
On-The-Fly Print: Incremental Printing While Modeling

Huaishu Peng, Rundong Wu, Steve Marschner, François Guimbretière

Computing and Information Science

Cornell University

{hp356, rw489}@cornell.edu, {srm, francois}@cs.cornell.edu

ABSTRACT

Current interactive fabrication tools offer tangible feedback

by allowing users to work directly on the physical model, but

they are slow because users need to participate in the physical

instantiation of their designs. In contrast, CAD software

offers powerful tools for 3D modeling but delays access to

the physical workpiece until the end of the design process.

In this paper we propose On-the-Fly Print: a 3D modeling

approach that allows the user to design 3D models digitally

while having a low-fidelity physical wireframe model printed

in parallel. Our software starts printing features as soon as

they are created and updates the physical model as needed.

Users can quickly check the design in a real usage context by

removing the partial physical print from the printer and

replacing it afterwards to continue printing. Digital content

modification can be updated with quick physical correction

using a retractable cutting blade. We present the detailed

description of On-the-Fly Print and showcase several

examples designed and printed with our system.

Author Keywords

3D printing; fabrication; computational craft; CAD; rapid

prototyping; interactive devices.

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI):

User Interfaces.

INTRODUCTION

Since the notion of interactive fabrication was introduced by

Willis et al. [32], several approaches have been proposed for

hands-on digital fabrication. For example, Constructable [17]

allows the step-by-step fabrication of functional objects using

a laser cutter controlled by a laser pointer; D-Coil [19]

enables non-experts to design 3D digital models from scratch

using a digitally controlled wax extruder; ReForm [31]

merges manual shaping with digital milling and extrusion of

synthetic clay. On the one hand, these interactive fabrication

systems offer immediate, tangible feedback that can benefit

Figure 1: Designing an aircraft model with On-the-

Fly Print in 10 minutes.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

CHI'16, May 07-12, 2016, San Jose, CA, USA

© 2016 ACM. ISBN 978-1-4503-3362-7/16/05é$15.00

DOI: http://dx.doi.org/10.1145/2858036.2858106

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2858036.2858106

the design process; on the other hand, they are often slow

because designers have to instantiate the physical model

themselves. Further, CAD users might find them frustrating

to use because they lack support for implicit 3D commands

(such as construction solid geometry and complex surface

creation), which are difficult to implement in interactive

fabrication systems.

At the same time, there has been a push to reduce the lead-

time between the creation of a 3D model and its actual

instantiation. For example, faBrickation [18] and Platener [2]

limit the use of a 3D printer to complex geometry, and

WirePrint [16] creates a low-fidelity mesh representation of

the model. All these approaches serve the traditional ñdesign-

fabricate-refineò workflow, which is common in digital

fabrication, and focus on printing completed models.

In this paper, we explore how to bridge these two approaches

using On-the-Fly Print. In our system, printing takes place

incrementally, in parallel with the use of the CAD system

(Figure 1). As primitives are added to the digital model, our

3D printer instantiates them using a low-fidelity wireframe

representation. During the creation of the digital model, the

designer can remove the building platform from the printer

and observe the model in the context of its future use. She can

then return the model to the printer and further modify the

digital model as needed while the printer synchronizes

modifications to the physical model.

On-the-Fly Print relies on a faster, incremental

implementation of the WirePrint [16] system. To speed up the

original system up to four times, we extended the reach of the

print head and added water mist cooling to quickly solidify

the extruded filament. We further modified an off-the-shelf

delta 3D printer by adding a two-degree-of-freedom (2DOF)

rotation platform to enable incremental prints from a wide

range of angles. Finally, we added a retractable cutting blade

to allow for subtractive operations and error correction. The

printer is controlled by a customized Rhino plug-in [20],

which observes the geometry created by the user and can

optimize the printing schedule and resolve possible printing

collisions to maximize printability. If unsolvable collision is

detected, our system can leave parts unprinted, but it will

never prevent the user from creating the desired geometry.

