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Abstract—Some network protocols tie application state to
underlying TCP connections, leading to unacceptable service
outages when an endpoint loses TCP state during fail-over or
migration. For example, BGP ties forwarding tables to its control
plane connections so that the failure of a BGP endpoint can lead
to widespread routing disruption, even if it recovers all of its state
but what was encapsulated by its TCP implementation. Although
techniques exist for recovering TCP state transparently, they
make assumptions that do not hold for applications such as BGP.
We introduce application-driven TCP recovery, a technique that
separates application recovery from TCP recovery. We evaluate
our prototype, TCPR, and show that it outperforms existing BGP
recovery techniques.
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I. INTRODUCTION

The state that defines a TCP connection is generally encap-
sulated within a network stack, while the usual socket interface
provides no mechanism for an application to checkpoint,
recover, or migrate that state. Unfortunately for an application
such as HTTP or BGP, written standards and legacy peers
prevent using a session layer to decouple application state
from connection state, so the network stack is a point of
vulnerability for the entire system.

In HTTP, for example, a client might submit a request
to a distributed web application in the cloud. If the request
modifies application state, but the connection is reset, the client
can neither assume that the request was processed nor safely
resubmit it.

BGP is the protocol used by gateway routers to stitch the
Internet together out of smaller autonomous networks. Each
pair of neighboring routers maintains a TCP connection, which
they use to keep their routing tables in sync. between the BGP
routers that interconnect networks. If a router detects that one
of its connections has failed, it assumes that its link to that
neighbor has also failed, so it immediately withdraws all of its
affected routes—even if the neighbor immediately reconnects.
And once it does so, the new TCP connection cannot be used
to carry network updates or inform routing decisions until each
endpoint has transmitted its entire routing table. Meanwhile,
as network routing reconverges to accommodate the supposed
failure, which can take minutes, packet loss can increase 30-
fold due to transient routing loops and black holes [1], [2],
[3], [4].

This paper introduces a new technique for tolerating
connection failure, in the face of a network stack with no
interface to enable it, and legacy peers that preclude graceful
reconnection. We focus on BGP, because it challenges many

assumptions of prior work in the area, but our technique is
applicable to any use of TCP.

To understand how prior work could be effective for HTTP
but not for BGP, it is worth distinguishing between fault
masking and recovery [5]. Consider a technique in which a
backup network stack is kept synchronized with the primary,
used by the application. When the primary fails, the backup
replaces it. The fault has been masked, because the peer need
not be aware of the failover from primary to backup. However,
recovery has not taken place, because there is no longer a
backup, and a future fault will cause a failure.

Prior work handles recovery by starting a fresh copy of
the application, then replaying all of the peer’s input since the
connection was established. (Depending on how the particular
system deals with the network stack, the replay might be at
the application level or the packet level.) Under the assumption
that the application is fault-tolerant, the result is a valid backup
replica.

The benefit of the replay-driven approach to recovery is
that the application can be treated as a black box, requiring no
modifications. However, not only does the approach assume
a deterministic application, it also assumes that replay is
practical. The input to an HTTP server is usually a short
request. On the other hand, BGP connections persist for the
lifetime of a peering between two routers, and often carry
thousands of update messages per minute. Replaying such a
connection quickly becomes more burdensome than failure.

We introduce an application-driven approach. Our proto-
type, TCPR, is network middleware not unlike a NAT box,
which sends state gleaned from packets to the application, and
obeys the application to manipulate packets for recovery. By
accepting minor changes to the application, application-driven
recovery avoids the much greater burden of accepting re-
sponsibility for the application’s state. Furthermore, by giving
the application responsibility for checkpointing its connection
state along with its other state, we achieve a simple form of
application-driven recovery that is both lightweight and easy
to implement.

In addition to connection recovery, we also evaluate a stan-
dardized, BGP-specific approach to recovery called Graceful
Restart (GR). Because there are many reasons a connection
might close other than link failure, a router can enable GR for
a connection, informing its peer not to trigger reconvergence
immediately when the connection fails. Instead, the peer will
wait until a new connection is resynchronized and the link
is known to be down [6]. The time and update load to
resynchronize the connection is still necessary, but the routing
disruption is avoided.
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Fig. 1: A TCP connection begins with a SYN, SYN–ACK,
ACK handshake that establishes each endpoint’s initial se-
quence number.

Unfortunately, the assumption that the link survives can be
just as wrong as the assumption that the link fails. We introduce
a new approach to BGP analysis and use it to demonstrate
the inadequacy of GR, concluding that only true connection
recovery is sufficient to protect the stability of the Internet.

II. DESIGN

We assume that we are given a fault-tolerant application
that can recover its own state, for example using checkpoints,
but depends on TCP connections that have inaccessible state
within a network stack. We will consistently refer to the
fault-tolerant application as the application, and to the remote
endpoints of its connections as its peers. We assume nothing
of the network stack, the application’s interface to it, or the
peers, other that what is specified by TCP [7].

A TCP connection consists of two independent streams of
bytes, one from the application to the peer and one in the
opposite direction. A TCP stream is reliable, in the sense that
each byte is delivered exactly once, in order. To that end, each
packet bears both a sequence number, indicating the position
of its first data byte within its stream, and an acknowledgment,
indicating the next sequence number expected in the opposite
direction. An endpoint buffers each byte it sends, retransmit-
ting it as necessary, until it receives an acknowledgment with
a later sequence number.

