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Abstract 
Most existing communications technologies are either 
not scalable at all, or scale only under carefully 
controlled conditions.  This threatens an emerging 
generation of mission-critical but very large computing 
systems, which will need communication support for 
such purposes as system management and control, policy 
administration, data dissemination, and to initiate 
adaptation in demanding environments.  Cornell 
University’s Spinglass project has discovered that 
“gossip-based” protocols can overcome scalability 
problems, offering security and reliability even in the 
most demanding settings.  Gossip protocols emulate the 
spread of an infection in a crowded population, and are 
both reliable and stable under forms of stress that can 
disable more traditional protocols.  Our effort is 
developing a new generation of gossip-based technology 
for secure, reliable large-scale collaboration and soft 
real-time communications – even over global networks.   

1. Introduction 

Distributed computing
1
 will be central to advances in 

a broad range of critical applications, including 
intelligence information systems, military command and 
control, air traffic control, electric power grid 
management, telecommunications, and a vast array of 
web-based commercial and government  applications.  
Indeed, a massive rollout of such systems is already 
underway.  Yet while impressive capabilities have been 
easy to develop and demonstrate in small-scale settings, 
once deployed these systems often stumble badly.   

Software that runs securely and reliably in small-scale 
mockups may lose those properties as numbers of users, 
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the size of the network, and transaction processing rates 
all increase. Whereas small networks are well-behaved, 
any sufficiently large network behaves like the public 
Internet, exhibiting disruptive overloads and routing 
changes, periods of poor connectivity and throughput 
instability.  Failures rise in frequency simply because the 
numbers of participating components are larger.  A 
scalable technology must ride out such forms of 
infrastructure instability, imposing loads that are either 
constant, or growing very slowly, as a function of system 
size and network span.   

Our studies reveal that very few existing technologies 
have the necessary properties.  Most, including the most 
prevalent commercial software, exhibit scalability 
problems when subjected to even modest stress.  This 
finding reveals an imminent (and growing) threat to the 
full spectrum of emergent mission-critical computing 
systems.  If we can’t solve the scalability problem, and 
develop a methodology yielding applications that remain 
secure and robust even when failures occur – indeed, 
even under attack, or during denial-of-service episodes – 
then the very technologies that hold the greatest promise 
for major advances will prove to be the Achilles Heel of 
a future generation of mission-critical military and 
public-sector enterprises. 

The Spinglass project is working to overcome 
scalability barriers, starting with an idea that was first 
proposed in the context of replicated information 
management systems. Several early systems in this 
domain employed what were called “epidemic-style” or 
“gossip” update algorithms, whereby sites periodically 
compare their states and reconcile inconsistencies, using 
a randomized mechanism for deciding when and with 
whom each participant will gossip.  Traditionally, such 
systems used gossip protocols at low speeds.  Our work 
employs gossip at very high speeds, yielding a new 
generation of protocols that have an unusual style of 
probabilistic reliability guarantees – guarantees of 
scalability, performance, stability of throughput even 
under stress, and scalability of throughput even when a 
significant rate of packet loss is occurring. These 
properties hold even on Internet-like platforms.  
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Gossip protocols lend themselves to theoretical 
analysis, making it possible to predict their behavior with 
high confidence.  However, the focus of our work at 
Cornell is mostly practical: we are using gossip, together 
with other more traditional mechanisms, to develop new 
generations of scalable communications software and 
network management services for a wide variety of 
settings. 

Spinglass treats security and authentication as 
important considerations, and our software is designed to 
coexist with modern firewalls and intrusion-detection 
solutions. Although no distributed system can continue 
to operate correctly if communication is completely 
disabled, we will show that Spinglass protocols (notably 
the Astrolabe subsystem) can often ride out attacks that 
would cripple conventional acknowledgement based 
reliability tools.  This suggests that Astrolabe could be a 
valuable adjunct to intrusion detection mechanisms, 
many of which can be disabled by flooding the network 
or using other denial-of-service mechanisms.  Such 
attacks do cause Astrolabe to degrade, as discussed in 
Section 7, but it continues to report information and 
hence remains useful.  Moreover, the technology has no 
servers or other single point-of-failure.   

Our objective in this paper is to review the scalability 
problem and to summarize our approach to solving it.  
The need for brevity limits the technical detail here, but 
other publications are available for the interested reader 
who wishes to understand exactly how the technology 
can be implemented, or to see additional experimental 
results going beyond the ones reproduced here.  
Availability of our software is discussed in Section 11. 

2. Scalability 

The scalability of distributed protocols and systems is 
a major determinant of success in demanding systems.  
For example, consider the recent field-test of the Navy’s 
Cooperative Engagement Capability (CEC).  During the 
period Sept. 13-27, 2000, this system (which offers an 
over-the-horizon cooperative targeting capability for 
naval warships) was subjected to a very modest stress 
test.  The value of this system depends upon timely 
identification of threats and rapid determinations 
concerning the ship that should respond to each threat.  
Threats may be incoming missiles moving at several 
times the speed of sound, and correct behavior implies 
deadlines of about a second for the communication 
subsystem.  The subsystem had been demonstrated 
capable of meeting the requirements under laboratory 
conditions with small numbers of participating 
computing systems. Yet under load, when even small 
numbers of ships were added to the system, the 
underlying Data Distribution System (DDS) became 
unstable, either failing outright or delivering data after 

much more than the one-second threshold.  (Defense 
News, October 16, 2000).  In effect, the CEC failed, and 
did so under relatively benign conditions in which the 
only variable that changed was the number of 
participants and the rate of events being handled.   

This paper focuses on scalability of distributed 
protocols providing some form of guaranteed reliability.  
Examples include the virtual synchrony protocols for 
reliable group communication [1, 4, 5, 16], scalable 
reliable multicast [7], and reliable multicast transport 
protocol [20].  In this section we’ll try to show that the 
usual architecture for supporting reliability exposes 
mechanisms of this sort to serious scalability problems.    

Traditionally, one discusses reliability by posing a 
problem in a setting exposed to some class of faults.  
Fault-tolerant protocols solving the problem can then be 
compared.  The protocols cited above provide a multicast 
capability tolerant of message loss and endpoint failures, 
and discussions of their behavior would typically look at 
throughput and latency under normal conditions, 
message complexity, background overheads, and the 
degree to which failures disrupt these properties.   

Oddly, even careful performance analyses generally 
focus on two extreme cases: performance of the protocol 
under ideal conditions, when nothing goes wrong, and 
the disruptive impact of a failure.  This paper adopts a 
different perspective; investigating reliable protocols 
under the influence of what might be called mundane 
transient problems, such as network or processor 
scheduling delays and brief periods of packet loss.  One 
would expect that reliable protocols would ride out such 
events, but we find that this is rarely the case, 
particularly if we look at the impact of a disruptive event 
as a function of scale (system and network size).  On the 
contrary, reliable protocols degrade dramatically under 
this type of mundane stress, a phenomenon attributable 
to low-probability events that become both more likely 
and more costly as the scale of the system grows.   

