, K. Theobald,and
X. Tian. Polling Watchdog:CombiningPolling and
Interruptsfor EfficientMessageHandling.In Proc.of
the 23rd Int. Symp.on ComputerArchitecture, pages
179–188,Philadelphia,PA, May 1996.

[13] S. Mukherjee,B. Falsafi,M. Hill, andD. Wood. Co-
herentNetwork Interfacesfor Fine-GrainCommuni-
cation. In Proc. of the 23rd Int. Symp.on Computer
Architecture, pages247–258,Philadelphia,PA, May
1996.

[14] D. Stodolsky, J. Chen, and B. Bershad. Fast In-
terrupt Priority Managementin OperatingSystems.
In Proc. of the USENIXSymposiumon Microkernels
and Other Kernel Architectures, pages105–110,San
Diego,Sept.1993.

[15] C. Thekkathand H. Levy. Hardware and Software
Supportfor Efficient ExceptionHandling. In Proc.
of the6th Int. Conf. on Architectural Supportfor Pro-
grammingLanguagesand Operating Systems, pages
110–119,SanJose,CA, Oct.1994.

[16] K. Verstoep,K. Langendoen,and H. Bal. Efficient
ReliableMulticast on Myrinet. In Proc. of the 1996
Int. Conf. on Parallel Processing, volume III, pages
156–165,Bloomingdale,IL, Aug. 1996.

8