When a connection is established, each endpoint chooses
an initial sequence number at random, in order to avoid
confusion with packets that might still be in the network from
a previous connection between the same addresses. A packet
with the SYN flag establishes a new stream and sets the initial
sequence number; for example, after the handshake in Figure 1,
the client’s first data byte will have sequence number 401 (a
SYN counts as a byte sent), and the server’s first data byte
will have sequence number 301. A packet too far in advance
of the expected sequence, or which bears a SYN flag even
though the connection has already been established, will be
considered “unacceptable”.

TCP uses unacceptable packets to drive a non-transparent
form of connection recovery. If an endpoint with an established
connection receives an unacceptable packet, it replies with a
control packet, indicating the sequence number and acknowl-
edgment it thinks are current. However, if the connection is
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Fig. 2: Continuing after Figure 1, the client fails and recon-
nects. Its SYN is unacceptable, so the server replies with an
empty packet. The reply is in turn unacceptable to the client,
which does not yet have a connection, so the client sends a RST
and the server deletes the state of the old connection. When the
client retransmits its SYN, they establish a new connection.
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Fig. 3: TCPR is a packet filter interposed between the appli-
cation’s network stack and peers, which allows the application
to initiate connection recovery in a manner transparent to the
remote end-point.

not established, the endpoint replies by acknowledging the
unacceptable sequence number with the RST flag, notifying
the remote endpoint and causing it to abort its connection. If
a recovering client attempts to reconnect, the connection will
recover as shown in Figure 2. The outcome is that the old
connection is aborted, and the two endpoints establish a new
one.

We build on TCP’s notion of recovery, and make it trans-
parent by interposing middleware between the application’s
network stack and peers, as shown in Figure 3. The middlebox,
TCPR, communicates with the application both implicitly,
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Fig. 4: TCPR tracks acknowledgments, so that it can imme-
diately answer a recovery SYN. If the client from Figure 2
were an application using TCPR, TCPR would establish a new
connection locally and splice it back to the original, so neither
network stack is aware of the recovery.

through the behavior of the network stack, and directly, through
a side channel. TCPR maintains state for each connection, of
which the application also maintains a copy; the side channel
exists to synchronize those copies of the connection state.

From TCPR’s perspective, an application is just a side
channel and a set of connections whose packets can be manip-
ulated; without loss of generality, we will discuss how TCPR
enables a single process to protect a single connection. Our
goal for TCPR is to enable recovery with the simplest possible
middlebox and the least burden on the application, in terms of
code modification, per-connection state, communication on the
side channel, and overhead versus unprotected TCP.

A. Resynchronizing

As before, the application signals its desire to recover when
its network stack sends a SYN in the middle of an established
connection. Rather than revealing recovery to the peer, TCPR
intercepts the SYN and establishes a new connection locally,
as shown in Figure 4.

As with any new connection, the application’s network
stack chooses an initial sequence number in a manner delib-
erately designed to be unacceptable to old peers. In order to
splice the new and old connections back together, TCPR’s per-
connection state includes the application’s and peer’s acknowl-
edgments, ack and peer ack respectively.

By definition, the peer expects that peer ack will be the
next sequence number it receives. Suppose the new connection
begins from some other value, seq. TCPR computes ∆ = seq−
peer ack , and for the life of the new connection, subtracts
∆ from the application’s sequence numbers, and adds ∆ to
the peer’s acknowledgments. Thus, translation occurs through
small header modifications on packets in flight, much as a
network address translator remaps addresses and ports.

The opposite stream is simpler to resynchronize. TCPR
chooses its initial sequence number as ack − 1 (recall that
the SYN flag implicitly occupies a byte), so that the new
connection expects the peer to continue from ack just as before.

However, TCP’s reliability depends not only on sequence
numbers, but on the send and receive buffers at each endpoint,
which enable data to be retransmitted until it is safe at the
remote endpoint. If the application migrates to a new machine
or its network stack loses its state, the lost buffers must be
recovered.

B. Recovering the Send Buffer

When an application calls send, success only indicates
that the argument has been copied into the send buffer in the
network stack. Should the send buffer be lost, some of its
contents might not yet have been sent, or might be dropped in
the network. Outside the network stack, only the application
itself knows what it intended to send, so TCPR depends on it
to replay what might be lost.

The application can use TCPR to learn how much of its
output is safe at any time, and this information is necessary
after resynchronization in order to know what to re-send. To
do so, the application requests the latest state from TCPR,
which includes peer ack. To translate from sequence numbers
to total bytes sent since an arbitrary checkpoint, the application
can simply subtract the value of peer ack from that checkpoint.

Note that unacknowledged data is not necessarily lost.
Some might have been delivered to the peer, although no
acknowledgment had arrived by the moment at which the
network stack lost its state. Thus, the application must repeat
whatever it sent the first time. Generating all output determin-
istically is sufficient, but isn’t necessary. For example, it is
also sufficient for the application to checkpoint any data it is
preparing to send, so that it recovers not only the old value of
peer ack, but at least enough buffered data to recover. Beyond
that point, the application’s output is unconstrained. On the
other hand, a deterministic application does not need a buffer.
TCPR enables the most efficient choice based on specialized
knowledge about each connection.

