
View from the Cloud
Editor: George Pallis • gpallis@cs.ucy.ac.cy

72 Published by the IEEE Computer Society 1089-7801/11/$26.00 © 2011 IEEE IEEE INTERNET COMPUTING

T he stunning shift toward cloud computing
has created new pressures on the Internet.
Loads are soaring, and many applications

increasingly depend on real-time data stream-
ing. Unfortunately, the reliability of Inter-
net data streaming leaves much to be desired.
For example, at the University of Washington,
the Hubble system (www.cs.washington.edu/
research/networking/astronomy/hubble.html)
monitors Internet health using all-to-all connec-
tivity and throughput tests between hundreds
of end points through the Internet. The effort has
revealed transient periods of very indirect rout-
ing, Internet “brownouts” (performance prob-
lems), and even “black holes.” All these problems
are surprisingly common, even when looking at
routes entirely within the US or Europe.

Here, we focus on routing in the Internet’s
core, at extremely high data rates (all-to-all data
rates of 40 Gbits per second are common today,
with 100 Gbits/s within sight). These kinds of
routers are typically implemented as clusters of
computers and line cards: in effect a data center
dedicated to network routing. The architecture is
such that individual components can fail without
bringing the whole operation to a halt. For exam-
ple, network links are redundant; if one link fails,
there will usually be a backup. Such a router could
even run routing protocols of different types side-
by-side, making the actual routing decisions by
consensus — if some protocol instance malfunc-
tions, its peers would simply outvote it.

But suppose that a routing protocol (for clar-
ity, we focus on the Border Gateway Protocol
[BGP], implemented by a BGP daemon [BGPD]
hosted on some node within the router) needs
to be restarted after a crash or updated with

a software patch or migrated within the clus-
ter. The resulting sequence of events can take
several minutes, during which BGPD might be
unavailable or not yet fully resynchronized. The
resulting routing changes can ripple throughout
the entire Internet, triggering routing events far
from the one on which BGPD had to be restarted.

Could events of this kind account for the issues
Hubble saw? On a typical core router, it can take
two or three minutes to restart BGPD from scratch.
Moreover, BGPD might need to be restarted as
often as once per week. Thus, it’s entirely possible
that BGPD restarts are a significant factor.

In this article, we report on a new software
architecture that can help mask BGPD outages,
greatly reducing their disruptive impact. More-
over, the same techniques should be applicable to
daemons associated with other important Inter-
net routing protocols (we’ve already used the
approach for two different BGP implemen tations,
and an Intermediate System to Intermediate Sys-
tem [IS-IS] routing daemon). High-availability
routers are just one of many developments that
will slowly reshape the Internet in response to
the challenge and opportunity cloud comput-
ing represents — the sidebar “An Internet for
the Cloud” describes how our efforts fit into this
shifting computing landscape.

A Close Look at BGP
Before drilling down on BGP availability, it
might be helpful to be more precise about what
availability means for a core Internet router.
Routers drop packets during capacity overload
(TCP flow control adapts based on overall path
capacity), so it would make no sense to insist
that a reliable router deliver every single packet.

Routers for the Cloud
Can the Internet Achieve 5-Nines Availability?
Andrei Agapi, Ken Birman, Robert M. Broberg, Chase Cotton,
Thilo Kielmann, Martin Millnert, Rick Payne, Robert Surton,
and Robbert van Renesse

Today’s Internet often suffers transient outages, but as increasingly critical services

migrate to the cloud, much higher levels of Internet availability will be necessary.

IC-15-05-VftC.indd 72 8/11/11 12:06 PM

Routers for the Cloud

SEPTEMBER/OCTOBER 2011 73

Accordingly, we adopt an approach
first used in telephony, where avail-
ability measures the percentage of
time when almost all calls go through
(that is, only a small percentage are
dropped, and in an uncorrelated
way). The wired telephone infra-
structure is engineered to guarantee
99.999 percent availability: the
“5-nines” standard.