Here, we limit ourselves to a summary of our findings 
with respect to the growth rate of disruptive overheads 
for a number of widely used multicast protocols. 
Elsewhere [2], we present a more detailed analysis of the 
same scenarios, modeled after the work of Gray et al. 
[8], where a similar conclusion is reached with respect to 
database scalability.  It is clear that scalability represents 
a widespread problem affecting a broad range of 
technologies and systems. 

But the picture is not entirely bleak.  After presenting 
these arguments, we shift attention to a new class of 
protocols based on an idea from NNTP (network-news 
transport protocol), the gossip-based algorithm used to 
propagate “news” in the Internet, and Clearinghouse, the 
directory replication technology developed at Xerox Parc 
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Figure 1: Sustainable throughput (multicasts/sec) 
drops as group size increases [3] 
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in the 1980’s.  These turn out to be scalable under the 
same style of analysis that predicts poor scalability for 
their non-gossip counterparts.    

3. Scalability and Reliability 

Reliable multicast comes in many flavors.  This 
Section of the paper focuses on two well-known points 
within the spectrum, asking about their scalability 
properties.  First, we look at the virtual synchrony model 
[1], which offers rather strong fault-tolerance and 
consistency guarantees to the user.  These include 
automated tracking of group membership, reporting of 
membership changes to the members, fault-tolerant 
multicast, and various ordering properties.  
Communication systems using this approach include the 
Amoeba reliable multicast, Ensemble, i-Bus, Isis, Horus, 
Phoenix, Relacs, Rampart, Transis, Totem, etc.  This 
paper focuses on the behavior of the Horus system, but 
reaches conclusions that would also apply to other 
members of this class. 

Next, we discuss multicast protocols in which 
reliability is “receiver driven” – group membership is not 
tracked explicitly, and the sender is consequently 
unaware of the set of processes that will receive each 
message.  Receivers are responsible for joining 
themselves to the group and must actively solicit 
retransmissions of data that they miss.  Well known 
examples of multicast protocols using this approach 
include the reliable group multicast of the V system, 
RMTP (reliable multicast transport protocol), SRM 
(scalable reliable multicast), TIB (Teknekron 
Information Bus), etc.  SRM has been described in the 
greatest detail and a simulation was available to us, so 
we focus on it.  However, we believe our conclusions 
would apply to any of the protocols in this class. 

Throughput Instability 

Consider Figure 1, which illustrates a problem 
familiar to users of virtually synchronous multicast.  The 
graph shows the throughput that can be sustained by 
various sizes of process groups (32, 64 and 96 members), 
measuring the achievable rate from a sender eager to 
send as many messages as possible to a randomly 
selected, healthy receiver. We graph the effect of a 
“perturbation” on the throughput of the group, using an 
optimized implementation that set throughput records 
among protocols in this class. A single group member 
was selected, and forced to sleep for randomly selected 
100ms intervals, with the probability shown on the x-
axis. Each throughput value was calculated at an 
unperturbed process, using 80 successive throughput 
samples, gathered during a 500ms period. The message 
size was 7KBytes.  The data was collected on a cluster-
style parallel processor, but similar results can be 
obtained for LANs, as reported in [17, 3]. 

Focusing on the 32-member case, we see that the 
group can sustain a throughput of 200 messages per 
second in the case where no members are perturbed.  As 
the perturbed member experiences growing disruption, 
throughput to the whole group is eventually impacted.  
The problem arises because the virtual synchrony 
reliability model forces the sender to buffer messages 
until all members in the group acknowledge receipt.  As 
the perturbed member becomes less responsive, flow 
control in the sender begins to limit its transmission 
bandwidth (our experiment employed a fixed amount of 
buffering space at the sender).   

With this in mind, an application designer might 
consider adjusting the buffering parameters of the system 
to increase sender-side buffer capacities, and designing 
the application to communicate asynchronously in the 
hope that the underlying communication system might 
soak up delays much as TCP’s sliding window conceals 
temporary rate mismatches between sender and receiver. 

Unfortunately, such a strategy is unlikely to succeed.  
Notice that for any fixed degree of perturbation, 
performance drops as a function of group size, and that 
the knee of the curve shifts left as we scale up: with 64 
members, performance degrades even with one member 
sleeping as little as 10% of the time, and with 96 
members, the impact is dramatic.  The perturbation 
introduced by our experiment2 is not such an unlikely 
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event in a real system: random scheduling or paging 
delays could easily cause a process to sleep for 100ms at 
a time, and such behavior could also arise if the network 
became loaded.  Indeed, some small amount of 
perturbation would be common on any platform shared 
with other applications, especially if some machines lack 
adequate main memory, have poor cache hit rates, or 
employ a slow network link.   Our graph suggests that a 
strategy focused on sender-side buffering would 
apparently need buffering space at least linear in the 
group size. 

Micropartitions 

Faced with this sort of problem, a system designer 
who needs to reliably sustain a steady data rate might 
consider setting failure detection thresholds of the system 
more and more aggressively as a function of scale. The 
idea would be to knock out the slow receiver, thereby 
allowing the group as a whole to sustain higher 
performance. To a reader unfamiliar with virtually 
reliable multicast, the need to make failure detection 
more aggressive as a function of system size may not 
seem like a particularly serious concern.  However, such 
a step is precisely the last thing one wants to do in a 
scalable reliable group multicast system.  The problem is 
that in these systems, membership changes carry 
significant costs.  Each time a process is dropped from a 
group the group needs to run a protocol (synchronized 
with respect to the multicast stream) adjusting 
membership, and reporting the change to the members.   

The problem gets worse if the failure detector is 
parameterized so aggressively that some of the dropped 
processes will need to rejoin.  Erroneous failure 
decisions involve a particularly costly “leave/rejoin” 
event.   We will term this a micropartitioning of the 
group, because a non-crashed member effectively 
becomes partitioned away from the group and later the 
partition (of size one) must remerge.  In effect, by setting 
failure detection parameters more and more aggressively 
while scaling the system up, we approach a state in 
which the group may continuously experience 
micropartitions, a phenomenon akin to thrashing.  

One could argue that with larger perturbation values 
and less aggressive settings of failure detection 
parameters, the system is just behaving according to its 
design.  But if we make the detection mechanism 
extremely aggressive so that a process will be dropped 
for even very minor perturbations, one enters a domain 
in which a typical healthy process has a significant 
probability of being dropped anyhow, because of random 
phenomena not controllable by the designer. 

Costs associated with micropartitions rise in 
frequency with the square of the size of the group.  This 

is because the frequency of mistakes is at least linear3 in 
the size of the group, and the cost of a membership 
change is also linear in the group size: a quadratic effect.   

The phenomenon just described is familiar to the 
designers of large reliable distributed systems.  For 
example, the developers of the Swiss Exchange trading 
system (an all-electronic stock exchange, based on the 
Isis Toolkit) comment that they were forced to set failure 
detection very aggressively, but that this in turn limited 
the number of machines handled by each “hub” in their 
architecture [17].   

Convoys 

The obvious response to the scalability problem just 
presented is to structure large virtually synchronous 
systems hierarchically, as a tree of process groups.  
Unfortunately, this option is also limited by disruptive 
random events, albeit in a different way. 

