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Abstract

Modeling the appearance of outdoor scenes from photo
collections is challenging because of appearance variation,
especially due to illumination. In this paper we present
a simple and robust algorithm for estimating illumination
properties—shadows and sun direction—from photo collec-
tions. These properties are key to a variety of scene modeling
applications, including outdoor intrinsic images, realistic
3D scene rendering, and temporally varying (4D) recon-
struction. Our shadow detection method uses illumination
ratios to analyze lighting independent of camera effects, and
determines shadow labels for each 3D point in a reconstruc-
tion. These shadow labels can then be used to detect shadow
boundaries and estimate sun direction, as well as to compute
dense shadow labels in pixel space. We demonstrate our
method on large Internet photo collections of scenes, and
show that it outperforms prior multi-image shadow detection
and sun direction estimation methods.

1. Introduction

A long-standing goal in computer vision is photo-realistic
modeling of scenes from images. While we have made great
progress in geometric reconstruction, through structure from
motion (SfM), bundle adjustment, and multi-view stereo, ge-
ometry is just part of the story. To get truly detailed, realistic,
relightable scene reconstructions, we also need to solve for
appearance—e.g. texture maps and materials—which means
that we also must reason about surface reflectance, camera
response, and, critically, illumination.

Modeling all of these aspects of scene appearance to-
gether is challenging, especially in unstructured photo col-
lections. Many existing methods involve large-scale non-
linear optimization jointly over many parameters, including
illumination and albedo (e.g., [12, 23]). These methods can
sometimes work well, but are subject to local minima with-
out a good initial guess. In this paper we focus on simpler
methods for estimating illumination properties, in particular
modeling shadows and sun direction in Internet photo collec-
tions. We propose a straightforward and optimization-free

(a) Input Image (c) Sparse (3D) Shadows
and Sun Direction

(d) Dense (2D) Shadows(b) Reconstruction and
Appearance Statistics

Figure 1. Our technique begins with photos from and Internet
photo collection (a). After performing 3D reconstruction, we use
appearance statistics (average intensity, (b)) to produce a shadow
label for each reconstructed 3D point (c). We then use these shadow
labels to estimate the direction of the sun (inset), and dense shadows
in pixel space using the matting Laplacian (d).

technique, yielding illumination information that is useful
in its own right but could also easily serve as a good initial
guess for illumination in a larger reconstruction pipeline.

Relative to a comprehensive appearance model, shadows
and sun direction are simple properties, yet they are pow-
erful in their ability to explain outdoor scene appearance.
Shadow maps can be used for more realistic texture map-
ping of highly detailed 3D models [23]. Shadows and sun
direction also play an important role in outdoor photomet-
ric stereo, which has been shown to capture fine geometric
details better than multiview stereo [24]. Shadows and sun
direction together can be used as a geometric cue for 3D
reconstruction as in [3].

Sun position is also useful for correcting timestamps in
Internet images, where time zone differences and incorrectly
set camera clocks make the image metadata unreliable. Re-
cent work has used raw timestamps to coarse and noisy
image timestamps to reconstruct photo collections in 4D by
adding a temporal dimension [18, 17], but these methods are
limited by the quality of these timestamps. Our method can
be used to determine accurate timestamps from estimated

1



sun directions, potentially enabling much finer-grained 4D
reconstructions of much more lively events at the scale of
hours, rather than months or years.

Figure 1 illustrates our method, which works by lever-
aging appearance statistics within a photo and across a col-
lection, along with the physics of natural illumination, to
detect shadows on a sparse 3D reconstruction of the scene.
To achieve robustness to camera effects, we analyze illumi-
nation ratios of pairs of points, which are used in a voting
sceme to classify which 3D scene points are in shadow and
which in sun for a given image. Shadow boundaries are then
detected and used to estimate sun direction. Finally, we can
also combine image matting techniques [16] with the sparse
reconstruction to obtain dense shadow labels in pixel space.
We evaluate our method on large-scale photo collections of
outdoor scenes, and show that it outperforms prior work on
shadow detection and sun position estimation. We demon-
strate that our method also works on aligned image stacks
(e.g., timelapse data).

