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T he stunning shift toward cloud computing 
has created new pressures on the Internet. 
Loads are soaring, and many applications 

increasingly depend on real-time data stream-
ing. Unfortunately, the reliability of Inter-
net data streaming leaves much to be desired. 
For example, at the University of Washington, 
the Hubble system (www.cs.washington.edu/
research/networking/astronomy/hubble.html) 
monitors Internet health using all-to-all connec-
tivity and throughput tests between hundreds  
of end points through the Internet. The effort has 
revealed transient periods of very indirect rout-
ing, Internet “brownouts” (performance prob-
lems), and even “black holes.” All these problems 
are surprisingly common, even when looking at 
routes entirely within the US or Europe.

Here, we focus on routing in the Internet’s 
core, at extremely high data rates (all-to-all data 
rates of 40 Gbits per second are common today, 
with 100 Gbits/s within sight). These kinds of 
routers are typically implemented as clusters of 
computers and line cards: in effect a data center 
dedicated to network routing. The architecture is 
such that individual components can fail without 
bringing the whole operation to a halt. For exam-
ple, network links are redundant; if one link fails, 
there will usually be a backup. Such a router could 
even run routing protocols of different types side-
by-side, making the actual routing decisions by 
consensus — if some protocol instance malfunc-
tions, its peers would simply outvote it.

But suppose that a routing protocol (for clar-
ity, we focus on the Border Gateway Protocol 
[BGP], implemented by a BGP daemon [BGPD] 
hosted on some node within the router) needs 
to be restarted after a crash or updated with 

a software patch or migrated within the clus-
ter. The resulting sequence of events can take 
several minutes, during which BGPD might be 
unavailable or not yet fully resynchronized. The 
resulting routing changes can ripple throughout 
the entire Internet, triggering routing events far 
from the one on which BGPD had to be restarted. 

Could events of this kind account for the issues 
Hubble saw? On a typical core router, it can take 
two or three minutes to restart BGPD from scratch. 
Moreover, BGPD might need to be restarted as 
often as once per week. Thus, it’s entirely possible 
that BGPD restarts are a significant factor.

In this article, we report on a new software 
architecture that can help mask BGPD outages, 
greatly reducing their disruptive impact. More-
over, the same techniques should be applicable to 
daemons associated with other important Inter-
net routing protocols (we’ve already used the 
approach for two different BGP implemen tations, 
and an Intermediate System to Intermediate Sys-
tem [IS-IS] routing daemon). High-availability 
routers are just one of many developments that 
will slowly reshape the Internet in response to 
the challenge and opportunity cloud comput-
ing represents — the sidebar “An Internet for 
the Cloud” describes how our efforts fit into this 
shifting computing landscape.

A Close Look at BGP
Before drilling down on BGP availability, it 
might be helpful to be more precise about what 
availability means for a core Internet router. 
Routers drop packets during capacity overload 
(TCP flow control adapts based on overall path 
capacity), so it would make no sense to insist 
that a reliable router deliver every single packet. 
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Accordingly, we adopt an approach 
first used in telephony, where avail-
ability measures the percentage of 
time when almost all calls go through 
(that is, only a small percentage are 
dropped, and in an uncorrelated 
way). The wired telephone infra-
structure is engineered to guarantee  
99.999 percent availability: the 
“5-nines” standard.

In a one-year reliability study of 
IP core routers in a regional IP ser-
vice provider network conducted by 
the University of Michigan, router 
interface downtime averaged roughly 
955 minutes per year, which doesn’t 
even reach the “3-nines” level. Figure 1  
shows the breakdown of problems that 
this study identified. The results sup-
port the view that redundant hard-
ware has great potential: back in 
2004, when the university conducted 
the study, most deployed routers were 
monolithic (nonclustered), and many 
links played unique, critical roles. 

Hardware and link failures jointly 
accounted for almost a third of out-
ages. With redundant hardware and 
links, both factors have since been 
sharply reduced — putting ever greater 
emphasis on IP routing’s reliability.