Consider a small group of processes within which 
some process is sending data at a steady rate, and focus 
on the delivery rate to a healthy receiver.  For any of a 
number of reasons, the rate is likely to be somewhat 
bursty unless data is artificially delayed.  For example, 
messages can be lost or discarded, or may arrive out of 
order; normally, a reliable multicast system will be 
forced to delay the subsequent messages until the 
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detections grows as O(n2), since any member might mis-
diagnose a failure of any other member, but in practice 
mistaken detections are not quite so frequent. 

 

Figure 2: Message “convoys” often arise when 
groups are cascaded in a hierarchical manner 
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missing ones are retransmitted.  The sender may be 
forced to use flow control.  Messages may pass through a 
router, which will typically impose its own dynamics on 
the data stream.  This is illustrated in Figure 2, where 
data enters a hierarchical group at a steady rate 
(illustrated by the evenly spaced black boxes), but layer 
by layer, becomes increasingly bursty.   

This phenomenon is familiar to the database and 
packet routing communities, which refer to it as a 
“convoy.”  Kalantar, studying the implications of such 
burstiness in hierarchical process groups, finds that each 
new level of group amplifies the burstiness of its data 
input source [12].  He notes that the problem is 
particularly severe when the upper levels of the hierarchy 
maintain a multicast ordering property, such as totally 
ordered message delivery.  The problem is that when 
messages arrive out of order, the ordering requirement 
forces delays but also results in the delivery of a burst of 
ordered messages when the gap has been filled; the next 
layer thus sees a bursty input that can trigger flow 
control mechanisms (even if the original flow would not 
have required flow control). The problem is particularly 
severe if the top-level group sends multicasts at a high 
data rate, since the gaps between bursts represent dead 
time and effectively reduce the available bandwidth, 
while the bursts themselves are likely to exceed the 
available bandwidth. 

Kalantar suggests a few remedies.  Hierarchical 
systems might be designed to enforce weak ordering 
properties near the sender, reintroducing stronger 
guarantees close to the receiver.  However, this design 
point has never been explored in practice, in part because 
ordering and reliability are hard to separate.  A second 
option involves delaying messages on receipt (layer by 
layer, or end-to-end) to absorb the expected degree of 
rate variations.  But this would demand a huge amount of 
buffering.  Kalantar concludes that as traditionally 
implemented, hierarchically-structured process groups 
will be complex to manage and may perform poorly.  

Request and Retransmission Storms 

One might speculate that the problems seen above are 
specific to the virtual synchrony reliability model.  
However, a related scalability phenomenon has been 
observed by several researchers studying the SRM 
protocol, a “scalable reliable multicast” protocol that 
uses a receiver-driven recovery mechanism. 

Virtual synchrony is very stringent model, providing 
guarantees strong enough to support replicated data 
wherein any copy is as good as any other.   In contrast, 
SRM employs a best-effort model, in which the onus 
falls on the receiving process to join itself to the 
transmission group (an IP multicast group within the 

Internet), to begin collecting data, and to request 
retransmissions of missing data.  SRM is based on a 
model called application-level framing, which basically 
extends the end-to-end model into the multicast domain.  
The idea is that the IP multicast layer is oblivious to the 
protocol using it, hence the SRM request and 
retransmission mechanisms reside in the application (in a 
library).  One consequence is that although the protocol 
uses IP multicast to send messages, retransmission 
requests and retransmissions, the IP multicast layer is 
oblivious to the manner in which it is being used.  The 
only control available to the protocol itself is in the value 
used for the IPMC time-to-live (TTL) field, which limits 
the number of hops taken before a packet is dropped.  

IP multicast is an unreliable protocol; hence, a 
multicast packet might be dropped by a router (or the 
sender’s operating system), failing to reach large 
numbers of receivers. To avoid subjecting the full set of 
participants to a storm of requests and retransmissions, 
SRM uses a timer-based delay scheme reminiscent of 
exponential backoff. Group members delay requests (for 
missing data) for a randomly selected period of time, 
calculated to make it likely that if a subtree of the IP 
multicast group drops a message, only one request will 
be issued and the data will be retransmitted only once.  
The protocol also uses the TTL values in a manner 
intended to restrict retransmissions to the region within 
which the data loss occurred. 

The general belief is that because protocols like SRM 
have (relatively) weak reliability goals, they should scale 
much better than virtual synchrony, which has a very 
stringent reliability goal.  Unfortunately, several recent 
studies have shown that the SRM tactics are not as 
effective as might be hoped, particularly in very large 
networks (hundreds or thousands of members) subject to 
low levels of random packet loss or link failures.  At 
least three simulation studies have demonstrated that 
under these conditions, a large percentage of the packets 
sent trigger multiple requests, each one of which, in turn, 
triggers multiple multicast retransmissions.   Basically, it 
isn’t hard to drive SRM overheads through the roof. 

The data shown in Figure 3 reflects this problem and 
is reprinted from [3]; similar findings have been reported 
by [13, 14]. NS-2 (which includes a simulation of SRM, 
including its adaptive mechanisms) was used to graph 
the rate of requests for retransmissions and repairs 
(retransmissions) for groups of various sizes.  We 
constructed a simple 4-level tree topology, injecting 100 
210-byte messages/second, and setting parameters as 
recommended by SRM’s developers.  We set a system-
wide message loss probability at 0.1% on each link, and 
measured overhead at typical processes.  (With other 
topologies and noise rates we get similar graphs).  
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The intuition is that the basic SRM mechanisms are 
ultimately probabilistic.  As a network becomes large, 
the frequency of low probability events grows at least 
linearly with the size of the network.  For example, as a 
network scales, there will be processes further and 
further apart that may each (independently) experience a 
packet loss.  By symmetry, these have some probability 
of independently and simultaneously requesting a 
retransmission, and even with SRM’s “scalable session 
messages,” variability in network latency may be such 
that neither request inhibits the other.  Each process that 
receives such a request and has a copy of the multicast in 
its buffers has some probability of resending it.  Again, 
although there is an inhibitory mechanism, with some 
probability more than one process may do so.  Thus, as 
the network is scaled and the global frequency of these 
low probability events rises, one begins to observe 
growing numbers of requests for each multicast packet.  
Depending on the network topology, each request may 
result in multiple retransmissions of the actual data.  
Although the latter problem is not evident in the simple 
tree used to construct Figure 3, with a “star” topology 
and the same experimental setup, SRM sends roughly 
three to five repairs for each request.  All but the first are 
“duplicates.”  Thus, the aggregate overhead rises with 
group size, and the effect can be considerably worse than 
linear. 

Notice that although SRM has reliability goals very 
remote from those of virtual synchrony, once again we 
encounter a mechanism with costs linear in system size 
and frequency growing, perhaps linearly, in system size.  
The costs are those associated with sending and 
receiving superfluous multicasts, and the frequency is 
basically a function of the aggregated path-lengths over 

which multicast messages will travel.  Thus, not only is 
the linear growth in overhead seen in Figure 3 
unsurprising, one might have speculated that it should be 
worse than linear.  (In fact, it is possible to design 
experimental scenarios that provoke quadratic overhead 
growth, although we have not done so here). 

At the start of this section, we observed that the 
throughput degradation experienced for the virtual 
synchrony protocols is not unique to that reliability 
model.  In the case of SRM, the problems just described 
contribute to growth in background load seen in Figure 3 
and to unstable throughput much like that graphed in 
Figure 1, and can overload routers to such a degree that 
the system-wide packet loss rate will rise sharply.  
Should this occur, a performance collapse is likely.  