2. Related Work

There has been a rich body of research on shadow detec-
tion, both as a standalone task on a single image and within
the context of other problems such as photometric stereo,
3D reconstruction, and intrinsic images. Because we are
focused on applications involving photo collections, where
many images are available but speed and robustness are key,
we primarily review multi-image techniques designed for
photo collections and webcams.

Shadows in image stacks. Recent work has focused on
shadow detection and illumination decomposition in reg-
istered image stacks, such as outdoor webcams. As part
of a video factoring method, Sunkavalli et al. detect shad-
ows based on simple pixel statistics and thresholding [25].
Ackermann et al. [4] and Abrams et al. [2] apply photomet-
ric stereo to webcam data, and use variants of Sunkavalli’s
thresholding method (e.g., Abrams et al. propose a time-
varying intensity threshold). Like our method, [14] com-
pares pixel values to their mean for shadow estimation.
These methods are well-suited for image stacks with limited
changes in camera exposure, or when the images are in a
known temporal sequence. However, they are less effective
in Internet photo collections where cameras vary.

Abrams et al. [3] use correspondences between cast shad-
ows and occluding geometry in outdoor scenes to estimate
depth information; this work makes use of an in-house
shadow detector based on expectation-maximization [1].
While this method outperforms other techniques, it requires
careful geographic camera calibration and accurate per-
image timestamps.

Single-image shadow detection. One closely related single-
image method is that of Guo et al. [7], which finds pairs of

image regions that are predicted to be the same material, and
combines these with learned per-region shadow classifiers
in a CRF. Other recent techniques have also used learning to
predict shadows using a combination of local and pairwise
features [26, 15]. In our work, we use pairwise comparisons
among pixels, but use many images from a photo collection
to compute statistics that can be used to discount the effect
of materials and cameras.

Image collections. A growing body of work estimates il-
lumination in unstructured Internet image collections. One
related method is that of Laffont et al. [12] for estimating
intrinsic images from photo collections. Like our method,
Laffont’s is based on analyzing pairs of points, but they have
to find pairs of points with similar surface normal and illumi-
nation; from this, they build a graph on points that requires
adequate connectedness and good spatial and normal dis-
tribution. We focus on the more constrained problem of
shadow detection but devise a simpler approach.

Other work incorporates shadow detection into larger il-
lumination estimation methods. Shan et al. estimate lighting
and reflectance from photo collections, including an explicit
model of shadows [23]. However, they do not evaluate
performance on these tasks, as their goal is to obtain percep-
tually accurate rendered images. In addition, their method
involves a complex optimization procedure, as do related
methods (e.g. et al. [8]). Our method is simple and easily
implemented, and can improve such estimation methods.

Sun position from illumination. In addition to detecting
shadows, we use attached shadows to estimate sun direction
(and timestamps). Prior work has also sought to estimate
illumination properties from either shadows cast on a planar
surface [22, 20, 13, 21], or from shading information [19].
In a closely related method, Hauagge et al. [10] use an in-
trinsic image technique that considers ambient occlusion [9]
to determine shading and illumination outdoors. They then
compare the illumination estimate against renderings with a
physically-based sun/sky model to determine sun direction.
Our method is simpler, reasoning about occlusion in the form
of shadows, and relying only on attached shadow boundaries
for sun direction. We achieve comparable performance with-
out full illumination estimates or sun/sky models.

3. Illumination Ratios

In this section, we analyze illumination ratios and show
how they can be used to detect shadows in photo collections.
We begin with a set of images and a set of sparsely recon-
structed 3D points (obtained using SFM and MVS), where
each point is visible in a subset of the images. For each
3D point x, we sample the grayscale intensity value from
all images that observe x. We also assume that the MVS
reconstruction includes an estimated surface normal; we do
not require normals for shadow detection, but will use them



for sun direction estimation. For now, our goal is to label
each 3D point as sunlit or in shadow.