In the following sections, we illustrate how the On-the-Fly

Print could provide CAD designers with tangible feedback

during the creation of a digital model (Figure 1). We present

a detailed description of our system. We conclude with

limitations of our current system and propose possible future

directions.

RELATED WORK

Our work builds upon the notions of interactive fabrication,

fast fabrication, and hybrid fabrication systems.

Interactive Fabrication

ModelCraft [26] examined the use of pen annotation to create

precise 3D digital models with in-situ measurements, but the

modifications stayed virtual until the next 3D print cycle.

CopyCAD [7] enables a user to remix designs by interacting

with and using real world objects. Inspired by traditional craft

activities, Willis et al. [32] introduced the concept of

interactive fabrication, mixing the hands-on approach of craft

with the advantages of digital construction. This concept has

been instantiated by several systems. Constructable [17]

supports interactive 2D laser cutting for functional objects.

Rivers et al. [22] use a digitally controlled 2D router for better

cutting precision. FreeD [33, 34] lets users personalize the

rendering of a 3D model using a digitally controlled milling

tool, and D-Coil [19] uses digitally controlled wax extrusion

and cutting to blend digital and physical creation of a model.

ReForm [31] combines direct hand shaping, digital extrusion

and milling to provide the maximum flexibility to users. Like

Constructable, D-Coil and ReForm, our goal is to offer a

readily available physical instantiation of the digital model

during the design process. However, we specifically target

CAD users who might not be interested in directly

participating in the physical creation their model and prefer

that a fast 3D printer create a low-fidelity prototype of the

current digital model for them.

Fast Fabrication

The availability of fast prototypes is another approach to a

more interactive fabrication process. To this end, several

solutions have been proposed by printing with a low-fidelity

model. faBrickation [18] replaces most of the building

volume with Lego bricks with only the detailed parts being

3D printed. Platener [2] follows a similar path with laser cut

sheets being used to create the bulk of the volume, while 3D

printed parts are used for complex shapes. One drawback of

both approaches is that they require assembly. WirePrint

[16], in contrast, saves significant time in 3D printing by

printing only a mesh of the shell of the prototype. On-the-Fly

Print relies on an optimized version of WirePrint for fast and

incremental printing. Thus, it provides users with ongoing

access to a physical copy of their design while it is being

created in the digital realm.

Finally, Carbon3D [30] provides CLIP printing that is 25 to

100 times faster than traditional printing techniques. This

hints at a not-too-distant future when there will be reduced

trade-offs between speed and quality of rendering. This

system is not incremental, however, which might create a

large overhead in material and time.

Hybrid and Augmented Fabrication

High DOF CNC machines have been in use in industrial

contexts for a long time (e.g., to create complex carbon fiber

shapes or in subtractive fabrication). Mataerial [14]

introduced a robot arm to create complex 3D shapes, and

Song et al. [27] demonstrated a parallel kinematic machine

for conformal printing. Gao et al. [8] showed how electronics

can be embedded into a 3D print with a rotational cuboidal

platform. MultiFab [25] demonstrated vision based

approaches for printing on existing objects with multiple

materials. To save 3D material and eliminate reprint, Teibrich

et al. [29] illustrated a system to patch 3D printed objects

using a 3+2 DOF printer. To enhance 3D printed object, Shi

et al. [24] introduced a labeling toolkit that can add audio

with 3D printed features. Encore [5] allowed the user to

augment physical object with printed attachment. Like these

systems, On-the-Fly Print explores how one could extend the

pattern of use of 3D printing in design practice by combining

additive and subtractive methods with a 5DOF motion

platform. Our system is unique in that it focuses specifically

on how to print a low fidelity physical model in parallel with

the creation of the digital model.

