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Overview

This is the supplementary document for our SIGGRAPH 2014 pa-
per titled “High-Order Similarity Relations in Radiative Transfer”.

• Section 1 describes the similarity relations described in Sec-
tion 4.1 of the paper.

• Section 2 shows the connection between similarity theory
and classical diffusion theory. We present an alternative
derivation of the diffusion equation (DE) based on the
assumption that the radiance field is linearly anisotropic,
which is shared by the order-1 similarity relation.

• Based on Section 2, we show in Section 3 a generalization
of the order-1 similarity relation, following the derivation
introduced by Wyman et al. [1989b].

• Section 4 provides background on a function’s monomial
and Legendre moments.

The rest of this document shows extra results.

• Section 5 contains the rendered images used to create the
plots in Figure 6 of the paper. This figure discusses how the
user-specified parameter α affects performance and accu-
racy.

• Section 6 provides two examples of overfitting. This issue
has been discussed in Section 7.3 of the paper.

• Section 7 shows the rendered images and the corresponding
phase functions used to create the three 2D embeddings
in Figure 9 of the paper. These results demonstrate that
to accurately capture important visual cues, higher-order
analysis is crucial.

1 Recap: Similarity Relations

For completeness of this document, this section restates the sim-
ilarity relations introduced by Wyman et al. [1989a] and pre-
sented in Section 4.1 of the paper.

We are given a radiative transfer equation (RTE)1

(ω · ∇)L(ω) = −σt L(ω) +σs

∫

S2
f (ω′ ·ω)L(ω′)dω′ (1)

and an altered version

(ω · ∇)L(ω) = −σ∗t L(ω) +σ∗s

∫

S2
f ∗(ω′ ·ω)L(ω′)dω′ (2)

with identical boundary conditions. Assume that the solution
radiance field L of (1) has limited angular frequency, namely

amn = 0 for n> N , −n≤ m≤ n (3)

for some fixed N . Then (2) has the same solution L as (1) if the
similarity relation of order N :

σa = σ
∗
a,

σs(1− fn) = σ
∗
s (1− f ∗n ) for 1≤ n≤ N

(4)

1We assume that the medium has no internal source, so Q vanishes.

holds where fn, f ∗n denote the n-th Legendre moments of phase
functions f (·), f ∗(·), respectively. See Section 4 for more infor-
mation on function moments.

2 Derivation of the Diffusion Equation

In this section, we present an alternative derivation of the dif-
fusion equation (DE) based on the same assumption taken by
the order-1 similarity relation: the radiance field L is linearly
anisotropic, namely

amn = 0 for all n> 1. (5)

We first rewrite the RTE (1) in a series of integrated forms (Sec-
tion 2.1). Then, we present in Section 2.2 the order-0 and order-1
versions of the integrated RTE and simplify them based on the
assumption (5). Finally, we combine the results from Section 2.2
to obtain the DE (Section 2.3).

A similar derivation has been proposed by Wyman et al. [1989b]
to obtain the generalized similarity relations described in Sec-
tion 3.

2.1 Integrated RTE

Let

ωi1 i2 ...in :=
n
∏

j=1

ωi j

where ωi j
denotes the i j-th component of ω, which is a 3-vector

(so i j ∈ {1,2,3} for all j). In addition, we define the integrated
forms of the three terms (including the source term Q) appearing
in the RHS of the RTE (1):

φi1 i2 ...in :=

∫

S2
ωi1 i2 ...in L(ω)dω, (6)

χi1 i2 ...in :=

∫

S2

∫

S2
ωi1 i2 ...in f (ω′ ·ω)L(ω′)dω′ dω, (7)

Q i1 i2 ...in :=

∫

S2
ωi1 i2 ...inQ(ω)dω. (8)

An integrated version of the RTE (1) can then be obtained by mul-
tiplying ωi1 i2 ...in and integrating over S2 on both sides, yielding

3
∑

j=1

∂ jφ ji1 ...in = −σtφi1 ...in +σsχi1 ...in +Q i1 ...in (9)

where ∂i denotes ∂
∂ωi

.