A simplistic but intuitive heuristic for guessing whether a
point is sunlit or not is to answer the question “is the point
brighter than usual?” Most points in an outdoor scene are
sometimes shaded and sometimes sunlit. Because we have
a collection of observations of the same point, we could
answer the question by comparing an observation of a point
x in image i to its average value over all observations:

R(x) =

I

i

(x)

E [I(x)] (1)

However, a given observation depends on camera effects as
well as illumination. A higher-than-average intensity could
indicate a sunlit point, but it could just as easily arise due
to an overexposed image. The above ratio fails to isolate
illumination effects from camera effects.

We can eliminate camera exposure by comparing this
ratio for two points x and y in image i:

R(x, y) =

I

i

(x)

E[I(x)]
I

i

(y)

E[I(y)]

(2)

In this ratio of ratios, exposure and any other linear cam-
era effects cancel, and relative illumination of x and y is
isolated. This ratio is large if x is unusually bright relative
to y in image i—namely, if x is sunlit and y is in shadow.

A natural way to use the illumination ratio to estimate
shadow labels is to threshold it. In particular, using the
intuition above we can use a threshold T to classify pairs as
follows:

A. If R(x, y) > T then x is sunlit and y is in shadow.

B. If R(x, y) < 1/T , then x is in shadow and y is sunlit.

C. If 1/T  R(x, y)  T , then x and y are similarly lit.

Note that because the ratio deals with relative illumination,
Case C is ambiguous—the points may be either both sunlit
or both shaded. The first two cases are symmetric, so WLOG,
we focus on analyzing the first.

3.1. Image Formation Model

To determine how to set the threshold T , we consider
the ratio’s behavior under a simple image formation model,
where an observation of x in image i is the product of its
diffuse albedo (⇢

x

), the camera exposure (E
i

), and the illu-
mination incident on x in image i (L

i,x

):

I

i

(x) = ⇢

x

E

i

L

i,x

(3)

The lighting L

i

is further decomposed into a direct (sun)
term L

d

and an ambient (sky) term L

a

. L
d

is modulated by
the cosine of the angle �

x,i

between the surface normal and

the sun direction, and a binary sunlight indicator C
x,i

, which
is zero if point x is in shadow in image i.

I

i

(x) = ⇢

x

E

i

[C

x,i

L

d

cos(�

x,i

) + L

a

] (4)

Notice that the shadow detection problem amounts to finding
C

x,i

for all points x observed in image i.
Although directly plugging this image formation model

into the illumination ratio (2) does not yield immediate in-
sights, we can simplify a great deal by approximating a
point’s albedo by the point’s average observed intensity.
Other albedo estimation methods could also be used, but
we found that this approximation works well enough in
practice. Our robust voting scheme (discussed in the next
section) helps to eliminate most of the errors introduced by
this approximation.

At this point all quantities relate to a single image i, so
we drop the subscripts. Assuming E [I(x)] ⇡ ⇢

x

, we can
plug our image formation model (4) into (2) and the albedos
cancel. We can also simplify further by substituting f =

L

a

/L

d

, i.e., the ratio of intensities of ambient and direct
illumination, to obtain:
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x
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C

y

cos(�

y

) + f

(5)

3.2. Choosing a Threshold

We see that (5) boils down to a ratio of the cosine shading
terms of the two points, with f added to both the top and
bottom. Because f varies throughout the day as the sun and
sky vary in relative brightness, we cannot solve for a perfect
threshold T that always classifies pairs correctly. Points with
�

x

near 90� (that is, they are only obliquely lit by the sun)
also pose a challenge since their appearance can be very
close to that of shaded points. Our approach is to choose a
threshold T that classifies pairs correctly under most com-
mon circumstances, and then later use a voting scheme that
considers many pairs of points, overruling incorrect pairwise
classifications.

We can draw insight about f from the CIE Sky Stan-
dard [11]. For a clear, sunny sky (CIE Model #12), Figure 2
shows that at most times of day, f ranges from 0.2 (when
the sun is directly overhead) to 0.5 (when the sun is about
20 degrees above the horizon) [5]. As the sun sets (L

d

goes
to zero), f goes to infinity.