DESIGN GOAL

Our main design goal with On-the-Fly Print is to provide

CAD users with a tangible preview of their digital model

during the digital design process. To illustrate a typical

interaction, we consider the case of a user designing an

aircraft model compatible with a Lego airport runway set

(Figure 1). After measuring a standard Lego airport size, the

user starts the design of the aircraft fuselage in Rhino. The

system starts printing the fuselage automatically after the

geometry is finalized. As this happens, the designer moves on

to specify the right wing using a curved design. She then

mirrors the first wing to create the left wing. About 2 minutes

later, the first wing is printed and she pauses the printer to

remove the model and check if the proportion of the wing

matches the Lego runway. Satisfied with the proportion of the

design, she puts the model back into the printer and focuses

on the design of the cockpit while the printer resumes printing.

Her goal is to fit a Lego pilot inside the model. She creates

cutting geometry to open a hole in the fuselage, and finally

adds a tail. Within 3 minutes of her last addition, she has a

finished WirePrint model in her hand (Figure 1), which has

already been evaluated in-situ at key design steps. As pointed

out by Buxton in the context of interface design [3], this

ability to quickly check a design against its intended pattern

of use significantly enhances the quality of the final design.

The workflow illustrated above is made possible by the

design of a fast incremental WirePrint printer, together with

a Rhino plugin that generates the proper printing instructions

for each new feature. Our plugin also controls the order in

which each feature is executed to limit possible conflicts

during the construction process. We now present both aspects

in more detail.

HARDWARE: FAST AND INCREMENTAL 3D PRINTER

One key prerequisite of On-the-Fly Print is the ability to print

basic primitives very quickly to catch up with the design of

the digital model. In this regard, WirePrint [16] was a natural

starting point. We noted that the speed of WirePrint could be

increased significantly if one were to reduce the total number

of cells to be printed by increasing their size. To do so, we

modified the print head with an extended extruder tip to reach

deeper into the model without collisions. To maintain the

stiffness of the model we also modified the extruder tip to

create a thicker (1mm) strand of ABS. One of the drawbacks

of creating a thicker filament is longer cooling time. To

minimize the need for cooling pauses, we added mist cooling

to our system by placing two atomizing nozzles flanking the

print head (Figure 2). Together, these modifications allowed

us to print a 28 x 28 x 28 mm wireframe cell in 32 seconds as

compared to 2:26min reported in the original WirePrint paper

(Figure 3). We conducted similar comparisons for two

additional models presented in the original WirePrint paper

(Figure 3). Our modifications increased speed by a factor of

4.6, 5.1 and 3.3 respectively.

Figure 2: Print head design with extended extruder

tip and mist cooling sprays.

Figure 3: Speed comparison between the original

WirePrint (a) and On-the-Fly Print (b).

Figure 4: 5DOF add-on design to an off-the-shelf

Delta 3D printer.

Incremental Printing

Coupling 3D printing and the CAD design process requires

the ability to print incrementally to avoid reprinting a model

from scratch every time it is modified. Because modifications

may affect all parts of the model, not just the easily accessible

top, we added two rotational degrees of freedom to an off-

the-shelf delta printer, with a B axis (rotating around the Y

axis) and a C axis (rotating around the Z axis) (Figure 4).

Compared to previous 5 DOF designs [29, 31], our design

creates a large open space around the model to ensure easy

access for the print head. Further, we used a fully

synchronous 6DOF system (5DOF for motion and 1DOF for

extrusion) so that instead of printing and cutting in a layer-

based manner, we achieve conformal printing and cutting,

which offers better physical rendering and quicker cut

operations.

Our system is designed with the aim of affordable hardware

setup and large open space. Thus, to create robust prints we

pay particular attention to the calibration of the rotation

platform using a computer vision calibration method [12].

This approach reaches an RMS positioning error of 0.5mm,

which is sufficiently small compared to our 1mm diameter

nozzle. To demonstrate our calibration results, we show a

model with multiple stacked cubes printed from different

angles in Figure 5. Notice that all nodes are aligned and well

connected. We provide more details in the implementation

section.

Cutting Operations

To let the user correct mistakes, adjust geometry and perform

subtractive operations, we include a cutting tool in our system.