C. Recovering the Receive Buffer

When data arrives from the peer, the application’s network
stack buffers it until the application consumes it using recv.
The TCP standard considers such data safe to acknowledge
immediately; once acknowledged, the remote peer will remove
it from its send buffer. However, the application might not
yet have invoked recv and obtained the data, let alone
checkpointed it. Accordingly, TCPR intercepts and modifies
TCP acknowledgments to ensure that unsafe data will not be
acknowledged, relying on the recoverable application to tell
TCPR when received data is safely checkpointed. Delayed
acknowledgments were introduced with FT-TCP [8], which
acknowledges packets only after it has checkpointed them into
a “stable buffer”, all hidden from the application. Putting the
application in charge enables more flexibility; for example,
the application could checkpoint raw input immediately, or
process whole application-layer messages and checkpoint the
resulting state changes—if some input causes no significant
state changes, the application could acknowledge it without
waiting for a checkpoint at all.

Delaying an acknowledgment can inflate the peer’s estimate
of the round-trip time of the connection. However most TCP
implementations already delay acknowledgments by up to



500 ms to conserve bandwidth and prevent “silly window
syndrome” [9]. Zagorodnov et al. [8] evaluated a variety
of strategies for generating delayed acknowledgments from
an advancing checkpoint; TCPR uses the strategy they call
“Delayed”, which provides the best throughput for the fewest
packets.

By putting the application itself in charge of its acknowl-
edgments, TCPR lifts the end-to-end argument [10] for TCP’s
reliability from the host level to the application level.

D. Handling Options

TCPR supports the most common TCP options. The TCP
standard leaves up to 20 bytes in the TCP header for such
options, and specifies three that all implementations must sup-
port (many more have subsequently been proposed). The three
standard options are No-Operation, End of Option List, and
Maximum Segment Size. The first two are used to manipulate
padding, so they have no impact on a connection’s state. An
endpoint may advertise Maximum Segment Size with its SYN
packet to negotiate a packet size that avoids IP fragmentation.
TCPR simply passes the value through, and records it to ensure
that the same negotiation takes place during recovery.

RFC 1323 [11] describes the first additional options to be
defined, Window Scaling and Timestamps, with the goal of
supporting high-latency high-bandwidth networks. To support
Window Scaling and Timestamps, TCPR passes the parameters
through and saves them for recovery, just as it does with
Maximum Segment Size. The authors of RFC 1323 noted that
the only previously non-padding option, Maximum Segment
Size, was only sent on SYN packets, so they worried that
buggy TCP implementations might erroneously fail to handle
unknown options on normal traffic. To address that concern,
they established the convention that TCP options are negotiated
in the handshake or else disabled. The result for TCPR is that
suppressing unknown options on a handshake will generally
avoid the need to suppress them any further.

TCPR also supports the Selective Acknowledgments [12]
option, which enables an endpoint to acknowledge data that
it receives out-of-order or with gaps. Advancing the actual
acknowledgment would erroneously cover the gaps, but failing
to acknowledge the received data might force the remote
endpoint to wastefully retransmit data that wasn’t really lost.
At first glance, Selective Acknowledgments might seem in-
compatible with TCPR’s delayed acknowledgments. However,
the standard specifies that Selective Acknowledgments are
purely advisory: although they serve as notification, the peer
is still responsible for eventually retransmitting that data if the
cumulative acknowledgment never catches up. Thus, it suffices
for TCPR to apply ∆ to the peer’s selective acknowledgments
as well as to its ACKs.

E. Masking Failure

TCPR cannot trust the network stack to accurately distin-
guish between the application closing a connection and failure.
During failover or migration, the application has (conceptually
if not in fact) two unsynchronized network stacks—the new
one, in which the connection is not yet established, and the
old one, in which the connection is no longer established.

Until the new network stack is resynchronized, any packet
it receives will be unacceptable, and it will send a RST
as discussed in Figure 2. An endpoint with an established
connection never sends a RST, so TCPR drops it to prevent
what we term a Romeo and Juliet scenario: if the peer received
the notice that the application is dead, it would abort the
connection just as the application came back to life.

Failure can also be revealed to the peer if the old network
stack tries to cleans up by closing the connection, such as
when only the application process fails.

An endpoint closes its output by sending a packet with
the FIN flag, which occupies a byte at the end of the stream
and must be acknowledged by the remote endpoint, like the
SYN at the beginning. At the packet level, there is no way
to distinguish whether a FIN indicates failure or a deliberate
call to close. Prior approaches have interposed on the
network stack’s interface to learn when the application closes
a connection deliberately. In TCPR we adopt a more explicit
approach: the application sets a flag, done writing , just before
it closes. TCPR treats a FIN as spurious if and only if that flag
is clear.

TCPR responds to a spurious FIN with a RST, in order
to enable the application to recover quickly in the case where
the old and new network stacks are the same. The network
stack will abort the old connection and be ready immediately
to establish the new connection.