Using the threshold as described above amounts to a
classification: the illumination for a pair of points is classi-
fied either as different (Cases A and B) or the same (Case
C). In our discussion we refer to A and B as a “positive”
classification—that is, x and y should have opposite labels.
Case C is a “negative” classification, where the points are
said to have same label. As usual, our choice of thresh-
old involves a trade-off between false positives and false
negatives.



 0

 0.5

 1

 1.5

 2

 0  10  20  30  40  50  60  70  80  90

Sun zenith angle [degrees]

f
=

L

a

/
L

d

Figure 2. The relative illuminance of the sky and the sun as a
function of sun zenith, according to CIE clear sky model #12. For
most sun angles, f falls between 0.2 and 0.5. Figure adapted
from [5] with permission.

Figure 3 shows that a higher threshold limits false posi-
tives, whereas a lower threshold minimizes false negatives.
In Figure 3(a) we consider two sunlit points x, y. Each
plot shows for which �

x

,�

y

the points x, y get correctly
classified as the same (negative) by a given threshold T for
different values of f ; for larger T , the false positive region
shrinks. Figure 3(b) assumes x is sunlit and y is shaded, and
plots the value of R(x, y), with three example thresholds
drawn. Here, a lower T is better—the portion of each curve
above the threshold corresponds to true positives, while the
portion below corresponds to false negatives.

Empirically, we found that a threshold of about 3 worked
best, although the results were not very sensitive to slightly
different values due to the voting process. Although Fig-
ure 3(b) suggests that T = 3 produces exclusively false
negatives for values of f � 0.5, we found that in practice, 3
works well, even for larger f . This is likely due to real-world
deviations from the image formation model and the fact that
only false positives cast incorrect votes, while false negatives
are simply ignored in our voting scheme.

4. Estimating Shadow Labels

We have seen that the illumination ratio is a useful, but
somewhat noisy indicator of pairwise relative illumination.
In this section, we propose a simple algorithm that considers
the illumination ratio among many pairs of scene points in a
voting scheme to robustly estimate a shadow label for each
point.

For each point x visible in an image, we pick a set of
K (we use K = 1000 in our experiments) other points vis-
ible in the same image and cast votes according to their
thresholded illumination ratio, as described in the previous
section. In particular, for each of the K points y

k

, a vote
for x being sunny is cast if R(x, y

k

) > T , and shadowed
if R(x, y

k

) < 1/T . Otherwise, the vote is considered un-
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BB

Vote sunny
(Case A)

Vote shaded
(Case B)

Uninformative
(Case C)

Figure 4. An illustration of thresholded illumination ratios compar-
ing three points to all other points in the image. Image A shows the
votes cast by the thresholded value of R(A, y) for all other points
y in the image, and likewise for B and C. Point A is sunlit, so most
of the informative scores come from shaded points (orange). A few
outliers provide shady scores (blue). The opposite is true for point
B. Point C’s normal is relatively far from the light direction, so the
scores are not unanimous but still conclude that it is sunlit.

informative and thrown out. We aggregate all informative
votes into a shadow score for each point, as illustrated in
Figure 4, which shows the votes cast by all other image
points when compared to the three labeled example points.
By selecting a sufficiently large set of random points, we
are highly likely to get points with differing illumination,
which should cast informative votes. Outliers due to noise or
unusual surface normal configurations are outvoted by the
majority of well-behaved pairs.

The votes are aggregated into a shadow score:

S(x) =

`

x

`

x

+ s

x

(6)

where `

x

is the number of sunlit votes and s

x

is the number
of shadowed votes. This score is 1 if all pairs vote sunlit, 0
if all pairs vote shaded, and 0.5 if an equal number of votes
went each way. As such, the score’s distance from 0.5 gives
a measure of how confidently we can label the point. For sun
direction estimation, we are willing to leave low-confidence
points unlabeled, so we choose a minimum confidence c

0

.
The final label of x is sunlit if S(x) > 0.5+c

0

and shadowed
if S(x) < 0.5 � c

0

. If neither holds, x remains unlabeled.
An example shadow labeling is shown in Figure 1(c).