Other approaches 

The issues just described are also seen in other 
reliability mechanisms.  Elsewhere, we have extended 
this analysis to consider other “scalable” protocols, such 
as RMTP (a well known protocol that was recently 
standardized by the IETF).  The same issue arises in 
publish-subscribe message bus protocols such as the one 
in TIB (probably the most successful multicast-like 
product line), and in other large-scale multicast 
architectures.  Even forward error correction (FEC), a 
proactive mechanism whereby the sender introduces 
redundancy into the data stream so that the receiver can 
reconstruct lost data, degrades as a function of scale, 
because of the increasing likelihood that an overloaded 
network will drop multiple packets, overwhelming the 
error correction mechanism.  To bound the sender’s load 
in applications where lost data must be resent, it becomes 

Figure 3:  As the size of the group increases, a low level of background noise (0.1% in this case)  can trigger 
high rates of requests (left) and retransmissions (right) for the SRM protocols. Most of these are duplicates. 
Notice that the data rate is being held constant; only the size of the group is increased in these experiments. 
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necessary to increase the degree of redundancy in a 
manner proportional to the number of receivers. 

So striking is this problem, and so widespread, that 
one might wonder how distributed computing could 
possibly be such a success, given the pattern of poor 
scalability just cited.  In fact, these problems arise mostly 
in technologies that provide reliability guarantees, and 
few of these have ever been deployed on a really large 
scale, except in tightly controlled settings.   

A reasonable speculation is that we are unaware of the 
limited scalability of these kinds of technologies, and the 
systems built over them, because for all the discussion, 
relatively few really large-scale systems have been built 
so far.  This will soon change, but at the time of this 
writing, the really large-scale systems tend to be things 
like the Internet, and the various web-services hosted 
upon it.  Clearly, the Internet itself scales reasonably 
well, provided that one doesn’t care about brief episodic 
disruptions.  Web servers are a great success, as long as 
occasional inability to access a server isn’t a concern.  
Indeed, the striking pattern is not that nothing scales, but 
rather that large-scale systems are prone to disruption.  
To the extent that we introduce mechanisms that try to 
overcome this disruption, and especially when we do so 
at a low level, we arrive at solutions that scale poorly.  In 
this sense, the technologies just reviewed scale poorly 
precisely because they attempt to operate reliably: a 
diabolic tradeoff indeed!  Fortunately, some of the very 
oldest work in distributed computing points to a way out. 

4. Epidemic Protocols 

Not all protocols suffer the behavior seen in these 
reliable mechanisms.  Up to now, we’ve focused on 
multicast protocols.  Within this class of mechanisms, 
Bimodal Multicast, a protocol reported in [3], scales 
quite well and easily rides out the same phenomena that 
cause problems with these other approaches to reliability 
and scalability. 

Bimodal multicast is a gossip-based protocol that 
closely resembles the old NNTP protocol (employed by 
network news servers), but running at much higher 
speeds.  The protocol has two sub-protocols.  One of 
them is an unreliable data distribution protocol similar to 
IP multicast, and in fact IP multicast can be used for this 
purpose if it is available.  (Because IP multicast is often 
disabled in wide-area networks, Bimodal Multicast more 
often runs over a very lightweight unicast-based tree 
management and multicasting mechanism of our own 
design, using IP multicast if the feature is available but 
without depending upon it).   Upon arrival, a message 
enters the receiver’s message buffer.  Messages are 
delivered to the application layer in FIFO order, and are 

garbage collected out of the message buffer after some 
period of time. 

The second sub-protocol is used to repair gaps in the 
message delivery record, and operates as follows.  Each 
process in the system maintains a list containing some 
random subset of the full system membership4.  At some 
agreed rate (but not synchronized across the system) 
each participant selects one of the processes in its 
membership list at random and sends it a digest of its 
current message buffer contents.  This digest would 
normally just list messages available in the buffer: 
“messages 5-11 and 13 from sender s, …” for example.  
Upon receipt of a gossip message, a process compares 
the list of messages in the digest with its own message 
buffer contents.  Depending upon the configuration of 
the protocol, a process may pull missing messages from 
the sender of the gossip by sending a retransmission 
solicitation, or may push messages to the sender by 
sending unsolicited retransmissions of messages 
apparently missing from that process. 

This simplified description omits a number of 
important optimizations to the protocol.  In practice, we 
use gossip not just for multicast reliability, but also to 
track system membership [19, 9].  We sometimes use 
unreliable multicast with a regional TTL value instead of 
unicast, notably in situations where it is likely that 
multiple processes are missing copies of the message.  A 
weighting scheme is employed to balance loads on links: 
gossip is done primarily to nearby processes over low-
latency links and rarely to remote processes, over costly 
links that may share individual routers [22].  The 
protocol switches between gossip pull and gossip push, 
using the former for “young” messages and the latter for 
“old” ones.  Finally, we don’t actually buffer every 
message at every process; a hashing scheme is used to 
spread the buffering load around the system, with the 
effect that the average message is buffered at enough 
processes to guarantee reliability, but the average 
buffering load on a participant decreases with increasing 
system size. 

Bimodal Multicast has a number of beneficial 
properties.  The protocol imposes constant loads on 
participants: during each gossip round, a process sends a 
single message, receives (with high probability) a single 
message, and may be asked to retransmit at most a 
bounded amount of data.  Given a small amount of 

                                                        
4 In practice, we bias this list to favor nearby processes – 
those accessible over low-latency links.  We also need to 
tunnel through firewalls, and hence communication to 
genuinely remote processes is handled in a slightly 
different manner.  However, these details go beyond the 
scope of the current paper. 
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information about network topologies, loads on 
communication links can also be kept constant, 
irrespective of the system size. The mechanisms 
supporting the protocol can be implemented as an event-
driven state machine that never blocks and requires just a 
small amount of buffering, making it inexpensive to run.   

Most important from the perspective of this paper, 
however, the protocol overcomes the problems cited 
earlier for other scalable protocols.  Bimodal Multicast 
has tunable reliability that can be matched to the needs of 
the application (reliability is increased by increasing the 
length of time before a message is garbage collected, but 
this also causes buffering and I/O costs to rise).  The 
protocol gives very steady data delivery rates with 
predictable, low, variability in throughput.  For real-time 
applications, this can be extremely useful.  And the 
protocol imposes constant loads on links and routers (if 
configured correctly), which avoids network overload as 
a system scales up.  All of these characteristics are 
preserved as the size of the system increases. 

The reliability guarantees of the protocol are midway 
between the very strong guarantees of virtual synchrony 
and the much weaker best-effort guarantees of a protocol 
like SRM or a system like TIB.  We won’t digress into a 
detailed discussion of the nature of these guarantees, 
which are probabilistic, but it is interesting to note that 
the behavior of Bimodal Multicast is predictable from 
certain simple properties of the network on which it runs.  
Moreover, the network information needed is robust in 
networks like the Internet, where many statistics have 
heavy-tailed distributions with infinite variance.  This is 
because gossip protocols tend to be driven by successful 
message exchanges and hence by the “good” network 
statistics.  In contrast, protocols such as SRM or RMTP 
often include round-trip estimates of the mean latency or 
mean throughput between nodes.  Such estimates are 
problematic in the Internet where many statistical 
distributions are heavy-tailed and hence have ill-defined 
means and very large variances. 