In a one-year reliability study of
IP core routers in a regional IP ser-
vice provider network conducted by
the University of Michigan, router
interface downtime averaged roughly
955 minutes per year, which doesn’t
even reach the “3-nines” level. Figure 1
shows the breakdown of problems that
this study identified. The results sup-
port the view that redundant hard-
ware has great potential: back in
2004, when the university conducted
the study, most deployed routers were
monolithic (nonclustered), and many
links played unique, critical roles.

Hardware and link failures jointly
accounted for almost a third of out-
ages. With redundant hardware and
links, both factors have since been
sharply reduced — putting ever greater
emphasis on IP routing’s reliability.

This need for software that can
survive hardware outages is vital
because we must minimize the per-
centage of time that the routes the
router is using are inconsistent with
those its neighbors use — for example,
because the router has yet to apply
routing updates that the neighbors
are already employing. A more com-
plete discussion of IP routing failures
is available elsewhere.1

BGP is designed for use in net-
works composed of interconnected
autonomous systems (ASs). An AS
could be a network operated by some
ISP, or might be a campus or corpo-
rate network. BGP maintains a table
of IP networks, or “prefixes,” that
represent paths to a particular AS

or set of ASs, tracking both direct
neighbors and more remote ones. A
BGPD instance runs on a router and
uses path availability, network poli-
cies, or operator-defined databases of

Figure 1. Causes of network
downtime. In a 2004 study of router
reliability, hardware outages, link
failures, and Border Gateway Protocol
(BGP) outages were dominant causes
of downtime. The use of software
fault-tolerance mechanisms to protect
BGP and routers with redundant
hardware and network links
dramatically improves availability.

9%

36%

32%

23%

Other causes
Router
miscon�guration
IP routing
failures
Physical link
failures

An Internet for the Cloud

Cloud computing, particularly in conjunction with increased
device mobility, is reshaping the Internet. We’re seeing

unprecedented shifts in demand patterns, a broad spectrum of
new quality expectations, and a realignment of the entire field’s
economics. The implications are far-reaching.

The main text of this article focuses on high availability, one
of several key properties today’s cloud computing applications
demand. The need is most obvious in voice-over-IP (VoIP) tele-
phony and video streaming: for such uses, even the briefest
disruptions can cause connections to seize up or fail in ways
that are highly visible to the end user. If we can crack the “high-
availability barrier,” we can imagine a future in which the Inter-
net carries all such traffic.

Yet high availability is merely the first step in what will be
an evolutionary process. Cloud applications also need better
techniques for guaranteeing steady, very high data rates; the
ability to prioritize traffic; and robustness under routing-level
attacks. Content-distribution networks have been central to
the static Web’s success: What will be the analogous paradigm
for the Web of dynamic content, such as video streams shared
by large numbers of users, gaming applications, or virtual reality
immersion? The answers to such questions could transform the
Internet’s roles.

Indeed, many cloud computing uses are so important (both
in the terms of their scale and the associated revenue streams)

that unless the Internet can evolve to meet the demands, the
associated cloud computing enterprises might consider building
new networks that would be dedicated to their use. Compa-
nies such as Google, Netflix, Amazon, Microsoft, and others
are insisting on the need to craft virtual enterprise networks.
If these are to share the same optical fibers used for other
purposes, these and other cloud computing providers will need
guarantees of disruption-free bandwidth, predictable laten-
cies, and hands-on control of routing policy control: “my traffic
from A to B will traverse such-and-such a route,” or “requests
from user X will be routed to data center Y,” to list just a few
examples. A new network-control paradigm has emerged (the
so-called Open Flow standard; www.openflow.org) with enthu-
siastic backing from the cloud computing community. Moreover,
with such a large part of the economy Internet-dependent,
there are growing calls to harden the network so that it can
offer rock-solid defense against attackers, be they hackers or
cyber warriors under command of national adversaries.