We first considered using a milling head [29, 31], but this

approach is problematic because milling arrangements are

heavy and occupy a lot of volume, which could significantly

limit the accessibility of the cutting tool. Instead we found

that the wireframe shell can be cut using a simple heated

blade. Our blade is actuated so it can be tucked away when

not in use (Figure 6). When cutting is needed, the blade is

moved to the cutting position, which is 15mm lower than the

extruder tip to leave as much clearance as possible. This

solution is also faster than having to load a new tool.

Moving the Printed Model In and Out of the Printer

As illustrated in the scenario above, to get full advantage of

our system, the user should be able to easily remove the

model from the printer to compare against real-world

constraints and return it later to continue the design. To this

end, our system includes a simple removable building

platform aligned by a set of magnets.

SOFTWARE

The main goal of the software plugin is to convert the

geometry created inside Rhino into a set of printer commands

(G-code) suitable for efficient printing. For additive

operations, this includes creating a mesh for the shape to be

added as well as any connecting structure necessary; for

subtractive operations and corrections, this includes

converting the input into a cut operation and then creating any

repairs necessary. Another important aspect of the plugin is

to optimize the print operations to maximize printability

without distracting the user. In the following, we first present

the basic additive and subtractive approaches, before

presenting how they can be modified to take into account

print head accessibility.

Additive Geometry

In typical use, the plugin tracks the creation of geometry to

decide when a new feature is ready for printing. More

specifically, we consider a new feature for printing if it has

not been modified for 5s and either lands on the printing

platform or is connected with previously printed geometry.

For example, in Figure 7, it is only when the sphere is

Figure 5: Calibration results. Cubes are printed at the

various poses shown at left, yet are properly aligned.

Figure 6: The cutting blade tucks away during the

printing process and extends out during cutting.

Figure 7: Criteria to commence physical printing.

Printing (d) wonôt start until the digital model

intersects with the building plane (a, b, c). Red (a, b)

is color coded as unprinted part.

truncated and made to intersect with the building plane that

printing starts. Once a new feature is ready to be printed, the

plugin uses the UV mapping associated with the feature

surface to generate a regular mesh. As shown in Figure 8,

using UV coordinates better conveys the structure of the

shape when printed in large cells. As UV mapping may lead

to non-parallel slicing, our printer rotates the model to

extrude upward. The resulting G-code is sent to the printer,

which in turn sends an acknowledgement upon completion.

Creating connecting patches

We are using large print cells to speed up the printing process,

but this leaves large gaps in the external surface of the object.

If new geometry is to be created at the location of a gap, we

first need to patch the surface. With speed in mind, we

implement this by sub-dividing the patch area and printing

the corresponding denser pattern. Because each printed

segment rests on an established boundary, this printing is

very fast and does not require cooling (Figure 9).

Another important case to consider is when incremental

components create overhangs, such as in the model of the

Jucker and Wagenfeld lamp shown in Figure 10. In that case

we create a mesh extending from the top surface of the base

to the bottom contour of the shade to provide support. A

similar approach is used when the design object is bigger than

our printing plate. The dinosaur shown in Figure 14a is an

example of such a case.

Subtract ive Geometry

Our system uses cutting surfaces to carry out cutting

operations. Once the user has created the cutting geometry,

we compute the intersection curve between the original

object and the cutting geometry. This curve is then used to

drive the cutting blade. With the help of the rotating platform,

the cutting blade is maintained in an orientation normal to the

objectôs surface and the cut is performed with all 5DOF

moving synchronously. Once the cut is completed, the print

head follows the same contour to ñhealò the edge of the cut.

This step is necessary because we are using a mesh

representation of the model. We then generate the mesh

necessary to close any holes as required by the user. In the

Birdôs Nest stadium example shown in Figure 11, the printer

first cuts the tapered geometry (a) and creates a curved patch

(b) before creating a new cut in the center (c).

As in the case of additive geometry, when a new cut feature

is smaller than the size of the mesh cells, our system can

create a supporting patch before performing the cut. We show

an example of this feature in Figure 12.