Although Bimodal Multicast has a very different 
reliability model than does virtual synchrony (the model 
is more similar to the best-effort guarantees of SRM or 
RMTP), it is possible to superimpose stronger reliability 
models over the infrastructure offered by the Bimodal 
protocol.  In particular, we have begun to work with an 
implementation of virtual synchrony that operates over 
Bimodal Multicast.  The resulting protocol represents 
something of a tradeoff.  For small groups, its 
performance is not as good as in a more traditional 
virtual synchrony implementation.  In larger groups, 
however, we’ve seen that virtual synchrony becomes 
unstable and eventually breaks down.  Virtual synchrony 
over Bimodal Multicast scales far better, remaining 
robust and steady with apparently constant costs 

independent of the size of the group.    This observation 
motivates the discussion that follows. 

5. Randomized Limits to Scale 

We can generalize from the phenomena enumerated 
above.  Distilling these down to their simplest form, and 
elaborating slightly: 

� With the exception of the gossip protocols, each of 
these reliability models involves a costly fault-
recovery mechanism intended for infrequent use: 

� Virtual synchrony employs flow control, failure 
detection and membership-change protocols; 
when incorrectly triggered, the cost is 
proportional to the size of the group. 

� SRM has a solicitation and retransmission 
mechanism that involves multicasts; when a 
duplicate solicitation or retransmission occurs, 
all participants process an extra message.   

� FEC tries to reduce retransmission requests to 
the sender by encoding redundancy in the data 
stream.  As the group size grows, however, the 
average multicast path length increases; hence 
the risk of a multi-packet loss rises.  The sender 
will see increasingly many retransmission 
requests (consuming a scarce resource), or the 
redundancy of the stream itself must be 
increased (resulting in a bandwidth degradation 
and a system-wide impact). 

� Again with the exception of the gossip protocols, the 
mechanisms we’ve reviewed are potentially at risk 
from convoy-like behaviors.  Even if data is injected 
into a network at a constant rate, as it spreads 
through the network router scheduling delays and 
link congestion can make the communication load 
bursty.  Such bursts have a global effect, in the sense 
that processes in the application may become 
overwhelmed by a high volume of data, or may run 
“dry” for so long that the user is disrupted (as might 
happen in a multicast media delivery setting).  At 
best, bursty traffic may trigger flow control at 
inappropriate times, reducing overall throughput.  
Perhaps more serious, bursty traffic increases the 
likelihood that an overloaded router may drop large 
numbers of packets, requiring a costly recovery.  
However, whereas this phenomenon has actually 
been observed in hierarchical implementations of 
virtual synchrony, we have not seen anything 
comparable in our work with other protocols, or 
with virtual synchrony running over Bimodal 
Multicast. 

� Many protocols (SRM, RMTP) depend upon 
configuration mechanisms that are sensitive to 
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network routing and topology.  Over time, network 
routing can change in ways that take the protocol 
increasingly far from optimal, in which case the 
probabilistic mechanisms used to recover from 
failures can seem increasingly expensive.   Periodic 
reconfigurations, the obvious remedy, introduce a 
disruptive system-wide cost. 

In contrast, the gossip mechanisms used in NNTP, the 
Xerox Clearinghouse system, and the Bimodal Multicast 
protocol appear to scale without these kinds of problems.  
Throughput is stable (at least, if measured over 
sufficiently long periods of time – gossip protocols can 
be rather unstable if metered on a short time scale).  
Overheads are flat and predictable, and can be balanced 
with information about network topology, so that links 
and routers won’t become overloaded.  And, the levels of 
reliability achieved are very high – indeed, potentially as 
high as those of the protocols purporting to offer stronger 
guarantees, if one considers the possibility that such 
protocols sometimes reconfigure themselves, incorrectly 
excluding a process as “faulty” when it may actually 
merely be the victim of bad luck. 

Is there a general insight that relates these 
observations?  

� Many reliable multicast protocols depend upon 
assumptions about the usual model of operation.  
These have a small probability of being violated.  As 
a system scales the frequency of violations grows. 

� These protocols typically have some form of 
recovery mechanism with a potentially global cost.  
As the system scales up, this cost grows.  

� Each of these protocols is built in layers.  The 
problems cited arise within the lowest layers, 
although they then propagate to higher layers 
triggering large-scale disruptions of performance. 

More broadly, we argue that these are all 
consequences of a protocol stack architecture in which 
the lowest layers of the stack provide reliability, and in 
which randomized phenomena are threats to performance 
or some other property guaranteed by the system. The 
insight is then that as we scale the system to larger and 
larger settings, the absolute frequency of these 
probabilistic events rises, and hence the performance of 
the system degrades. 

In contrast, gossip protocols can be understood as 
using an inverted protocol stack.  In this approach, 
recovery occurs at the lowest level and operates with 
probabilistic behavior and guarantees.  Higher-level 
mechanisms do their best to impose end-to-end 
properties on the lower level properties, but typically do 
so without introducing extra communication for the 
purpose of repairing gaps in the message sequence.  In 

effect, we adopt the view that the lower level 
mechanisms have already done what can be done to 
achieve data consistency among the participants, and we 
must content ourselves with the outcome.  These 
protocols, then, offer probabilistic guarantees. 

Probabilistic guarantees may sound like a 
contradiction in terms, because common sense suggests 
that anything but an absolute reliability guarantee would 
be the equivalent of no reliability at all.  Our work 
suggests that this is not at all the case.  First, it is possible 
to design mechanisms that have stronger guarantees, 
such as virtual synchrony, and yet reside in an end-to-
end manner over the basic network architecture afforded 
by our gossip infrastructure.  As just noted, when virtual 
synchrony is implemented this way, it scales relatively 
well; multicast throughput remains steady even under the 
kinds of stress seen in Figure 1, although there may be 
long delays when process group views change if the 
system membership has become very large.  But we are 
also finding ways of embedding probabilistic guarantees 
directly into useful tools that applications might find 
valuable in their own terms, without trying to 
superimpose some stronger (arguably, less natural) 
reliability abstraction over the basic properties of the 
protocol.   

Thus, while layering virtual synchrony over Bimodal 
Multicast may be useful, many data dissemination 
systems can operate directly over Bimodal Multicast.  
The properties of the protocol are well matched to the 
needs of systems that do require a degree of reliability, 
but can overcome bounded rates of error.  The term 
bounded is the key here; unlike a traditional unreliable 
network mechanism that can behave arbitrarily badly if 
luck turns against the user, Bimodal Multicast overcomes 
all but the most severe outages and behaves in a 
predictable manner at all times. 

Similarly, the Section that follows describes 
Astrolabe, a technology that offers probabilistic 
guarantees for data managed in a scalable table.  Tables 
are a common and widely supported programming 
abstraction (database relations, spreadsheets, etc); hence 
the idea of a table made up of data drawn from various 
parts of the network is both natural and easy to work 
with.  Astrolabe provides this model with probabilistic 
reliability guarantees, and has the same scalability and 
robustness properties seen for Bimodal Multicast.   