This need for software that can 
survive hardware outages is vital 
because we must minimize the per-
centage of time that the routes the 
router is using are inconsistent with 
those its neighbors use — for example, 
because the router has yet to apply 
routing updates that the neighbors 
are already employing. A more com-
plete discussion of IP routing failures 
is available elsewhere.1

BGP is designed for use in net-
works composed of interconnected 
autonomous systems (ASs). An AS 
could be a network operated by some 
ISP, or might be a campus or corpo-
rate network. BGP maintains a table 
of IP networks, or “prefixes,” that 
represent paths to a particular AS 

or set of ASs, tracking both direct 
neighbors and more remote ones. A 
BGPD instance runs on a router and 
uses path availability, network poli-
cies, or operator-defined databases of 

Figure 1. Causes of network 
downtime. In a 2004 study of router 
reliability, hardware outages, link 
failures, and Border Gateway Protocol 
(BGP) outages were dominant causes 
of downtime. The use of software 
fault-tolerance mechanisms to protect 
BGP and routers with redundant 
hardware and network links 
dramatically improves availability.
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An Internet for the Cloud

Cloud computing, particularly in conjunction with increased 
device mobility, is reshaping the Internet. We’re seeing 

unprecedented shifts in demand patterns, a broad spectrum of 
new quality expectations, and a realignment of the entire field’s 
economics. The implications are far-reaching.

The main text of this article focuses on high availability, one 
of several key properties today’s cloud computing applications 
demand. The need is most obvious in voice-over-IP (VoIP) tele-
phony and video streaming: for such uses, even the briefest 
disruptions can cause connections to seize up or fail in ways 
that are highly visible to the end user. If we can crack the “high-
availability barrier,” we can imagine a future in which the Inter-
net carries all such traffic.

Yet high availability is merely the first step in what will be 
an evolutionary process. Cloud applications also need better 
techniques for guaranteeing steady, very high data rates; the 
ability to prioritize traffic; and robustness under routing-level 
attacks. Content-distribution networks have been central to 
the static Web’s success: What will be the analogous paradigm 
for the Web of dynamic content, such as video streams shared 
by large numbers of users, gaming applications, or virtual reality 
immersion? The answers to such questions could transform the 
Internet’s roles.

Indeed, many cloud computing uses are so important (both 
in the terms of their scale and the associated revenue streams) 

that unless the Internet can evolve to meet the demands, the 
associated cloud computing enterprises might consider building 
new networks that would be dedicated to their use. Compa-
nies such as Google, Netflix, Amazon, Microsoft, and others 
are insisting on the need to craft virtual enterprise networks. 
If these are to share the same optical fibers used for other 
purposes, these and other cloud computing providers will need 
guarantees of disruption-free bandwidth, predictable laten-
cies, and hands-on control of routing policy control: “my traffic 
from A to B will traverse such-and-such a route,” or “requests 
from user X will be routed to data center Y,” to list just a few 
examples. A new network-control paradigm has emerged (the 
so-called Open Flow standard; www.openflow.org) with enthu-
siastic backing from the cloud computing community. Moreover, 
with such a large part of the economy Internet-dependent, 
there are growing calls to harden the network so that it can 
offer rock-solid defense against attackers, be they hackers or 
cyber warriors under command of national adversaries.

The challenges are significant, but the payoff will also be big. 
Today, many of the top technical people in the field are racing 
to offer competing ideas. For many of the topics listed, rather 
than having no solutions, we might soon have a buffet of choices 
to pick from. These are exciting times to work in the field of 
networking, and the best part of the story is that so much of it 
has yet to be written.
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routing rules (patterns the operator 
has defined) to select preferred routes. 
It then advertises reachable prefixes 
by publishing sets of attributes that 
include the paths. As routing changes, 
BGPD exchanges updates with its 
peers that might add to the list of 
reachable prefixes or retract some 
prefixes; those peers are expected to 
update their own states accordingly. 
BGP allows BGPD instances to apply 
routing updates in an unsynchro-
nized, distributed manner, but nor-
mally the delay between when one 
router applies an update and when 
its neighbor does is negligible, hence 
this asynchrony isn’t noticed: most  
routers are working with very 
simi lar routing tables at any given 
moment. However, one important case 
exists where the lag can be larger: if 

BGPD is recovering when an update  
arrives.

Imagine that some router experi-
ences an event that forces it to restart 
BGPD. When BGPD fails or migrates, 
the TCP links from it to the BGPDs on 
neighboring routers disconnect (break). 
Those neighbors will sense the failure 
and try to route around the affected 
router, but the alternative routes might 
be poor ones, and sometimes no backup 
routes are available (recall that we’re 
focused on the Internet’s core, where 
data rates are so high that only Internet 
“backbone” links and routers can han-
dle the load). This, in turn, can trigger 
secondary routing decisions at routers 
further away, and so forth.