Figure 8: (a): A digital tube model, (b): the model

sliced based on UV mapping (left) and traditional

parallel slicing (right).

Figure 9: Creating a connecting patch for the wing.

Figure 10: The system accommodates overhang by

extending from the contacting curve to the new

contour.

Figure 11: The Bird Nest stadium showing complex

cut patching. Green (b, d) is color coded as the cutting

geometry.

Figure 12: Adding holes to a model. When the hole is

much smaller than the cell, we first create a

supporting patch.

Dealing with Collisions

So far, our presentation has ignored the problems caused by

collisions. As explained above, our printer was designed from

the start to provide maximum tool accessibility, yet it is to be

expected that some design sequences will create conflicts

between the existing model and the added geometry. We now

present how our system uses a staged approach, focusing on

early prevention of collisions, to deal with these conflicts.

Out of order printing

Our first step is to explore whether re-ordering the pending

primitives will improve printability. This is possible because

the printer often lags behind the userôs actions. To do so,

before printing any new primitive we first observe the queue

of pending operations. We compute the possible printing

orders and chose the one with the least printing conflicts. For

example, in the candelabra shown in Figure 13, the user

creates the branches from bottom to top, but we detect that

printing the bottom part first will interfere with printing the

top branch, so our system prints them from top to bottom

instead to limit conflicts. To allow users to easily monitor the

progress of the system, features that are delayed in this way

can be color coded in red on the screen.

Relaxing printing orientation

Our second approach is to relax the printing orientation using

collision detection, similar to [29]. As a default, our system

will orient the model so that printing proceeds upward. If this

causes a conflict, we will try to repose the object to avoid

collision. One example of this approach can be seen in Figure

14, where the system prints the body of the dinosaur sideways

to prevent collision between the print head and the previously

printed legs. More details about the algorithm are provided in

the implementation section.

Omitting geometry

If it is still not possible to print a full feature after sampling

different orientations, the system will attempt to print as

much of the new feature as possible, leaving the parts that

would cause collisions unprinted. This reflects our aim to

provide a low-resolution overview of the model as it is

designed with minimum distraction to the userôs workflow.

For example, when creating the handle of the teapot shown

in Figure 15, part of the handle is not printed because it is not

reachable. Similarly, the system will not attempt to print the

walls of the holes shown in Figure 12.

Pause and manual mode

So far, we have described the system working in fully

automatic mode. This mode generates a corresponding

physical model in parallel to the digital design process.

During the design process, the user can also postpone the

physical instantiation using a Pause command. This allows

Figure 13: Reordering. The user designs the bottom

branch first (b) and the top branch later (c). Noticing

that the print of the bottom branch will block the way

for printing the top branch, the system reorders the

print sequence (g, h).

Figure 14: Dinosaur legs are printed at an angle to

avoid collision.

Figure 15: Example of omitted details. Printing the

teapot handle would collide with body, so our system

omits the part that would cause collisions and print s

the rest.

Figure 16: Printing samples. (a): tea pot created printed in 3 steps; (b): Wright brothersô airplane printed in 9 steps; (c):

Pantonôs stacking side chair designed using a loft operation; (d): glasses holder printed in 3 steps.

the user to quickly try several designs in the digital realm

without worrying about printability or the physical costs of

updates. When printing is resumed, queued primitives may

also provide opportunities to our scheduling algorithm to

reorder parts for better printability. Finally, if the user would

like to have full control of the printing process, our software

offers a Manual mode. In this mode, the software only prints

the primitives that are manually selected by the user.

Further Examples

In Figure 16 we show several examples of models created

with our system, including a teapot, a model of the Wright

brotherôs airplane, a chair inspired by Pantonôs stacking side

chair created using a loft operation, and a glasses holder

larger than the build platform.