6. Four Probabilistic Tools 

Earlier we noted that the focus of the Spinglass 
project is on practical software tools that can really be 
used. In this section and the next, we first review the 
tools we are currently developing, and then describe 
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some applications that we view as especially promising 
early targets for the technology. 

Bimodal Multicast 

As described above, Bimodal Multicast is a one-to-
many (or several-to-many) communications mechanism 
that achieves tunable, probabilistically reliable data 
delivery.  The probability of successful outcomes, where 
all operational processes receive every multicast, can be 
made arbitrarily high by adjusting the parameters 
governing the frequency with which participants gossip 
and the length of time that they buffer copies of received 
multicasts.  In ongoing work at Cornell University, we 
are exploring issues such as operation in wide-area 
networks with firewalls surrounding secured enclaves, 
using formal tools to characterize the conditions that a 
network must have in order to run this protocol, and 
understanding the kinds of network problems that 
Bimodal Multicast is capable of overcoming.  

Astrolabe 

Astrolabe [18] is a system built using the same gossip 
mechanisms employed in Bimodal Multicast, but in 
support of a completely different data model.  The basic 
idea of Astrolabe is to support a distributed shared 
memory in the form of a hierarchical table.  The leaves 
of the hierarchy are regional tables in which there is one 
row per participating computer or application program, 
and where the columns contain application-defined data 
(this could be something small, like an indication of the 
security level of the machine or the version number of a 
program running on it or a load, or something large, like 
an XML object describing a database or web page).  
Within a region, all participants can see the entire 
regional table but each can only update its own row. 

Higher levels of the hierarchy are formed using what 
we call a summary function.  A summary function is a 
computation on a column of a regional table that reduces 
the contents of that column to a single value.  For 
example, minimum could be used as a summary function 
for a column-reporting load.  The contents of a higher-
level table will be one row for each of its child regions, 
with columns defined according to the summary 
function.  While a region only has direct access to its 
own regional table, all regions can access all of the 
ancestor tables in the hierarchy.  Normally, an ancestor 
table would list properties of a whole region, like its 
average communication load, together with attributes of 
the region, like the IP address of a machine to contact for 
a given service (incoming mail, database updates, etc).  
The intention is that the application designer would 
customize the summary functions. 

Astrolabe is a useful technology for scalable system 
management and resource discovery.  In modern 
computing systems, simply knowing where data can be 
found or knowing versions of software and configuration 
information for other machines is a critical and yet 
poorly supported functionality.  Astrolabe automates this 
job and does so in a manner that is scalable and has 
predictable delays (they grow slowly with system size), 
constant overheads, and remarkable stability.   Basically, 
one arranges for summary functions that let the user 
identify the regions where instances of the resource can 
be found (for example, “regions where some computer 
controls a satellite capable of imaging such-and-such a 
location), and then where a match is found, drills in by 
expanding the regional table and scanning its individual 
elements (i.e. to find the machine actually controlling the 
desired satellite). 

Astrolabe’s table model is a good match with the new 
generation of component architectures for PCs and 
portable devices. Microsoft’s automation architecture, 
used on many devices of this sort, has comprehensive 
support for table-structured objects through the OLE-DB 
interfaces (an evolution of the older ODBC interfaces). 
Astrolabe supports these interfaces, which means that on 
a PC, we can actually support drag-and-drop access to 
Astrolabe tables.  Such a mechanism would offer stable, 
fault-tolerant distributed computing without the need for 
distributed programming, much as a spreadsheet user can 
work with other spreadsheet users and yet may never 
need to learn to write any code. 

Gravitational Gossip 

This variation on the Bimodal Multicast protocol is 
designed to support large numbers of subgroups within a 
single network [11].  Subgroups are a traditionally 
important problem in group communication systems, 
particularly when supporting publish-subscribe styles of 
communication, where large numbers of communication 
groups can arise.  With this new protocol, we are able to 
superimpose large numbers of subgroups on a large 
Bimodal Multicast group, and can arrange that each 
group member will receive just the data it desires plus a 
constant overhead. Moreover (this is the “gravitational” 
aspect) members of a subgroup can specify a quality 
rating.  A member that wants to receive 100% of the data 
in a group can do so, paying the full cost for all 
multicasts in the group.  However, if a member only 
needs part of the data – say, 50% of the sensor readings 
or 20% of them – it can adjust its rating to correspond to 
its need.  The load associated with the protocol is 
reduced accordingly.  Notice that we are deliberately 
reducing the reliability of the protocol to cut the load 
seen by processes with small rating values. 
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We like to visualize this protocol as emulating a 
gravitational well.  In practice ratings can have any 
values desired, but these include values that give 
behavior like that of a gravity fielding this case, 
messages multicast within the “floor” of the well and 
flow at full speed to other processes in the floor.  With 
some probability, these messages also ride up the “walls” 
of the well, but the steeper the wall, the less likely this is 
to occur, and a message that does ride up the wall is very 
likely to fall back towards the base.   Processes residing 
on the wall thus see less load and receive just a 
percentage of the data items. 

Obviously, gravitational gossip is only useful in 
settings where it is meaningful to take actions based on a 
randomly selected subset of sensor values.   However, as 
discussed below, we know of a number of such 
applications.   

Anonymous Gossip 

This direction within our project applies gossip 
communication to mobile wireless devices [4].  We have 
a number of applications in mind, but started by looking 
at wireless multicast in so-called ad-hoc networks, which 
are common in military applications.  Anonymous gossip 
is a technique for using gossip communication to 
improve the quality of existing ad-hoc multicast 
protocols.  The idea is to take a multicast protocol (we’ve 
considered several, but worked most closely with AODV 
and the multicast layered over it, MAODV) and then to 
superimpose a gossip repair mechanism similar to the 
one in Bimodal Multicast. 

Where Anonymous Gossip departs from Bimodal 
Multicast is that in a mobile wireless setting, little 
information is available about the identity of peers, since 
these can change rapidly.  For example, a platoon of 
soldiers may fan out on a hillside, so that the network is 
always “fully connected” and yet the connectivity of any 
particular soldier’s computer varies widely.  The 
challenge is that in such a network, one has no idea with 
whom to gossip.  Anonymous Gossip solves this problem 
by sending gossip messages that travel some distance 
over a randomly chosen path in the ad-hoc network.  The 
eventual receiver replies to the sender. 

In [4] we report on an experimental analysis of this 
technique.  We find that it improves the reliability of 
MAODV, reducing loss rates by as much as two orders 
of magnitude and also yielding better throughput with 
lower overheads and lower jitter.  We are now extending 
the basic protocol by looking at other metrics and at the 
use of gossip to maintain the basic routing infrastructure 
itself.  At the same time, we are starting to look at 
application-level issues that arise in developing mobile 
software to run over a gossip infrastructure. 

7. Security Issues 

Gossip mechanisms raise interesting issues of 
authentication and security.  On the one hand, we face 
challenges in securing our new tools against intrusion 
and disruption; on the other, one can view our system as 
a potentially valuable tool for use in intrusion detection 
systems and other aspects of security architectures. 