The challenges are significant, but the payoff will also be big.
Today, many of the top technical people in the field are racing
to offer competing ideas. For many of the topics listed, rather
than having no solutions, we might soon have a buffet of choices
to pick from. These are exciting times to work in the field of
networking, and the best part of the story is that so much of it
has yet to be written.

IC-15-05-VftC.indd 73 8/11/11 12:06 PM

View from the Cloud

74 www.computer.org/internet/ IEEE INTERNET COMPUTING

routing rules (patterns the operator
has defined) to select preferred routes.
It then advertises reachable prefixes
by publishing sets of attributes that
include the paths. As routing changes,
BGPD exchanges updates with its
peers that might add to the list of
reachable prefixes or retract some
prefixes; those peers are expected to
update their own states accordingly.
BGP allows BGPD instances to apply
routing updates in an unsynchro-
nized, distributed manner, but nor-
mally the delay between when one
router applies an update and when
its neighbor does is negligible, hence
this asynchrony isn’t noticed: most
routers are working with very
simi lar routing tables at any given
moment. However, one important case
exists where the lag can be larger: if

BGPD is recovering when an update
arrives.

Imagine that some router experi-
ences an event that forces it to restart
BGPD. When BGPD fails or migrates,
the TCP links from it to the BGPDs on
neighboring routers disconnect (break).
Those neighbors will sense the failure
and try to route around the affected
router, but the alternative routes might
be poor ones, and sometimes no backup
routes are available (recall that we’re
focused on the Internet’s core, where
data rates are so high that only Internet
“backbone” links and routers can han-
dle the load). This, in turn, can trigger
secondary routing decisions at routers
further away, and so forth.

So, how can we make BGPD
more available? Currently, the main
approach is to activate a BGP feature

called graceful restart, which exploits
routing tables that were downloaded
into the hardware line cards prior to
the crash. Assuming the crash left
the routing tables intact, when the
new BGP service starts up, the router
will still be running using the old
routing table, a bit like an airplane
on autopilot. The router won’t be
adapting to new routing updates and
is thus frozen in time, but at least it
was initially in a consistent state.
Graceful restart tells the neighboring
routers to continue to route packets
through the impacted router, even as
the restarting BGPD resynchronizes
with its peers. The problem, however,
is that while this is happening, BGP
updates continue to stream in at a
furious pace, so routing tables can
become inconsistent within seconds.

This creates a strong motivation
to improve routing daemon avail-
ability. For example, some work has
aimed at running BGP in a movable
virtual machine (but VM migration
is slow, and offers no help for fault
tolerance), and some hand-tuned BGP
migration mechanisms exist.2 Our
approach offers fault tolerance, can
support BGP upgrades (patching), and
works with routing daemons other
than BGPD, yet is fast and built from
surprisingly simple technologies.

Fault-Tolerant BGP
Our new approach uses software to
transform a standard BGPD imple-
mentation into a fault-tolerant ser-
vice. It involves minimal changes
to the existing BGPD, the operating
system, and existing protocols such
as TCP, IP, and UDP. The first step is
to “wrap” BGPD in a fault-tolerance
layer, the fault-tolerance shim. The
shim helps the underlying routing
protocol handle failures in ways
invisible to remote peers.

Figure 2 illustrates the approach.
The solution combines the existing
BGPD with several new components.
The first is fault-tolerant state stor-
age (FTSS), in which the shim stores

Figure 2. The fault-tolerant Border Gateway Protocol daemon (BGPD)
architecture. The architecture runs on a router constructed as a cluster of host
computers that control racks of network line cards, with the actual routing
done mostly in the hardware. The shim (a) replicates BGPD’s runtime state
into the fault-tolerant storage service (FTSS), which is implemented as a
distributed hash table (DHT; shown as an oval). The figure portrays the BGPD
state as if it resided at a single node, but in fact the solution spreads it over
multiple nodes for fault tolerance and also to speed things up by enabling
parallel PUT and GET operations. After a failure, (b) BGPD can restart on
some healthy node, (c) recover its precise state, and resume seamlessly. The
TCPR layer (d) splices connections from the new BGPD to the still-open end
points its remote peers hold, masking the BGPD failure/recovery event.