4.1. Dense Shadow Maps

We have proposed a technique for determining shadow
labels for points in a sparse 3D reconstruction. We now show
that we can use an image matting technique to simultane-
ously propagate the sparse shadow labels to all image pixels
and produce continuous labels indicating the extent of the
cosine shading. This is useful for applications of shadow
detection (e.g., shadow removal, texture mapping) where a
sparse binary shadow map is not sufficient.

We draw inspiration from the recent work of Guo et al.
[7] and Laffont et al. [12]. Guo et al. estimate a dense binary
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Figure 3. An illustration of the trade-off in threshold choice. (a) For T = 2, 3, 4, we consider two sunny points with �

x

and �

y

, showing
which pairs of angles result in correct classifications. True negatives, in the large central area, occur when the two sunny points are classified
as having the same illumination. The contour lines delineate the regions where false positives occur for different values of f . (b) For sunlit x
and shadowed y, we plot the ratio score as a function of �
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for different values of f . Thresholds of 2, 3, and 4 are shown with black dashed
lines; the threshold separates each curve into true positives (above the threshold) and false negatives (below).

shadow map and then use the matting Laplacian [16] to
produce continuous labels near shadow region boundaries.
In the context of intrinsic images, Laffont et al. use a similar
technique to go from a sparse set of reflectance constraints
to a dense reflectance image.

We found that the matting Laplacian performs well on
shadow maps even when simultaneously propagating sparse
to dense labels and estimating continuous labels. As in [7],
the dense shadow map ↵ is obtained by solving

(L+ �D)↵ = �d↵̂ (7)

where D is a diagonal matrix with 1 in the positions corre-
sponding to the known sparse shadow labels and 0 elsewhere,
d is the vector of elements from D’s diagonal, ↵̂ contains
the known shadow label values (1 for sunlit, 0 for shadow),
and L is the matting Laplacian matrix constructed as in [16].

To pose our problem in this framework, we obtain a sparse
2D labeling by projecting the 3D points’ shadow labels into
the image using the camera pose from the structure-from-
motion reconstruction. Because the matting solver fills in
unknown values, we set c

0

= 0.25 so that only points with
high-confidence labels are considered known values. Be-
cause some parts of an input image (e.g., the sky) may not
be part of the reconstructed scene, we use a standard im-
age segmentation technique [6] and assign a fixed label of 0
to regions of the image where very few or no scene points
project. Figure 7(bottom) shows several dense shadow maps
computed using this approach.

5. Sun Position Estimation

In this section we show how to use the sparse shadow
labels from the previous section to estimate the sun direction
in an image. Given that our MVS reconstruction provides us

with a surface normal estimate for each point, our key idea
is to use a well-known property of directional lighting: a
surface normal lying on an attached shadow boundary must
be orthogonal to the light direction. Or in other words, at-
tached shadow boundaries occur where the light direction is
tangential to the surface. In principle, if we can identify two
distinct normals with this property, their cross product gives
the sun direction up to a 180

� ambiguity. However, there
are two challenges involved in using this property to find the
sun direction: we must (1) identify shadow boundaries in
a sparse set of labeled points and (2) discard cast shadow
boundaries, which do not have the above property.

5.1. Sun Direction From Shadows

It is important to distinguish between two types of shad-
ows. A point lies in a cast shadow if some object lies be-
tween the point and the sun. If the point’s surface normal
faces away from the sun direction and therefore receives no
sunlight, this point lies in an attached shadow.

Although cast shadows can provide information about sun
direction (as with a sundial), this generally requires precise
geometry of the casting object. Because our 3D model is
sparse and may not include all geometry (e.g., a building
across the street from a landmark of interest), such corre-
spondence is difficult to find. Instead, we focus on attached
shadow boundaries, whose surface normals provide weak
indicators that can be aggregated into a final sun direction es-
timate. Our overall approach is to detect shadow boundaries
of all types, then find a robust consensus with the assumption
that some shadow boundaries will be outliers.