With respect to the former question, our challenge is 
that gossip employs a relaying mechanism.  We need to 
avoid the possibility that a process responsible for 
relaying a message might undetectably change its 
contents.  Accordingly, our implementations include 
session authentication mechanisms (access control lists) 
as well as digital signatures used to validate the 
correctness of gossiped information.  If process p sends a 
multicast or updates a row in Astrolabe, the signature of 
process p for that data travels with the data, so that while 
a faulty process might corrupt the information, a healthy 
process will always be able to detect and ignore damaged 
messages.  Astrolabe’s summary functions are also 
secured using signatures; this ensures that new summary 
functions can only be introduced by users with 
appropriate administrative permissions. 

The power of gossip is that information reaches 
destinations by following a diversity of paths.  In effect, 
every process is a potential source of data for every other 
process, and over time the number of possible routes by 
which information from process p might travel to process 
q rises exponentially.  For example, suppose that process 
p has detected an event of interest.  After t time units, 
O(2t) processes will have know of that event.   

When a system comes under attack, an adversary may 
manage to corrupt a few messages or disrupt a region of 
the network.  Yet, if any connectivity remains at all5, the 
gossip exchange of data will eventually prevail, and data 
stored within Astrolabe will reach all sites in the system.  
Thus, our protocols are not just secure in the sense of 
using digital signatures to authenticate users and to 
authorize their actions, but they are also relatively 

                                                        
5 Flooding attacks that dramatically reduce the capacity 
of the network will cause Astrolabe to exhibit degraded 
behavior (reporting updates after unusually long delays, 
and potentially dropping some updates in favor of newer 
ones).  However, such an attack is unlikely to shut 
Astrolabe down completely.  Notice further that 
Astrolabe does not increase its rate of communication 
when error rates rise.  In contrast, conventional protocols 
often “melt down” when a flooding attack occurs, 
sending retransmission requests and extra copies of 
messages in a futile attempt to overcome errors, which 
instead merely exacerbates the overload. 
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tolerant of denial of service attacks.  On the down side, 
when a system comes under attack, one can easily 
imagine that the rate of change of information monitored 
using Astrolabe could exceed the speed at which that 
information can be propagated; in this case, new sensor 
values begin to overwrite old ones and applications may 
“miss” some values.  This will also occur if the network 
becomes heavily loaded.  Moreover, Astrolabe limits 
itself to communicating information; nothing about our 
work provides a guarantee that the information is of high 
quality, nor do we know how effective Astrolabe’s 
summary functions will be as a tool for reducing the 
volume of data that an application monitoring this data 
might need to process.  We believe that Astrolabe is best 
seen as a potentially valuable tool for the developer of 
distributed security mechanisms, but one that also brings 
new issues and complexities. 

For example, consider the problem of intrusion 
detection.  Traditionally, this is treated as a monolithic 
issue.  Our work suggests that it might be useful to 
separate such systems into three parts: event collection, 
data dissemination, and intrusion detection.  We’re not 
specialists in event collection or in the actual detection 
problem itself.  But Astrolabe, and Bimodal Multicast, 
might represent useful technologies for data 
dissemination, and they have properties that would seem 
to represent advances over those of more conventional 
solutions. 

Similarly, consider the issue of system “control” that 
arises when a problem is detected.  Here, the key to 
recovery involves orchestrating a cooperative and 
consistent response while the attack is still underway.  
Bimodal Multicast and Astrolabe are both options for 
this purpose, depending on the urgency of the reaction.  
Both protocols are secure and both will overcome even 
an active attack, rapidly and consistently notifying 
participants, which can then switch to a backup network, 
rekey, or take other actions to repel the aggression.  

Yet gossip technologies also introduce new 
vulnerabilities.  The mere act of placing a software 
system on large numbers of nodes potentially introduces 
a new common point for attacking those nodes.  We’ve 
noted that Astrolabe uses executable summary functions 
to compute domain/value data for higher levels of the 
information hierarchy, and one could imagine situations 
in which corrupted functions might damage or disable 
participating nodes.  To minimize such risks, Astrolabe 
employs a very limited functional programming 
language for these functions, and requires that all 
introduced information be appropriately signed, but 
additional hands-on experience with large applications 
will be needed before we fully understand the policy and 
administrative implications of treating extremely large 
systems as manageable, instrumented entities. 

8. Applications 

We have examined a number of application areas to 
understand the right roles for our tools in support of 
emerging scalable computing systems.  Here, we briefly 
describe three representative areas to illustrate some 
matches between our technology and real-world 
problems.  At Cornell, each of these areas is being 
examined in much greater detail. 

Joint Battlespace Infosphere 

Our team includes members of a new AFRL/IT 
Information Assurance Institute, which was put in place 
to foster collaboration and cooperation between the Air 
Force and Cornell on topics arising our of demanding Air 
Force computing systems.  A focus for this work is the 
Air Force Science Advisory Board report recommending 
the development of the JBI. 

The JBI, like its sibling programs in the Army and 
Navy, is intended to offer a shared computing platform 
that links information produced by a diversity of 
"publishers", in a secure and scalable manner, with a 
diversity of "subscribers."  The intent of the architecture 
is to create a vast web-like infrastructure that permits 
anytime, anywhere access to mission-critical data, but 
under the assumption that unlike the web, the data of 
interest will be evolving rapidly in real-time. 

There is no question that a JBI capability could be an 
asset of incalculable value if we can successfully develop 
it and make use of it during military engagements.  
However, success implies that the platform must be 
sufficiently scalable and stable to work well even when 
large numbers of consumers tap into the JBI 
simultaneously, even when components fail, become 
overloaded, or come under attack.  Existing complex 
systems scale poorly, becoming fragile in all of these 
respects.   

Cornell is exploring possible applications of Spinglass 
to the JBI infrastructure.  Our goal is to show that an 
infrastructure such as the JBI can be designed to be 
intrinsically robust, so that as we scale it up, it continues 
to work well and has predictable properties.  In contrast, 
were one to build a JBI with off-the-shelf tools, one must 
fear that it would become unstable as we scale it up, 
subject to unexpected overloads, degraded service, and 
perhaps outright breakdown.  Use of the Spinglass 
technology in applications like these will no doubt reveal 
new kinds of challenges, and we believe that a 
substantial research effort will be required before we 
fully understand the capabilities, and limits, of our new 
technologies.  However, the apparent match between 
Spinglass capabilities and the JBI encourages us to 
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believe that real progress can be made before such 
limitations are encountered.  

Cluster Management with Ising 

Modern computing is increasingly organized around 
powerful servers, such as databases, web servers, and 
various kinds of enterprise network servers [21].  The 
inexpensive way to accommodate large numbers of 
clients is to somehow run these servers on clusters with 
large numbers of cheap but powerful component 
machines.  Yet managing such clusters, especially in a 
large network with multiple clusters, can be a tough 
challenge.  As a client of a wide-area cluster farm, even 
knowing which server to connect to is hard, particularly 
if that server might crash or migrate.  

We have developed a project, Galaxy, which is 
exploring architectures for supporting very large clusters.  
Within this effort, the Ising technology is a cluster-
embedding of Spinglass protocols and solutions tuned for 
use in PC clusters.  The basic ideas are the same, but 
because we know how the Ising versions of these 
protocols will be used, we can undertake a type of 
context-specific tuning that would not be appropriate in a 
tool intended for very general settings.  