(d)

Router control‐processor cluster
runs the FTSS service

Remote
BGPD

BGP state

(a)
(c)

FTSS

FTSSBGPD BGPD’
(b)

Shim

Original host Backup host

TCP-R
TCP-R

IC-15-05-VftC.indd 74 8/11/11 12:06 PM

Routers for the Cloud

SEPTEMBER/OCTOBER 2011 75

BGP state and other data that must be
preserved across failures. The second
component is the shim itself. The solu-
tion routes BGP connections between
BGPD and its peers through the shim,
so that the shim can see all incoming
and outgoing updates as well as any
changes to the routing table. This lets
the shim checkpoint all this informa-
tion so that any incoming update will
be securely logged in FTSS before our
BGPD actually sees it, and any out-
going or routing table update will be
securely logged before being sent to
a neighboring peer or installed into
the hardware.

The shim can also support multiple
routing protocols running side-by-
side, a configuration that often arises
in the core Internet, where an AS
might have internal routing protocols
that it uses to manage its own
network, and a separate BGP routing
layer that talks to neighboring ASs. It
uses a form of voting to select among
competing routing “proposals” in such
cases, combining the routing protocol
outputs to create the routing table that
will be downloaded into hardware.

Of course, the shim itself can expe-
rience a failure, so we’ve designed it
to store its state in the FTSS, enabling
it to recover rapidly on a different
node. The last component of our solu-
tion can “splice” the new TCP con-
nections (which the shim creates) to the
old TCP connections that it was previ-
ously using to connect to remote peers.
Called TCPR (for “TCP with session
recovery”), this splicing technology
works somewhat like network address
translation (NAT), but rather than
translating source and destination
addresses in NAT-style, TCPR also
updates the TCP sequence numbers.
The effect is to connect the new con-
nection to an existing, active, TCP
connection that is open at a peer, in a
manner that won’t lose any data and
imposes just milliseconds of delay.

We’ve focused primarily on the
shim; let’s next look at our approach’s
other components in more detail.

FTSS
FTSS is a fault-tolerant storage solu-
tion that saves and replicates state so
that in the event of a failure, a state-
dependent component can recover its
previous configuration. In our archi-
tecture, the shim is the only com-
ponent that interacts directly with
FTSS, using it to store the wrapped
BGPD’s state, incoming and out-
going BGP updates, the routing infor-
mation table, and a small amount
of additional state associated with
TCPR. FTSS runs on all nodes within
the router; in our target setting, this
would range from a few dozen nodes
to several hundred.

FTSS is implemented as a one-hop,
in-memory, performance-optimized
distributed hash table (DHT). Each
state record has a unique ID (basi-
cally, a file name and a block num-
ber), and FTSS uses this as a key.
The component maps the key to a
few nodes within the router (recall
that the router is a cluster), and FTSS
agents on these nodes replicate the
update. Lookup works the same way.

FTSS maintains full membership
tables (with at most a few hundred
nodes in each router, and often far
fewer, the full address list easily fits
in memory). Consequently, FTSS can
perform requests with a single RPC
to each target node. FTSS also lever-
ages parallelism: we break the BGP
state into a large number of small
chunks and spread these over many
machines, doing PUT and GET oper-
ations in parallel, and in this way
gain roughly an order of magnitude
in speed. Even when we take into
account delays associated with the
need to replicate data for robustness,
this yields a fast, flexible store. In
fact, accessing remote memory in this
manner is approximately two orders
of magnitude cheaper than file I/O
to a standard local disk, and many
orders of magnitude faster than
remote file I/O. To support check-
points and complex object stor-
age, FTSS extends the usual DHT

key-value model to also support
record linking and offers efficient ways
to traverse linked data structures.