F. Closing Input

To deliberately close the stream in the other direc-
tion, the application sets another flag, done reading. When
done reading is set, TCPR does not delay acknowledgments.
The network stack is free to acknowledge any remaining
data, notably including the peer’s FIN, so the peer can close
gracefully.

If the FIN is the only byte remaining to be acknowledged,
the application could instead advance ack by one byte. TCPR
provides done reading to echo the behavior of shutdown,
and it also enables us to perform experiments without delayed
acknowledgments.

G. Recovering After Closing

As with send, a successful close indicates only that the
FIN is in the send buffer. It might take some time for all of
the data to be sent and acknowledged. Even once the final
acknowledgment is sent, TCP implementations wait, usually
120 seconds, to be sure that the acknowledgment arrives and to
handle any straggling packets. What if the application crashes
after abdicating its socket?

TCPR sets a flag, done, when it thinks both flows are
closed, and another, failed, when it has detected that the
network stack has failed. The application can check at any time
whether the connection is really closed on the wire. If neces-
sary, the application can recover as normal; during recovery,
TCPR always unsets done writing to give the application the
chance to call close again.

Once close has been set for an appropriate duration (such
as 120 seconds) the application explicitly instructs TCPR to
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Fig. 5: When TCPR fails over, it depends on the application for
some of its state, and can recover the rest from the peer itself.
For example, if TCPR cannot immediately answer a recovery
SYN as in Figure 4, sending the unacceptable packet to the
peer prompts it to fill in the missing state.

delete its state. Of course, there is no reason the application
has to wait, and being in control of when TCPR deletes its
state also makes it easy to experimentally inject failures.

H. Recovering TCPR

Should TCPR itself fail, it can recover some of its state,
such as peer ack , by observing packets on the wire. The
remaining state, such as the latest ack for delaying acknowl-
edgments, is provided by the application. TCPR avoids the
need to replicate any of its own state because of our assumption
that recovery is driven by a fault-tolerant application.

For example, if the application is trying to recover but
the latest peer ack is missing, TCPR delivers the recovery
SYN to the peer uncorrected; the peer’s answer reveals the
desired value. See Figure 5 for an example. Resynchronization
takes place as in Figure 4, but with an additional round-trip to
recover soft state from the peer.

That default behavior also avoids the need for a special
case to detect whether a connection is new or recovering. If
peer ack is missing, either TCPR crashed and lost it, or the
connection is new and it doesn’t exist yet; in the former case,
the peer provides the missing value, and in the latter, it sends
its own valid answer to the handshake.

On the other hand, fields such as ack and done writing
cannot be inferred from packet-level observation, because they
are inherently controlled by the application. Neither can fields
such as the saved values of options, which are advertised only
once. Thus the application is expected to reset these values
through the side channel it has with TCPR.

The state that depends on the application changes much
more slowly than the soft state recoverable from packets.
Whereas peer ack is updated with every packet from the
peer, all of the application-dependent state is either fixed at
connection establishment (such as the peer’s TCP options),

struct tcpr_hard {
uint16_t port;
struct {

uint16_t port;
uint16_t mss;
uint8_t ws;
uint8_t sack_permitted;

} peer;
uint32_t ack;
uint8_t done_reading;
uint8_t done_writing;

};

struct tcpr {
struct tcpr_hard hard;
uint32_t delta;
uint32_t ack;
uint32_t fin;
uint32_t seq;
uint16_t win;
uint16_t port;
struct {

uint32_t ack;
uint32_t fin;
uint16_t win;
uint8_t have_fin;
uint8_t have_ack;

} peer;
uint8_t have_fin;
uint8_t done;
uint8_t failed;
uint8_t syn_sent;

};

struct tcpr_ip4 {
uint32_t address;
uint32_t peer_address;
struct tcpr tcpr;

};

Fig. 6: TCPR state structures. The application keeps one
struct tcpr_ip4 for each TCP/IP connection, but only
the 14-byte portion defined by struct tcpr_hard is nec-
essary for recovery.

set occasionally by the application itself (ack ), or set by the
application once when the connection closes (done reading
and done writing). Thus, both the extent of the modifications
to the application code and the communication overhead of
maintaining TCPR’s copy of the state are minimal.

III. IMPLEMENTATION

The TCP-manipulating core of TCPR is implemented as
a portable C library. The simplicity of application-driven
recovery is reflected in the fact that the library’s single file
contains only about 150 semicolons. We have experimented
with TCPR using a variety of techniques to interpose on
packets; the current prototype is a loadable module for the
Linux kernel firewall, iptables. The system administrator writes
rules to match packets to and from the application, delivering
them to TCPR rather than dropping or forwarding them.

TCPR’s per-connection state appears in Figure 6. Notably,
there is no buffered data. Both TCPR and the application
keep exactly one struct tcpr_ip4 per connection. The
network-independent state is in struct tcpr, while only



the subset of the state in struct tcpr_hard is crucial
for recovery—if any field outside struct tcpr_hard is
missing, TCPR will recover it on the fly.

The side channel is a UDP connection, and the protocol
consists only of entire states sent back and forth. The state
is small enough to avoid being a burden to send, and its
constant size and the atomic delivery of UDP combine to
make the update protocol easy to implement at both ends. For
example, to acknowledge some data, the application locally
sets tcpr.hard.ack and sends the entire state to TCPR.