Galaxy virtualizes the cluster: each application sees 
what appears to be a dedicated platform, on which it 
superimposes its own resource abstractions and policies, 
such as job placement, load balancing, etc.  The system 
is flexible about how such problems can be solved, 
offering standard mechanisms that the application can 
override by supplying new modules.  For example, many 
applications will want to provide specialized load 
balancing mechanisms. 

Galaxy treats several levels of scale: 

• A farm is a geographically distributed set of clusters 
on which a single application is hosted, managed 
from a centralized location.  In the early stages of 
our effort, we are focused on farms with no more 
than a small number of clusters, but large farms will 
eventually be considered as well.  The JBI, for 
example, will probably be a farm in this sense. 

• An individual cluster is a reliable array of 
computers.  We consider two cases.  A RACS is a 
reliable array of cloned servers: machines that have 
identical content and can behave in identical ways.  
Queries against a rarely changing database system 
can be directed to a RACS cluster; since any node 
can handle any request, this offers inexpensive 
scalability.   

• A RAPS architecture is one in which a system, such 
as a database, is partitioned.  For example, perhaps 
the database is divided into ten equal sized portions, 

and each query can be routed according to the 
portion of the data it will access. 

• Finally, we support packed architectures.  Database 
systems can exploit low levels of parallelism 
although large parallel databases run into 
bottlenecks.  A server pack is a small set of servers 
on which a database operates in this sort of packed 
mode. 

Galaxy provides mechanisms in support of cluster 
management and cluster-aware application development, 
with the goal of understanding the right roles for 
Spinglass protocols in such a setting, and the right styles 
of application design where scalability is a requirement.  
For example, the designers of the JBI will need to know 
that they can implement a number of scalable 
communication services, deploy them in a manageable 
manner onto a scalable hardware platform, and simply 
add more hardware if the application is successful and 
load rises.  Our hope is that Spinglass, residing in the 
Ising subsystem of Galaxy, will respond to this need both 
by offering a way to manage the cluster and also by 
demonstrating the best ways of exploiting a cluster. 

Electric Power Grid 

Finally, we are collaborating with a consortium to 
work on problems arising from the restructuring of the 
national electric power grid.  As has become painfully 
evident to inhabitants of California, legislatures are 
increasingly mandating a restructuring of electric power 
systems to reduce the traditional monopoly structures 
that prevail in this industry.  With competition come both 
the economic issues that are so much in the news, as well 
as new technical challenges.  Our effort involves 
matching the Spinglass technology to the needs of these 
emerging control and management systems. 

As an example, the Gravitational Gossip protocol, 
although useful in many settings, arose as a response to a 
pattern of communication actually seen in restructured 
electric power control and management systems.  Prior to 
restructuring, these systems adapted to changing loads in 
a regional manner.  Basically, within each region, it 
sufficed to monitor line frequency; power laws dictate 
that frequency falls when load exceeds production and 
rises if power production exceeds load.  Thus, without 
any form of networked communication, all generators 
can see when the regional need for power is rising or 
falling and can adapt in parallel (for example, closing a 
gate in a dam or reducing the supply of coal to a 
furnace). 

As we restructure and move to a competitive 
architecture, it may be that Ohio Power and Light will 
provide the power consumed by Corning Glass in New 
York under a contract.  Now, when the New York region 
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senses an over or underload, it is no longer appropriate to 
simply adjust production.  Suddenly, we need an 
elaborate communications architecture whereby Ohio 
can monitor Corning.  Moreover, for reasons of grid 
protection many other devices may need to track the 
status of the load-following contract between Ohio and 
Corning, and this data is also useful as an input to the 
pricing models used in the free market for electric power. 

The need for high quality data, however, varies within 
this collection of players.  Very high-resolution 
information about a contract is needed by the producer 
and consumer and by the protective relays along the 
major path between them.  Less detailed information is 
needed by other relays in the region, and even less detail 
is needed by the various market pricing programs. This is 
good news, because in a world where every program 
wants equally good data, our communication costs would 
otherwise rise as O(nm) where n is the number of 
processes in the application and m is the number of 
contracts.  

Gravitational Gossip lets us respond to the need in a 
way that lets each process pay for just the data it will be 
using.  In this way, we can architect the system to load 
the network in a predictable way, so that communication 
overload cannot arise even in a worst case scenario 
(presumably, during a major storm), ensuring stability 
and speedy response no matter what might transpire.  

9. Summary and Conclusions 

We briefly examined a number of multicast scalability 
problems and argued that they can be understood as the 
outcome of a battle between random phenomena and 
deterministic properties.  These include throughput 
instability, flow control problems, convoys seen in 
ordered multicast delivery protocols, and high rates of 
duplicated retransmission requests or unneeded 
retransmitted data packets in protocols using receiver-
driven reliability.  We traced these problems to a form of 
complexity argument, and suggested that many protocol 
architectures degrade as O(n2) or worse in the size of the 
system.  It is especially interesting to realize that this 
phenomenon may stem in part from the traditional OSI 
stack, which enforces reliability and performs flow 
control low in the network.   

The alternative we’ve proposed can be understood as 
an inversion of the ISO stack, insofar as lower layers are 
gossip-based and have probabilistic properties, while 
upper levels introduce stronger properties (such as virtual 
synchrony, if desired).  The most natural presentation of 
our architecture is in terms of a scalable reliable 
communication protocol, the Bimodal Multicast, which 
has reliability and stability properties that can often be 
used directly (avoiding the need for stronger, more costly 

reliability guarantees such as virtual synchrony).  In 
effect, we see our architecture as an end-to-end response 
to a situation in which the traditional manner of building 
multicast protocols violated the end-to-end methodology.  
Experiments confirm that this approach yields substantial 
immunity to the scalability limits just cited.   

The same idea can be used in other settings.  Cornell’s 
work on Astrolabe, Gravitational Gossip and 
Anonymous Gossip illustrate a number of other 
presentations for these kinds of communication 
protocols, and our work on security issues and 
applications confirms that these mechanisms can be 
effective if used appropriately. 

Randomized low-level phenomena that compromise 
system-wide performance are an unrecognized but 
serious threat to scalability.  While we often brush 
concerns about “infrequent events” to the side when 
designing services, in the context of a scalability analysis 
it becomes critical that we confront these issues, and 
their costs.  Probabilistic gossip repair mechanisms fight 
fire with fire: they overcome infrequent disruptive 
problems with mechanisms having small, localized costs.  
In a world where scalability of network mechanisms is 
rapidly becoming the most important distributed 
computing challenge, appreciating the nature of these 
effects and architecting systems to minimize their 
disruptive impact is an issue here to stay.  

10.  Availability 

Our research effort at Cornell makes prototype 
versions of the software developed under DARPA 
support available to the public, at no fee.  These research 
prototypes can be downloaded by visiting our web pages 
at http://www.cs.cornell.edu/Info/Projects/Spinglass.  
However, Cornell is not able to provide support.  
Hardened product-quality versions of the technologies 
described herein are available from Reliable Network 
Solutions, Inc. 
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