5.2. Detecting Shadow Boundaries

To detect 3D points that lie on shadow boundaries, we
consider its neighboring points. Intuitively, if a point is on a
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orthogonal to the light direction, whereas normals on a cast shadow
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shadow boundary, it should have many neighbors with the
opposite shadow label. These neighbors should:

1. lie on the same smooth surface and thus have similar
normals

2. lie in the same general direction from the point

To capture this intuition, we define a boundary score as a
function of the positions, normals, and shadow labels of the
points in the neighborhood of x.

Let N
x

be the neighborhood of x, defined as the set of
points within a 3D radius r of x. We define the boundary
neighbor set N⇤

x

✓ N

x

to be the neighbors that lie across a
shadow boundary on the same surface; in particular, these
are the points with shadow labels opposite from x’s and
normals forming an angle less than ⇥

crease

with x’s normal.
Let the boundary vector B

i

of x be the displacement
vector from x to the centroid C

N

⇤
x

of the points in N

⇤
x

scaled
by the fraction of neighbors in the boundary neighbor set:

B

i

(x) = c

sign

|N⇤
x

|
|N

x

| (CN

⇤
x

� x) (8)

We use an indicator c
sign

, set to -1 if x is sunlit, or 1 if it is
in shadow so that the vector always points towards the sunny
side of the boundary. B

i

(x) captures the intuition described
above—if a point is surrounded by opposite-labeled points
on all sides the distance to the centroid will be small, and if
only a few neighbors have opposite labels the scale factor
will be small. If neighbors have very different normals, they
likely lie across a crease in the geometry, they are discounted.
The direction of the boundary vector indicates which side of
the shadow boundary the sun should be on, which we use
later. Figure 5 illustrates the boundary term on an attached
shadow edge.

We choose r manually for each dataset based on the scale
of the scene and the density of the point cloud. We tag x as
a boundary point in image i if ||B

i

(x)||
2

is greater than a

threshold B

0

. We set B
0

= 0.2 and ⇥

crease

= 45

� for all
results in this paper.

5.3. Estimating Sun Direction

We now have a set of shadow boundary points, some of
which have surface normals orthogonal to the sun direction
(inliers) and some of which do not satisfy this constraint
(outliers). We use RANSAC to find the inliers and estimate
the sun direction. We use the cross product of the normals
of two random boundary points as the hypothesis, and count
each boundary point as an inlier if its normal is within 10

�

of orthogonal to the sun direction and its boundary vector
(which points towards the sunny side of the boundary) has a
positive dot product with the hypothesis sun direction.

RANSAC assumes that the inlier (attached shadow) nor-
mals lie in a single plane, while the normals at cast shadow
boundaries do not. This assumption may not hold in the case
of a large cast shadow on a flat surface; to handle this case,
we quantize the normals and count inliers only once per nor-
mal bin. This does no harm to the inlier estimate (coincident
normals add no information) but prevents heavily-weighted
collections of outliers from forming an incorrect consensus.

Constrained sun path algorithm. We have described a
robust method for estimating sun direction given a set of
shadow boundary normals, but if the scene is geo-registered
we can improve our method by considering only astronomi-
cally possible sun directions. We can further constrain the
possible sun paths to those occurring on the date that the
image was taken. In this case, the set of sun directions is
constrained to a single path through the sky. Although the
EXIF timestamp is often incorrect due to time zone differ-
ences and improperly set camera clocks, the date field is
often more reliable. Furthermore, small date errors produce
only slightly different sun paths, so such inaccuracies can be
tolerated.

Given a 1D sun path constraint, a brute-force approach is
feasible: rather than randomly sampling pairs of boundary
normals, we simply check the inlier count for each of a
set of sun directions sampled along the sun path. Figure 6
summarizes our sun direction estimation process, showing
an example result on the TENTACLE dataset.

6. Results

In this section we show both qualitative and quantitative
evaluations of our methods against ground truth where possi-
ble, as well as against other methods. We begin by describing
the datasets used, then show results for shadow maps, sun
direction, and comparisons to existing methods.