Using UDP makes it possible for TCPR to be situated on
a middlebox physically distinct from the one on which the
application is running, but other options are also possible. In
our experiments, the highest efficiency was achieved when run-
ning TCPR in a separate network namespace but on the same
machine as the recoverable application. Network namespaces
are a recent Linux kernel feature that enables an individual
process to have an isolated routing table, network stack, and
set of network interfaces, while sharing the host’s memory,
filesystem, processors, and kernel. With the application in its
own network namespace, TCPR can run on the host as a
middlebox while enjoying loopback-interface throughput and
latency.

The TCPR distribution includes a netcat-like program
and a TCP proxy that provides TCPR-support for unmodified
applications, along with a utility to craft UDP TCPR updates
on the command line to query TCPR state. To measure recov-
ery time, we have implemented a utility that opens hundreds
of connections in parallel, injects failure on each of them,
and then times its recovery using Linux’s high-resolution real-
time clock. To measure throughput, we have also modified the
venerable ttcp to support TCPR; including error handling
and new command-line options for configuring TCPR, all that
it required was the addition of 28 lines.

Modifying an application to use TCPR does not require any
changes to existing socket system calls. Instead, one simply
adds code to interact with TCPR during connection setup and
teardown, and when input is to be checkpointed. A trivial
example is shown in Figure 7.

A fault-tolerant application that uses TCPR makes the
usual socket calls. After calling connect or accept—that
is, once the connection has been established—the application
retrieves the connection’s state from TCPR. As the application
consumes its input, it updates ack locally, then updates TCPR.
Similarly, when there is no more input, it sets done reading ,
and when it is finished writing output, it sets done writing .

If TCPR itself fails, the application need only send another
update message. If the application fails, it need only bind
and connect again to establish a new connection with the
same endpoints. Optionally, TCPR can remap the source port
to avoid collisions if the original port is already bound on
the recovering machine (using tcpr.port different from
tcpr.hard.port). Both TCPR and application recovery
are included in the snippet in Figure 8.

IV. EVALUATION

We have evaluated application-driven TCP recovery, using
BGP as our recoverable application, with the goal of validating

s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
bind(s, &addr, addrlen);
listen(s, backlog);
c = accept(s, &peeraddr, &peeraddrlen);
getsockname(c, &addr, &addrlen);

// request connection state
state.address = addr.sin_addr.s_addr;
state.peer_address = peeraddr.sin_addr.s_addr;
state.tcpr.hard.port = addr.sin_port;
state.tcpr.hard.peer.port = peeraddr.sin_port;
write(tcpr, &state, sizeof(state));

// receive TCPR’s copy
read(tcpr, &state, sizeof(state));

bytes = read(c, readbuf, readbuflen);

// update delayed acknowledgment
state.tcpr.hard.ack =

htonl(ntohl(state.tcpr.hard.ack) + bytes);
write(tcpr, &state, sizeof(state));

write(c, writebuf, writebuflen);

// close gracefully
state.tcpr.hard.done_reading = 1;
state.tcpr.hard.done_writing = 1;
write(tcpr, &state, sizeof(state));
close(c);

Fig. 7: A simple C server that uses TCPR.

// send TCPR the latest state
write(tcpr, &state, sizeof(state));
c = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
bind(c, &addr, addrlen);
connect(c, &peeraddr, peeraddrlen);

Fig. 8: A snippet by which the server in Figure 7 recovers
from simultaneous TCPR and connection failure.

four key assertions:

• TCPR adds negligible overhead to throughput and
latency.

• TCPR enables rapid recovery.

• By contrast, unprotected BGP recovery causes unnec-
essary and severe outages.

• Graceful Restart (GR) sometimes causes even more
disruption than standard BGP recovery.

The TCPR microbenchmarks were conducted between two
commodity Linux machines, each with two cores, connected
by a 1 Gbps Ethernet link. The BGP fault injection benchmarks
were conducted using an experimental framework we imple-
mented, which connects actual software routers and network
stacks in a virtual network. All of the nodes run in network
namespaces on a single host machine, which we verified was
not bottlenecked by CPU. Running on a single machine means
that network latencies are negligible, and all of the nodes share
a precise wall clock. In all experiments, TCP was implemented
by an unmodified Linux kernel network stack.



Mbps % Raw
Unprotected 896.354 ± 0.331 100

TCPR 896.385 ± 0.280 100

Fig. 9: TCP throughput from the application to the peer.

Mbps % Raw
Unprotected 851.206 ± 4.652 100

Unsafe TCPR 837.275 ± 5.355 98
TCPR 838.699 ± 1.934 98

Fig. 10: TCP throughput from the peer to the application.

A. Overhead

We evaluated throughput overhead using a version of ttcp
modified to support TCPR. First, we measured send goodput
from the application to the peer both with unprotected TCP
and with TCPR, reporting the average and standard deviation
of 10 runs in Figure 9. TCPR does not cause any measurable
overhead.

Next, we measured in the opposite direction: receive good-
put from the peer to the application. This is the flow that
is subject to delayed acknowledgments, so in addition to the
previous two cases, we measured “Unsafe TCPR”, in which
delayed acknowledgments were disabled.