2.2 Order-0 and Order-1 Versions

We now write down the order-0 and order-1 versions of the inte-
grated RTE (9) and simplify them based on (5).

Order-0. The order-0 version of (9) is

3
∑

j=1

∂ jφ j = −σtφ +σsχ +Q(0) (10)
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where Q(0) :=
∫

S2 Q(ω)dω. Since

χ =

∫

S2
L(ω′)

∫

S2
f (ω′ ·ω)dωdω′ =

∫

S2
L(ω′)dω′ = φ,

(10) simplifies to

3
∑

j=1

∂ jφ j = −σaφ +Q(0). (11)

Order-1. The order-1 version of (9) is

3
∑

j=1

∂ jφ ji = −σtφi +σsχi +Q i . (12)

Due to (5), it holds that

χi =

∫

S2

∫

S2
ωi f (ω′ ·ω)L(ω′)dω′ dω

=
∞
∑

n=0

n
∑

m=−n

1
∑

i=0

i
∑

j=−i

fna ji

�

∫

S2
ωi Y

m
n (ω)

∫

S2
Ȳ m

n (ω
′)Y j

i (ω
′)dω′

︸ ︷︷ ︸

= δni δmj

dω
�

=
1
∑

n=0

n
∑

m=−n

fnamn

∫

S2
ωi Y

m
n (ω)dω

= f1

1
∑

m=−1

am1

∫

S2
ωi Y

m
1 (ω)dω

(13)

where the last equality follows the fact that
∫

S2 ωi Y
0

0 (ω)dω= 0
for all i ∈ {1, 2,3}. Similarly, we have

φi =

∫

S2
ωi L(ω)dω=

1
∑

m=−1

am1

∫

S2
ωi Y

m
1 (ω)dω. (14)

From (13) and (14), we know that

χi = f1φi . (15)

It is easy to verify that for all i1 and i2,
∫

S2 ωi1 i2 Y 0
0 (ω)dω =

2
p
π

3 δi1 i2 and
∫

S2 ωi1 i2 Y m
1 (ω)dω= 0. Thus,

φi1 i2 =

∫

S2
ωi1 i2 L(ω)dω= a00

2
p
π

3
δi1 i2 .

Note that a00 =
∫

S2 Y 0
0 (ω)L(ω)dω=

φ

2
p
π

, we have

φi1 i2 =
φ

3
δi1 i2 . (16)

Substituting (15) and (16) into (12) leads to

1
3
∂iφ = −σt r,1φi +Q i (17)

where σt r,1 = σt− f1σs follows the definition in (11) of the paper.

2.3 Diffusion Equation

In this subsection, we show that the DE can be obtained easily
from the integrated RTE (9) in its simplified order-0 (11) and
order-1 (17) forms.

Let

E :=

∫

S2
ωL(ω)dω=

 

φ1
φ2
φ3

!

, Q(1) :=

 

Q1
Q2
Q3

!

,

and κ := (3σt r,1)−1. Then (11) and (17) can be rewritten as

∇ · E= −σaφ +Q(0), (18)

E= 3κQ(1) −κ∇φ (19)

where ∇· is the divergence operator and ∇ is the gradient opera-
tor. Substituting (19) into (18) yields

∇ ·
�

3κQ(1) −κ∇φ
�

= 3κ∇ ·Q(1) −∇ · (κ∇φ) = −σaφ +Q(0).

Namely,

−∇ · (κ∇φ) +σaφ =Q(0) − 3κ∇ ·Q(1), (20)

and (20) is known as the diffusion equation.

3 Generalized Order-1 Similarity Relation

The similarity relations (4) requires σ∗a = σa to ensure that the
altered RTE (2) has the same solution radiance field L as the
original (1). However, if we relax this equal-radiance constraint
and only ask for the same fluence φ =

∫

S2 L(ω)dω, generalized
versions of the similarity relations can be derived [Wyman et al.
1989b]. Unlike (4), unfortunately, these relations do not easily
generalize to higher orders.