IMPLEMENTATION

Our system has two main components: a custom-built 5DOF

printer and a Rhino plugin that processes the geometry and

generates the G-code to control the printer. The systems

communicate through a job queue, with a notification from

the printer to the Rhino plugin to indicate when a job has been

completed. Our plug-in was designed to limit user distraction

to a minimum. It adds a simple set of controls to the Rhino

screen to let the user pause the system, visualize the actual

meshing and control the mesh cell size, among other

functions. It uses color coding to provide feedback about the

state of the print.

Printer Modification

Our Mini Kossel [15] delta printer is driven by a Beagle Bone

Black [1] connected to a CRAMPS 2.0 module [6]. It is

running LinuxCNC [11] modified to support a 6DOF (5DOF

motion and 1DOF extrusion) system.

Extruder

As shown in Figure 2, we modified the standard hot end

assembly by adding a 15mm pipe adaptor to extend its reach.

The chamber of the extrusion head is kept at 270C to speed

up the extrusion of our 1mm filament. We also added two

SU11 atomizer nozzles [28], one on each side, to create a mist

that rapidly cools the extruded material. In our current

prototype, curves in the U direction are printed without

cooling to guarantee a firm connection between layers. As a

result, the curvature of U might not be preserved as

accurately.

Cutter

The cutter (Figure 6) was created by adapting a heating

cartridge [9] and a thermistor to fit a cutting blade [13]. The

assembly is attached to a small servomotor so that it can be

raised when not in use. The cutterôs heating cartridge is

maintained at 350C so that the cutting tip can easily cut 1mm

thick ABS wires.

5 DOF extension

Our prototype uses a circular rail of 260mm radius for the B

axis, so as to maximize the accessible print volume. To lower

cost, this rail is made of two 6mm-thick acrylic layers glued

together to create a butterfly profile. The range of motion is

+/ï 120°. The C axis can rotate indefinitely. To accommodate

the circular rail, we extended the height of the printer by

changing the support rails. Our setup is inexpensive and relies

only on easily fabricated parts in the spirit of the Mini Kossel

design, yet, with the proper calibration, it has enough

precision for fast and incremental WirePrint.

Calibration

Our printer was designed for maximum printhead

accessibility with affordable hardware setup. As a result,

small construction errors adds up during the printing. Our

computer vision based calibration system guarantees good

accuracy with simple ñmakerò grade assembly. Two

stationary cameras on the side of the machine capture images

of a cube placed on the platform for 114 combinations of B

and C angles. The OpenCV calibration program [4]

recognizes checkerboards attached to five sides of the cube

and computes an initial estimate of the intrinsics and

extrinsics of the camera-checkerboard system. Given those

estimates as input, we used Caliber [12] to recover the exact

poses of the platform at the corresponding angles.

With these samples, we can then interpolate the data to

predict the pose of the platform given an arbitrary

combination of B and C angles. We model the B axis rotation

as rigid body motion and fit a circle to the translational part

of the pose samples. Then we interpolate the deviation from

the best-fit circle to obtain the translation given an arbitrary

B angle. We use spherical linear interpolation to obtain the

rotational part. The motion of the C axis is well modeled as a

rotation, so we only need to solve for the unknown rotation

axis using the calibration data.

Key Aspects of Software

Here we present the key features of our Rhino plugin.

UV Mesh and Patch Generation

As a spline-based modelling tool, Rhino offers built-in APIs

[21] to generate UV maps. For a given primitive, our plugin

first calls the Surface.IsoCurve() function to create a

reference V contour. It then samples equally spaced points

along this V contour to generate all U contours for printing.

The plugin then picks one U contour as the reference to create

all V contours for printing.

The connection patches are generated by a similar method.

To patch an area, the plugin finds the boundary of the area,

sub-samples it to create new V and U lines, and prints

accordingly.

Collision Detection and Out of Order Printing

To detect collisions and relax printing orientation, the system

positions a built-in extruder model at each of the (U, V) nodes

along the primitive mesh and uses the Brep.IsPointInside()

function to check for a collision. If a collision is detected at a

given node, the system will move the extruder to different

orientations until a collision free direction is found (or it

decides not to print the edge). Orientations are sampled on a

fixed grid over the hemisphere.