As shown in Figure 10, while there is slight overhead on the
incoming packets, there is no measurable impact on throughput
from delayed acknowledgments. That is reasonable, because
TCP keeps a window of packets in flight in order to mask
latency.

The latency impact of delayed acknowledgments can be
seen in TCP round-trip times from packet traces. We used
traces of throughput experiments like those described above.
For each acknowledgment visible to the sender that covered
new data, we computed the elapsed time since it had sent that
data, reporting the average and standard deviation over all such
packets (about 50 in each trace) in Figure 11 and Figure 12.

There is no significant difference in latency from the
application to the peer. However, for input from the peer to the
application, both setups of TCPR exhibit much higher variance
than unprotected TCPR; delayed acknowledgments seem to
add nearly 50 microseconds of latency, but the overhead is
small and within the standard deviation.

Notice that since the recoverable application is responsible
for the delays to its own acknowledgments, these numbers
could be arbitrarily large. Our experiments are thus something
of a best-case scenario, because we measured an application
that always acknowledges its input as soon as possible after
the recv operation.

B. Recovery

The delay associated with application recovery obviously
depends strongly on the nature of the application, and would
often include the latency to detect failure and that associated
with launching a replacement. To isolate the costs specifically
associated with TCPR, we microbenchmarked its ability to

Microseconds
Unprotected 318 ± 27

Unsafe TCPR 326 ± 16
TCPR 334 ± 24

Fig. 11: Latency from the application to the peer.

Microseconds
Unprotected 550 ± 23

Unsafe TCPR 547 ± 94
TCPR 594 ± 85

Fig. 12: Latency from the peer to the application.

recover a connection, measuring the time from when a fresh
TCP stack was created by the recovering application until the
application is able to send and recv again.

We measured two cases, shown in Figure 13. In the “Appli-
cation” case, TCPR retained its state and only the application
failed and recovered, so that TCPR could establish a new
connection immediately. In the “TCPR + Application” case,
they failed and recovered together, so that soft state had to
be restored from the peer’s packets during recovery. If the
application had saved the soft state as well, recovery would
proceed exactly as in the “Application” case.

To set these numbers into context, consider our recoverable
BGP scenario: in both cases, TCPR-mediated connection re-
covery is faster than usual inter-arrival times of BGP updates
even on a heavily-loaded core Internet router. Thus, if the BGP
failure itself is handled quickly enough by the router, one can
completely mask the event from remote BGP peers.

C. BGP Failover

Our experimental evaluation of BGP failover was heavily
influenced by Pei et al. [13], who simulated networks of BGP
routers to measure the effectiveness of various proposals at
limiting the disruption of link failover. As in this prior work,
we evaluate CLIQUE and B-CLIQUE topologies, but rather
than examining link failure, we inject router failure followed
by immediate recovery. We simulate the network, but run a
full BGP implementation on our software routers.

In our experiments, most of the routers run the Quagga
routing software and the Quagga implementation of BGP.
However, to the best of our knowledge no open source BGP
router supports recovering with GR. Accordingly, we added
one node running exabgp, an easily-configured route injector
that supports GR. This node also has a packet filtering ability
that we exploit to artificially inflate the path length of some
routes, allowing us to explore scenarios with connected-but-
undesirable backup paths.

We didn’t modify the routers in any way, except for
enabling network namespace virtualization. Each router thus
had total control over its own routing table. We recorded
the experiments using rtmon, a utility that is included with
the standard Linux tool iproute2. The result is a log of
timestamped updates to each routing table. We also used
tcpdump on the host bridge to record all of the BGP messages
sent over the virtual network.



Microseconds
Application 39 ± 8

TCPR + Application 167 ± 25

Fig. 13: Recovery time.
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Fig. 14: Duration of convergence due to control failure.

1) Control Element Failover: Modern routers are often
constructed from a collection of computing nodes. An internal
node in a router that runs protocols such as BGP is called a
control element, whereas a forwarding element runs the hard-
ware engine and terminates physical links to peers. A common
configuration for large routers is to have two redundant control
elements, so that when one fails, the other can replace it. As
discussed in the introduction, even if BGP failover is rapid,
an extended period of disruption to network routing can still
ensue. We set out to measure these effects and to see how
TCPR can help.

Our experiments start by demonstrating that unmasked
failover can cause severe routing disruptions. We experimented
with a CLIQUE topology of 16 BGP routers. They were all
identical and each peered with all others. One router had an
additional peering relation with the route injector, and was
used to model a router that must fail-over from a primary to
a backup control element. Once the initial convergence com-
pleted, we killed the route injector and immediately restarted
it, then observed the BGP network until it converged again.
We collected data for more than 100 runs.

An important parameter in BGP convergence experiments
is the Minimum Route Advertisement Interval (MRAI), which
is a rate-limiting knob in BGP. It has been shown that up to
a certain value, the MRAI improves convergence times, but
past that, convergence times degrade. It is hard to determine
the optimal MRAI for a particular topology, and unfeasible
for the entire Internet; the original recommendation for MRAI
in peerings between providers was 30 seconds, but newer
experiments have indicated 5 seconds is better [14]. Our
data was collected with an MRAI of 5 seconds. We also
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Fig. 15: Average duration a router is disconnected from the
destination due to control failure.
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Fig. 16: Update load due to control failure.

experimented with an MRAI of 30 seconds, and observed even
longer convergence times and greater disruptions to network
connectivity.