Assuming (5) holds, namely the radiance field is linearly
anisotropic, (11) and (17) can be used to derive the general-
ized similarity relation of order-1 as follows. Applying ∂i and
summing over 1 to 3 on both sides of (17) and substituting (11)
into the resulting equation yields

3
∑

i=1

∂ 2
i φ = σaσt r,1φ −σt r,1Q(0) +

3
∑

i=1

∂iQ i .

For participating media with no internal source, all moments of
Q vanish, giving σaσt r,1φ −

∑

i ∂
2
i φ = 0. Similarly, it holds that

σ∗aσ
∗
t r,1φ −

∑

i ∂
2
i φ = 0. Equating these two equations yields

σaσt r,1 = σ
∗
aσ
∗
t r,1, (21)

which is the order-1 generalized similarity relation. In addition,
it has been shown in [Wyman et al. 1989b] that the solution
radiance field L of the original RTE and the solution L∗ of the
altered one are related as follows:

L(ω) =
σa

σ∗a
L∗(ω) +

�

1−
σa

σ∗a

�

φ

4π
. (22)

Note that when σ∗a = σa, (22) collapses to L(ω) = L∗(ω) and
(21) becomes the order-1 similarity relation, namely (4) with
N = 1.

4 Phase Function Moments

Given a phase function f (·), its monomial moments and Legendre
moments are defined as follows.
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0% 10% 20% 30%

Reference α= 0.05 α= 0.1

α= 0.2 α= 0.3 α= 0.4

α= 0.5 α= 0.75 α= 1.0

Figure 1: Rendered images used to create the orange curve in
Figure 6 of the paper. The relative error maps (using the color
mapping shown at the top) are included.

Monomial Moments. Given f (·), its n-th monomial moment is

γn :=

∫ 1

−1

f (t) tn dt. (23)

Legendre Moments. Given f (·), its n-th Legendre moment is

fn := 2π

∫ 1

−1

f (t)Pn(t)dt (24)

where Pn denotes the degree-n Legendre polynomial and 2π is a
normalization term. Since f (·) is a phase function, it holds that

f0 = 2π

∫ 1

−1

f (t)dt =

∫

S2
f (cosθ )dω≡ 1 (25)

and

f1 = 2π

∫ 1

−1

t f (t)dt =

∫

S2
cosθ f (cosθ )dω (26)

where θ is the angle between ω and the incident direction. f1
is usually referred to as the average cosine of f (·). For a Henyey-
Greenstein (HG) phase function with parameter g, its n-th Leg-
endre moment has been shown to equal gn (see Theorem 7.1 in
[Van den Eynde 2005]).

Reference α= 0.05

α= 0.1 α= 0.2

α= 0.3 α= 0.4

α= 0.5 α= 0.75

α= 1.0

Figure 2: Rendered images corresponding to the purple curve in
Figure 6 of the paper. The relative error visualizations use the same
color mapping as Figure 1.

In fact, monomial moments and Legendre moments are closely
related. Precisely, for any N ≥ 0, the first (N + 1) Legendre
moments and the first (N + 1) monomial moments uniquely de-
termine each other. In other words, any phase function f (·) with
f0, . . . , fN fixed will have the same γ0, . . . ,γN , and vice versa.

Proof. Let Pn(t) =
∑n

i=0 pn,i t i . According to (23) and (24), we
know that for any n≥ 0,

fn = 2π
n
∑

i=0

�

pn,i

∫ 1

−1

f (t) t i dt

︸ ︷︷ ︸

= γi

�

. (27)

Let γ := (γ0 γ1 . . . γN )T and f := ( f0 f1 . . . fN )T , equation (27)
can be rewritten in vector form as

f= 2π P̂γ. (28)

where P̂ is an (N + 1)× (N + 1) matrix with P̂(i + 1, j + 1) = pi, j

for 0≤ i, j ≤ N . It is easy to verify that P̂ is lower-triangular and
non-singular. Thus, γ and f uniquely determine each other. Given
f, γ can be computed by solving the linear system in (28). �
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Figure 3: Two examples on overfitting. In both examples, the altered parameters satisfying the order-3 similarity relation overfit.

5 Results: Performance versus Accuracy

Figures 1 and 2 contain rendered images we used to study how
α, the user-specified parameter, controls the balance between
performance and accuracy.