BGPD
As noted, we made only minor
changes to the existing BGPDs with
which we worked (we’ve applied our
methodology to two, so far: Quagga
BGPD and a proprietary Cisco BGPD).
The main change was to have BGPD
connect to the shim rather than
directly to its remote peers. A side
effect is that without further modifi-
cation, when BGPD restarts, the shim
can supply the initial routing state:
rather than informing remote peers of
the restart, the shim itself senses the
restart, pulls the needed state from
FTSS, and pushes it into BGPD at a
very high data rate. In our experi-
ments, using state typical of real
core-Internet routing conditions, this
took as little as 1.5 to 4 seconds. The
remote peers, of course, remain com-
pletely unaware of the event. Finally,
when the remote peer set changes,
BGPD informs the shim so that it can
manage the associated connections.

TCPR
TCPR is a TCP-splicing technology.
The approach is best understood by
first considering the behavior of a
standard NAT box: it has the effect of
grafting a TCP end point that thinks
itself to be connected to server X
on port P to a server that might
really be running on machine Y using
port S. The NAT box translates
back and forth. TCPR works in much
the same way but at the level of the
byte-sequence numbering used within
TCP’s sliding window protocol.

The key idea is very NAT-like: when
a restarting BGPD’s shim wrapper tries
to connect to a peer, TCPR intercepts
the three-way handshake so that the
remote peer won’t see a connection
reset. Instead, it computes the “delta”
between the randomly chosen initial
sequence number for the new connec-
tion and the sequence numbering used

IC-15-05-VftC.indd 75 8/11/11 12:06 PM

View from the Cloud

76 www.computer.org/internet/ IEEE INTERNET COMPUTING

in the old connection. As packets are
sent back and forth, TCPR adds or sub-
tracts the delta, depending on which
way the packets are going. Thus the
new connection end point finds itself
talking to the old remote end point.
TCPR handles the TCP options used in
routing protocols such as BGP, includ-
ing the MD5 signatures. In our experi-
ments, TCPR splicing takes as little as
350 microseconds, and having TCPR
on the path has a negligible impact on
TCP connection performance.

TCPR and the shim cooperate
in several ways. First, TCPR delays
outgoing acknowledgments until the
shim confirms that it’s backed up the
associated incoming data; this ensures
that, after a crash, the new BGPD
won’t see any gaps or duplicated bytes
in the incoming data stream. Simi-
larly, the shim backs up any outgo-
ing data so that, after a node crash, the
recovered shim/BGPD pair can finish
transmitting any data that was being
sent at the time of the crash. Finally,
the shim backs up parts of the TCPR
state, enabling TCPR itself to recover
if a node running it crashes and the
TCPR daemon must restart.

Solution Performance
As this article was going to press, we
were just finishing our port of the full
fault-tolerant BGP implementation to
an actual CRS-1 router and hadn’t yet
measured recovery times or the corres-
ponding router-availability levels in
a true Internet deployment. However,
we do have a full implementation
running on a testbed, and were able
to experiment with it using realis-
tic BGP routing tables and update
traffic. The results are encourag-
ing: complete recovery finished in
as little as 30 ms for a BGPD that had
no routes to recover (for instance,
one with an empty routing table) and
405 ms for a BGPD with a large rout-
ing table containing 157,975 entries.
These numbers were essentially
unchanged when we tested with BGP
updates arriving every 130 ms, and

fall within the window of normal
asynchrony between BGP peers in
the core Internet. Overall, the abi-
lity to fail and recover transparently,
coupled with the ability to test new
versions and configurations of rout-
ing software in production without
risk, eliminates many of what used
to be the biggest causes of downtime.

Today’s cloud computing systems
are appealing for their low cost

of ownership, amazing scalability,
and flexibility. The cloud even brings
environmental benefits: users share
computing resources, which are used
more efficiently, and the data centers
are typically located near power-
generating sources: by using the net-
work to move data to a data center, the
need to move electricity to widely scat-
tered computing devices is reduced.
However, for many applications, net-
work routing instabilities make the
cloud less reliable than it needs to be.