Datasets. We evaluate our method on four datasets: two
photo collections and two image stacks. STATUE is a photo
collection reconstructed from about 80,000 photos. CASTLE
is a scene reconstructed from about 33,000 photos. For



Figure 6. An illustration of our sun direction method. Given the
shadow labels (middle), we compute a boundary score for each
point (right, overlay pixels). The white points show all boundary
points, while the green points are the inlier boundary points for the
estimated sun direction. The algorithm correctly finds inlier points
that primarily correspond to attached shadow boundaries.

efficiency, we computed the average intensity of points in
these datasets over a subset of 10,000 images. For evaluation,
we chose 115 images for STATUE and 200 for CASTLE that
were taken under sunny or strongly directional illumination
conditions at different times of day. Our other two datasets
are sequences of images taken by a single static camera over
the course of a day. TEMPLE is a 571-image webcam dataset
made available by Sunkavalli et al. [25], which we use for
comparison with their method.

Finally, the TENTACLE dataset allows quantitative eval-
uation of our methods. We used a 3D printed model of a
figure and photographed it under outdoor illumination at 5-
minute intervals throughout a sunny day. This allowed us to
create raw linear images with proper exposure at each inter-
val. We manually geo-registered the scene, then computed
the precise sun direction based on the image timestamps.
We also generated ground truth shadow maps by rendering
the model under directional illumination corresponding to
the sun direction. TENTACLE is useful because it is a non-
synthetic dataset with many properties usually only available
in synthetic datasets, including dense 3D geometry, surface
normals, shadow maps, and sun directions.

Shadow detection in photo collections. Figure 7 shows
shadow detection results on STATUE and CASTLE. From top
to bottom, we show the input image, sparse shadows, and
dense shadows. Notice that even fine details, such as the
tight folds of the statue’s cloak and the ridges at the top of
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Figure 7. Input images (top), sparse shadow maps (middle), and
corresponding dense shadow maps generated using the matting
Laplacian (bottom). In the sparse shadow maps, red points indicate
sunlit labels and blue points indicates shadow labels; in the dense
map, white indicates a point in full sun and black indicates a fully
shadowed point.

RANSAC Cons.

Figure 8. Qualitative sun direction results on CASTLE and STATUE.
The top row shows an input image, and the bottom row shows a
synthetic scene lit under the estimated sun direction using our two
proposed sun position estimation approaches.

its base are correctly labeled in the sparse shadow map. The
CASTLE dataset has more complicated geometry, but our
method correctly identifies detailed shadow regions such as
the ridges on the castle’s facade. Using these accurate sparse
shadow labels, the matting Laplacian is able to propagate
shadow labels across the entire image, meanwhile choosing
a continuous ↵ value that indicates the extent of the cosine
shading at each pixel.

Sun direction. It is difficult to obtain ground truth sun direc-
tions in large photo collections. Although sun direction can
be inferred from geographic pose and accurate timestamps,
the timestamps accompanying Internet photo collections
are unreliable and cannot be used as ground truth. Instead,
we show qualitative sun direction results on images from
STATUE and CASTLE, and provide quantitative results on
TENTACLE where ground truth is available.

Figure 8 shows qualitative results for sun direction estima-
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Figure 9. A comparison between our shadow detection method and
FTLV’s. Their performance is comparable on well-exposed images,
but our method performs better on improperly exposed images.

tion from photos in STATUE and CASTLE. For each image,
we run the RANSAC and constrained sun path algorithms.
To illustrate the estimated sun direction, we show a simple
rendered scene from a camera with the same viewpoint lit us-
ing a sun-sky illumination model. For images with plentiful
and pronounced attached shadows, both approaches produce
plausible sun direction estimates; in more challenging cases,
the constrained approach produces a better estimate.

On the TENTACLE dataset, we are able to estimate the sun
direction with a median error of 17.5� using our RANSAC-
based approach. Given a rough geolocation, correct orienta-
tion, and an accurate date, our constrained sun path approach
is able to obtain a median error of 10.9�, with very few errors
over 25�. This is competitive with the results of the more
complicated approach of [10] on the same dataset.