5.1 Bust

The renderings in Figure 1 correspond to the orange curve in Fig-
ure 6 of the paper. The environment lighting used in the following
rendering is “Kitchen” from [Debevec 1998]. Note that

• The α = 1 result is not identical to the reference since the
latter was rendered with a much higher number of samples.

• The error in the results with high α values are mostly from
Monte Carlo noise.

5.2 Dragon

The renderings in Figure 2 correspond to the purple curve in
Figure 6 of the paper. We used the environment lighting “Ennis”
from [Debevec 1998]. Similar to Figure 1, the reference image
was rendered using a higher number of sample paths per pixel.

6 Results: Overfitting

In our experiments, overfitting does not happen very often and
normally causes only subtle differences. Figure 3 illustrates two
examples where altered parameters adhering to the order-3 sim-
ilarity relation overfit. Our method (Algorithm 1 in the paper)
successfully rejects these solutions (and returns the order-2 ver-
sions) since their coverages are too small (which is demonstrated
by the phase functions plots).

7 Results: Spanning the Perceptual Space

This section includes the images we used to create the embed-
dings in Figure 9 of the paper. The two examples in Figure 9-cde
correspond to phase functions 18 and 35.

7.1 Rendered Images

This section illustrates 40 rows of images, and each row corre-
sponds to a phase function that we picked from [Gkioulekas et al.
2013]. In each row, the left image is rendered with the original
parameters and used for creating the reference embedding (the

blue points in Figure 9-ab). The middle image is generated with
the altered parameters provided by our algorithm (Algorithm 1
in the paper). We use it for the higher-order embedding (the
yellow points in Figure 9-a). The right image is created with the
altered parameters satisfying only the order-1 similarity relation.
The corresponding embedding (which collapses to a 1D line) is
in Figure 9-b of the paper. The middle and right images share the
same altered scattering coefficient σ∗s and are rendered in similar
time.

1: Reference 1: Order-3 1: Order-1

2: Reference 2: Order-5 2: Order-1

3: Reference 3: Order-5 3: Order-1

4: Reference 4: Order-5 4: Order-1

5: Reference 5: Order-5 5: Order-1
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6: Reference 6: Order-4 6: Order-1

7: Reference 7: Order-3 7: Order-1

8: Reference 8: Order-2 8: Order-1

9: Reference 9: Order-3 9: Order-1

10: Reference 10: Order-4 10: Order-1

11: Reference 11: Order-3 11: Order-1

12: Reference 12: Order-3 12: Order-1

13: Reference 13: Order-2 13: Order-1

14: Reference 14: Order-3 14: Order-1

15: Reference 15: Order-2 15: Order-1

16: Reference 16: Order-2 16: Order-1

17: Reference 17: Order-2 17: Order-1

18: Reference 18: Order-3 18: Order-1

19: Reference 19: Order-3 19: Order-1

20: Reference 20: Order-5 20: Order-1

21: Reference 21: Order-5 21: Order-1

22: Reference 22: Order-5 22: Order-1

23: Reference 23: Order-5 23: Order-1

24: Reference 24: Order-3 24: Order-1

25: Reference 25: Order-5 25: Order-1
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26: Reference 26: Order-4 26: Order-1

27: Reference 27: Order-4 27: Order-1

28: Reference 28: Order-5 28: Order-1

29: Reference 29: Order-5 29: Order-1

30: Reference 30: Order-4 30: Order-1

31: Reference 31: Order-4 31: Order-1

32: Reference 32: Order-4 32: Order-1

33: Reference 33: Order-4 33: Order-1

34: Reference 34: Order-4 34: Order-1

35: Reference 35: Order-1 35: Order-1

36: Reference 36: Order-2 36: Order-1

37: Reference 37: Order-4 37: Order-1

38: Reference 38: Order-3 38: Order-1

39: Reference 39: Order-4 39: Order-1

40: Reference 40: Order-4 40: Order-1

7.2 Phase Function Plots

This section contains the plots of all phase functions used to create
the renderings in Section 7.1.
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