Figure 14 shows a CDF of convergence times in each
experiment. On average, it took more than 15 seconds to
reconverge to the original route, even though the underlying
network topology was unchanged. During this period, we
observed many events in which some of the routers believed
some destination to be unreachable, or reachable through a
path that is actually a routing loop. We report these periods
in Figure 15, showing the time interval during which each
individual router was unable to reach one or more destinations,
as determined by analysis of the global collection of the routing
tables at each instant. On average, every router in the system
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Fig. 17: Duration of convergence due to correlated control and
forwarding failure.

experienced more than 11 seconds of connectivity loss for each
fail-over event, even though BGP itself recovered immediately.

In addition to disrupting the forwarding plane, reconver-
gence taxes the control plane by consuming bandwidth and
CPU to process updates. Figure 16 shows the number of
updates sent for each router for the single destination being
advertised. In a core Internet deployment, where a routing table
might include tens of thousands of destinations, the more than
45 updates per router we see here would be multiplied by the
number of destinations.

The vertical CDFs demonstrate the impact of using GR.
With this feature enabled, the router announces that it will
preserve its routing tables across restarts, and its peers continue
to route traffic through it during restart. The routing flap seen
with the basic BGP recovery is thus avoided and reconvergence
is immediate. No network disconnections occur, and there is
just a single redundant advertisement of each route. Thus,
in these experiments, GR does nearly as well as the non-
stop routing achievable with transparent connection recovery,
except for sending a small number of unnecessary route
advertisements.

2) Forwarding Element Failover: There are cases when
GR can perform worse than totally unmasked restarts. GR
is effective because it changes the way that peers interpret
connectivity loss. In the default BGP behavior, connection loss
is interpreted to indicate forwarding plane failure; with GR,
the forwarding plane is assumed to continue functioning on
“autopilot”, so that only the control plane requires resynchro-
nization. When this assumption is valid, GR almost solves the
failover problem. However, when the network topology does
change while the control plane is still recovering, GR can
instead delay the needed routing adaptation. A consequence
is that routers may use bad paths based on the assumption that
the recovering router has applied a routing update that it has
not had time to receive, process, and install in its hardware-
mediated forwarding plane.
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Fig. 18: Average duration a router is disconnected from the
destination due to correlated control and forwarding failure.
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Fig. 19: Update load due to correlated control and forwarding
failure.

To experiment with forwarding failover, we modified the
control experiment to use a B-CLIQUE topology. A B-
CLIQUE is the same as a CLIQUE, but with an additional
backup path. A second router in the clique peers with the
route injector, and receives a route to the destination that has
an inflated path length, making it less desirable than any path
through the primary link.

As shown in Figure 17, the convergence times for actual
link loss are worse than for a pure control failover; on average,
it takes more than 111 seconds for the network to completely
switch over to the backup. The disconnectivity, shown in
Figure 18, is similarly inflated, with an average of 86 seconds
outage. Finally, as shown in Figure 19, an average of nearly



190 updates per router, per destination are required to reach
convergence.

More important than the behavior of BGP under link
failure, however, is the behavior of GR. In our experiments, the
recovering connection with the primary link advertises many
new routes, which get filtered out before reaching the main
network but do serve to prolong resynchronization. During that
time, GR prevents convergence from even beginning, and yet
an underlying network link has failed. Thus, the GR data can
be seen to be similar to the raw case, but with a convergence
delay increased by more than 100 seconds. Worse still, our
experiments used a fairly small network. These delays depend
strongly on the size of the underlying network routing tables,
which in the core of the Internet are far larger than in our
experimental test case, and growing.

D. TCPR

Fail-over with TCPR offers the best results: the failure is
masked, hence the control-plane recovers as soon as the failure
has been sensed and the recoverable application restarted, with
no overheads. For forwarding failover, TCPR is identical to
unprotected BGP, and avoids the additional delays of GR.

V. RELATED WORK

Pei et. al. [13] have studied the disruption caused during
BGP convergence, explaining how topology and configuration
affect the result, and evaluated a number of proposed strategies
for making convergence faster and less disruptive. There has
also been work that, rather than making convergence itself
faster, ensures that routers can rapidly fail over to temporary
routes until convergence is complete [15]. Both branches of
work are valuable when convergence is unavoidable, such as
when the topology genuinely changes. However, since they do
not eliminate the disruption, it is preferable to mask failure
and recover transparently when possible.

Prior work on transparent TCP masking and recovery has
taken the approach of replicating the entire TCP stack and
everything above it, the application included. For example,
HydraNet-FT [16], CoRAL [17], [18], HotSwap [19], ST-
TCP [20], [21], AR-TCP [22], TRODS [23], and others [24],
[25] do so using primary-backup replication.

FATPETS [26] is a network stack written in Erlang, de-
signed specifically for failover and migration. It can operate
in an “active” mode, which essentially consists of primary–
backup replication of the entire state including buffers, or a
“passive” mode, which protects input with delayed acknowl-
edgments like TCPR.