Comparisons. Most existing multi-image shadow estima-
tion techniques assume a static camera and known time-
ordering of images or precise timestamps [2, 3], and there-
fore cannot be applied to uncalibrated photo collections.
One notable exception is Sunkavalli et al. [25], which de-
composes time-lapse videos into intrinsic images. Their
shadow detection method assumes no temporal ordering, us-
ing statistics over all observations to set a threshold which
determines the shadow label of a point. This method works
well on webcam sequences taken by a single camera, but
fails on datasets with widely varying exposure and other
camera inconsistencies.

Figure 9 compares our method with FTLV [25] on CAS-
TLE and STATUE. For a fair comparison, we computed
average intensity (used in our method) and the threshold
(used in their method) using only the evaluation set. Their
method performs nearly as well as ours on well-exposed
images, but fails on images with slightly incorrect exposure
because they do not account for camera variation.

We compared our shadow detection to FTLV on the TEN-
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Figure 10. Example comparison of our results with FTLV on
TEMPLE. Red insets show detail of a region where the performance
differs.

Ours FTLV Guo et al.
All points 87.16 91.65 86.73

cos�

x

< 0.25 94.15 95.14 89.48

Table 1. Percent of points classified correctly on TENTACLE.

TACLE and TEMPLE datasets. Figure 10 shows a qualitative
comparison on TEMPLE; a similar comparison for TENTA-
CLE is shown in the supplemental material. Table 1 shows
a quantitative comparison with FTLV and the single-image
method of Guo et al. [7] on TENTACLE. Guo’s results are
comparable, while FTLV performs slightly better than our
method on the well-exposed TENTACLE set. However, our
photo collection results show that our method is more robust
overall in our target application.

The main difference in performance on TENTACLE arises
from the inclusion of almost-shadowed points. Our method
performs poorly on points that are only obliquely lit by the
sun (cos�

x

is small) because of the thresholding. When
contribution of the sunlight is small, the point looks more
like a shadowed point than a sunny point. If we discount
points with cos�

x

< 0.25 our method performs comparably
to FTLV, while Guo improves much less. TENTACLE also
has some highly occluded points that are never sunlit during
the day; this is a failure case for both our method and FTLV.
TEMPLE lacks ground truth, but we observe qualitatively
that our method provides cleaner shadow masks; we suspect
this is due to TEMPLE’s greater variation in exposure as
compared to TENTACLE.

Limitations. Our analysis makes a number of assumptions.
In particular, we have assumed that the scene is Lambertian,
the weather conditions are clear, and the average observed
intensity is a good approximation of the albedo. While our
results on Internet data suggest that our method is robust to
some deviations from these assumptions, our method breaks
down in the presence of large specularities (e.g., the roof
of CASTLE), heavy occlusion (e.g., the shadowed mouth
area of TENTACLE), and heavy cloud cover. Our method
performs well in the presence of noise found in Internet
photo collections, but other shadow detection methods (e.g.,



[7, 25]) may perform as well or better in single-image and
more controlled multi-image settings.

7. Conclusions

We have presented a method for shadow detection in
photo collections suitable both for unstructured photo col-
lections and image stacks, and demonstrated its applicability
to automatically estimating sun position in photographs us-
ing attached shadows. Although our analysis makes several
simplifying assumptions, the method is surprisingly effec-
tive in practice. We believe that robust shadow labels and
sun direction in photo collections can enable or improve a
variety of applications in outdoor reconstruction, appearance
modeling, and scene understanding.

Our approach could be extended in a variety of ways.
First, we could devise a more sophisticated scoring approach
that considers the entire graph of votes between pixel pairs
globally, or considers neighboring labels. Second, once we
compute average intensities, we estimate shadow masks in-
dependently for each image; one could instead jointly predict
shadows across the entire photo collection at once, making
use of richer statistical information available among images.
Third, one challenging case for our method are points that
are nearly always in shadow; we could explore using statis-
tics such as variance to identify how frequently a point is in
shadow as a prior on shadow likelihood. Finally, we plan to
use our techniques in further estimation of illumination and
appearance in photo collections in the wild.
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