Our work tackles a root cause for
this problem, and by dramatically
improving router availability, offers
a path toward better stability in the
Internet as a whole. The technique
is incrementally deployable (mean-
ing that it can be rolled out without
change to routers that run existing
protocols) and brings immediate ben-
efit to any path that traverses even
just a few routers using our approach.
With enough routers using the
method, we could imagine that VoIP
telephony could achieve the same
(or even better) quality of service seen
in wired telephone networks, and
that other kinds of streaming media
applications could be deployed with
sharply improved quality guarantees
relative to what’s feasible today.

Acknowledgments
We are deeply grateful to professors Jonathan

Smith (University of Pennsylvania) and Doug

Comer (Purdue University) for helping us iden-

tify this research topic, and for their encourage-

ment and advice at many stages. We also thank

John Denisco for his invaluable assistance.

Our effort was supported by Cisco and is a

part of the NEBULA project within the US

National Science Foundation’s Future Internet

Architectures (FIA) program (see http://r3.cis.

upenn.edu/paperspdfs/R3_WP_Full.pdf).

References
1. C. Labovitz, G.R. Malan, and F. Jahanian,

“Internet Routing Instability,” IEEE/ACM

Trans. Networking, vol. 6, no. 5, 1998,

pp. 515–526.

2. E. Keller, J. Rexford, and J. van der

Merwe, “Seamless BGP Migration with

Router Grafting,” Proc. Networked Sys-

tems Design and Implementation (NSDI 10),

Usenix Assoc., 2010, pp. 16–30.

Andrei Agapi is a PhD student at Vrije Univer-

siteit, Amsterdam, and a software engi-

neer with Cisco Systems. Contact him at

aagapi@few.vu.nl.

Ken Birman is the N. Rama Rao Professor of

Computer Science at Cornell University.

Contact him at ken@cs.cornell.edu.

Robert M. Broberg leads the Reliable Router

Research Effort and is a Distinguished

Engineer at Cisco Systems. Contact him

at rbroberg@cisco.com.

Chase Cotton is a senior scientist with the

University of Delaware. Contact him at

ccotton@udel.edu.

Thilo Kielmann is an associate professor at

Vrije Universiteit, Amsterdam. Contact

him at kielmann@cs.vu.nl.

Martin Millnert is writing his master’s thesis

at Cisco Systems. Contact him at martin@

millnert.se.

Rick Payne is a software engineer at Cisco Sys-

tems. Contact him at rpayne@cisco.com.

Robert Surton is a PhD student at Cornell Univer-

sity. Contact him at burgess@cs.cornell.edu.

Robbert van Renesse is a principal research

scientist with the Department of Com-

puter Science at Cornell University. Con-

tact him at rvr@cs.cornell.edu.

IC-15-05-VftC.indd 76 8/11/11 12:06 PM

Take the
CS Library
wherever
you go!

All 2011 issues of IEEE Computer Society magazines
and Transactions are now available to subscribers
in the portable ePub format.

Just download the articles from the Computer Society
Digital Library, and you can read them on any device
that supports ePub, including:

• Adobe Digital Editions (PC, MAC)
• Aldiko (Android)
• Bluefi re Reader (iPad, iPhone, iPod Touch)
• Bookworm Online Reader (Online)
• Calibre (PC, MAC, Linux)

(can convert ePUB to .MOBI format for Kindle)
• ibis Reader (Online)
• ePUBReader (FireFox add-on)
• iBooks (iPad, iPhone, iPod Touch)
• Nook (Nook, PC, MAC, Android, iPad, iPhone,

iPod, other devices)
• Sony Reader Library (Sony Reader devices, PC, Mac)
• Stanza (iPad, iPhone, iPod Touch)

www.computer.org/csdl/epub_info.html

IC-15-05-VftC.indd 77 8/11/11 12:06 PM