In order to avoid changing the network stack, new software
can be interposed on its interfaces with the application and the
network, recording and possibly modifying its incoming and
outgoing events. Failover-TCP [27] and FT-TCP [28], [29],
[8] use such a technique. Similar to our TCPR approach,
acknowledgments are delayed until the data is safely handled
and sequence numbers in the packets to and from a restarted
network stack have to be rewritten.

All of these approaches suffer from being replay-driven.
Often they maintain multiple active replicas by duplicating
input to each of them, and using only the primary replica’s

output. Failover between active replicas is straightforward and
fast. However, to avoid running out of replicas, new ones must
be brought up to speed; the replay-driven approach assumes
that the application is deterministic, and warms up new replicas
by replaying all of a connection’s input, at either the packet
or the socket level. For an HTTP request, that can be quite
effective, but it quickly becomes impractical for connections
that receive a lot of input, such as a BGP session.

Another approach is to use a proxy server between a server
and its clients [30]. The client sets up a connection to the
proxy server, and the proxy server handles failing over from
a primary server to a backup server as necessary. However,
without an approach for replicating the proxy [31], it also
introduces a new single point of failure.

Virtualization offers an even lower-level approach to trans-
parent migration. For example, Remus [32] replicates an entire
virtual machine, including the application, the network stack,
and the operating system. Virtual machine migration can also
be exploited to protect particular applications [33], [34]. Using
such technology, however, the failure or reconfiguration of the
application itself within the virtual machine image still causes
its TCP connections to break, thus providing only limited
benefit for the heavyweight replication demands.

Backdoors [35] takes a unique approach based on replicat-
ing state after the application has already failed, by assuming
that the network interfaces survive the failure and modifying
them to support remote DMA.

Finally, when it is possible to modify all of the application’s
peers, a good option is to introduce a session library or
modified socket library [36], [37], [38], [39], [40]. Such an
implementation could automatically set up a new connection
to a new server in case the connection to the current one fails,
or even maintain redundant connections.

VI. CONCLUSIONS

Application-driven TCP recovery is a novel approach that
enables a fault-tolerant application to protect connections in
cases that were impossible with replay-driven recovery. Our
prototype, TCPR, confirms the simplicity of application-driven
recovery. Rather than replicating the TCP state and every-
thing above it, TCPR is not even replicated itself, because
the application assumes responsibility. TCPR is middleware,
outside the network stack, enabling any application to use it
with an unmodified, unwrapped network stack and whatever
interface it provides. By controlling the acknowledgment of
data, along with occasional input from the application layer,
TCPR needs only a small, constant amount of state per
connection, enabling low overhead in normal operation and
sub-millisecond recovery.

BGP is an important application for TCP recovery, be-
cause broken connections trigger disproportionate amounts of
disruption for core Internet forwarding. Furthermore, BGP
stretches or breaks some crucial assumptions made by prior
work, including determinism, whether the application can be
a TCP client, and limitations on the length of its input.

Our evaluation of BGP uses a novel measurement frame-
work to demonstrate that unmasked failover can result in
tens or hundreds of seconds of outages, even when it is



not necessary to reconverge at all. Graceful Restart, although
beneficial in some cases, can arbitrarily delay convergence
when forwarding and control failures are correlated.

Ironically, a high-availability router might benefit from a
design that increases the correlation between such failures.
Forwarding elements in large routers usually have general-
purpose CPUs and memory, in addition to the specialized
forwarding hardware. The general-purpose hardware exists to
handle slow-path forwarding decisions and configuration tasks,
but is usually over-provisioned. Offloading control element
responsibilities onto parts of forwarding hardware can dramat-
ically increase the replication possibilities, from one or two
dedicated control nodes to every component in the router. With
more replicas come more frequent faults, but also additional
fault-tolerance and greater parallelism for distributing work-
loads. Restructuring a router to exploit those resources would
be unwise with Graceful Restart, because any forwarding
element failure would be correlated with the failure of some
control element functionality. However, failover using TCPR
is lightweight and, more importantly, invisible to peers, so
the system designer can be free to fully exploit the available
resources. In fact, our work on TCPR originated in a project
that prototyped just such an architecture [41].

The ability to easily migrate connections between replicas
can also be useful when running multiple versions or con-
figurations of an application. For example, a router could be
made tolerant to implementation bugs by exploiting software
diversity [42]. Using TCPR to protect the output of a master
version or voting module can enable such an approach to
tolerate hardware failure as well.

TCPR can offer benefit to applications other than BGP. For
example, TCPR enables a lightweight approach to migration
that can also tolerate unexpected failures, and can therefore
be beneficial for load balancing long-running connections for
streaming media within a CDN point-of-presence. We are also
exploring applications of TCPR to a cloud-based smart power
grid controller, where the middlebox helps make connections
to data collectors fault-tolerant and enables elastic rebalancing
of connections within the cloud, without complicating the
implementation of deployed hardware.

High-availability, fault-tolerant applications already do a
lot of work to maintain their own state. Application-driven
TCP recovery can be seen as merely a way to given such an
application access to its own state, which would otherwise be
encapsulated in a network stack, without interfering with the
implementation hidden behind that encapsulation.
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