A similar method is used to implement out-of-order printing.

Given the list of pending primitives, the plugin first

enumerates all possible printing orders. For each order, it uses

collision detection to evaluate the printability (with high

printability assigned to the case when the extruder tip doesnôt

need to be repositioned). The system then picks the highest

printability order to print. This computation might take up to

a couple of seconds in our non-optimized implementation,

but it happens in the background so it has little impact for the

user.

DISCUSSION AND FUTURE WORK

The prototype described above illustrates the potential of On-

the-Fly Print for providing CAD users with a quick tangible

feedback on their design. We now consider some aspects of

the current prototype that warrant further research efforts.

Printability , Limitation and Future Imp rovement

A main objective of our system was to limit user involvement

during printing. To do so, On-the-Fly Print implements a

ñbest-effort printingò policy based on limited information

about the final shape of the model. We never prevent the user

from creating geometry, but we might leave some parts

unprinted. Printability or even final results will therefore

depend on the steps by which a model is created. As an

example, Figure 17 shows the same vase created either in a

stepwise modification of a sphere or in a single step via

revolution of a profile; each ends up with a different physical

rendering.

Similarly, some operations like Scale or Move, might be

costlier than others because they will require the selected

features to be reprinted physically. The worst case is a global

rescale, which will require restarting from scratch. This costs

more time than other operations, but might not be a big issue

given the fast printing speed. However, field deployment will

be needed to better understand the impact of this and how

people approach the design of complex objects with our

system.

We should also note that our current printing strategy, which

proceeds in a fixed sequence dictated by the UV mapping,

makes it difficult to print certain topologies such as a torus

(Figure 15). Inner details created after the bulk of the object

has been created will also be ignored (or will require a full

reprint).

Future Improvement

Currently, our approach stops short of using the cutting tool

to selectively remove the part of the model that is in the way

of the print head. Instead, new features conflicting with the

current model are marked as pending and might never be

printed as part of the preview. We envision that making use

of the cutting capability would further improve printability.

We foresee two general approaches: First, the system could

identify which features need to be cut away and returned to

the print queue to be reprinted in a different order. Second,

the system could identify the minimal flat cut across the

model making printing possible and proceed using a standard

WirePrint slicing.

Our current implementation does not check for cut-off parts

falling into the geometry. For example, in Figure 17 left, the

top hemisphere falls into the printed body after the cut

operation (but doesnôt cause a printing problem). However,

several options could solve this as a future improvement. 1)

The system could pose the print so that the cut part does not

fall inside; 2) The system could pour and shake the cut part

out using the rotation platform after cutting (but it might get

stuck); 3) The system could pause the print to let the user

remove the part if needed.

Finally, our current implementation ignores collisions during

cut operations. This has not been a problem in our sample

cases, but a complete system would implement this feature

using similar approaches as for adding geometry.

Low Resolution Printing

To enable fast preview, we traded speed for accuracy using

an extension of the WirePrint method. In the early stages of

the design process, the low resolution of the resulting models

is not a concern. In fact, low-fidelity models could be a

benefit because they clearly communicate to viewers that the

design is not finished, but is a sketch to be critiqued [23].

However, low print resolution can become a problem later on

when users want to add more details to a design. Like in

WirePrint, one solution could be to let users balance the

speed/resolution trade-off by giving them the option to

incrementally render accurate shells on specific areas of

interest. Because our printer is conformal this will not always

require a full reprint, as in the case of the original WirePrint

implementation. However, it may require a redesign of the

cutting mechanism. New printing approaches such as

Carbon3D [30] might soon reduce the need for such trade-

offs.

High Degree of Freedom Printers

This project and others like the Patching paper [29] are

accumulating evidence that adding a rotating platform to the

more standard 3D printer might significantly improve the

flexibility of these systems when it comes to extending the

Figure 17: The same vase created in CAD in a multi-

step approach (left) versus a single-step approach

(right) results different physical appearances. On the

left, the top section of the sphere felt into the model

during the cutting process.