So, how can we make BGPD 
more available? Currently, the main 
approach is to activate a BGP feature 

called graceful restart, which exploits 
routing tables that were downloaded 
into the hardware line cards prior to 
the crash. Assuming the crash left 
the routing tables intact, when the 
new BGP service starts up, the router 
will still be running using the old 
routing table, a bit like an airplane 
on autopilot. The router won’t be 
adapting to new routing updates and 
is thus frozen in time, but at least it 
was initially in a consistent state. 
Graceful restart tells the neighboring 
routers to continue to route packets 
through the impacted router, even as 
the restarting BGPD resynchronizes 
with its peers. The problem, however, 
is that while this is happening, BGP 
updates continue to stream in at a 
furious pace, so routing tables can 
become inconsistent within seconds. 

This creates a strong motivation 
to improve routing daemon avail-
ability. For example, some work has 
aimed at running BGP in a movable 
virtual machine (but VM migration 
is slow, and offers no help for fault 
tolerance), and some hand-tuned BGP 
migration mechanisms exist.2 Our 
approach offers fault tolerance, can 
support BGP upgrades (patching), and 
works with routing daemons other 
than BGPD, yet is fast and built from 
surprisingly simple technologies.

Fault-Tolerant BGP
Our new approach uses software to 
transform a standard BGPD imple-
mentation into a fault-tolerant ser-
vice. It involves minimal changes 
to the existing BGPD, the operating 
system, and existing protocols such 
as TCP, IP, and UDP. The first step is 
to “wrap” BGPD in a fault-tolerance 
layer, the fault-tolerance shim. The 
shim helps the underlying routing 
protocol handle failures in ways 
invisible to remote peers.

Figure 2 illustrates the approach. 
The solution combines the existing 
BGPD with several new components. 
The first is fault-tolerant state stor-
age (FTSS), in which the shim stores 

Figure 2. The fault-tolerant Border Gateway Protocol daemon (BGPD) 
architecture. The architecture runs on a router constructed as a cluster of host 
computers that control racks of network line cards, with the actual routing 
done mostly in the hardware. The shim (a) replicates BGPD’s runtime state 
into the fault-tolerant storage service (FTSS), which is implemented as a 
distributed hash table (DHT; shown as an oval). The figure portrays the BGPD 
state as if it resided at a single node, but in fact the solution spreads it over 
multiple nodes for fault tolerance and also to speed things up by enabling 
parallel PUT and GET operations. After a failure, (b) BGPD can restart on 
some healthy node, (c) recover its precise state, and resume seamlessly. The 
TCPR layer (d) splices connections from the new BGPD to the still-open end 
points its remote peers hold, masking the BGPD failure/recovery event.
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BGP state and other data that must be 
preserved across failures. The second 
component is the shim itself. The solu-
tion routes BGP connections between 
BGPD and its peers through the shim, 
so that the shim can see all incoming 
and outgoing updates as well as any 
changes to the routing table. This lets 
the shim checkpoint all this informa-
tion so that any incoming update will 
be securely logged in FTSS before our 
BGPD actually sees it, and any out-
going or routing table update will be 
securely logged before being sent to 
a neighboring peer or installed into 
the hardware.

The shim can also support multiple 
routing protocols running side-by-
side, a configuration that often arises 
in the core Internet, where an AS 
might have internal routing protocols 
that it uses to manage its own 
network, and a separate BGP routing 
layer that talks to neighboring ASs. It 
uses a form of voting to select among 
competing routing “proposals” in such 
cases, combining the routing protocol 
outputs to create the routing table that 
will be downloaded into hardware.

Of course, the shim itself can expe-
rience a failure, so we’ve designed it 
to store its state in the FTSS, enabling 
it to recover rapidly on a different 
node. The last component of our solu-
tion can “splice” the new TCP con-
nections (which the shim creates) to the 
old TCP connections that it was previ-
ously using to connect to remote peers. 
Called TCPR (for “TCP with session 
recovery”), this splicing technology 
works somewhat like network address 
translation (NAT), but rather than 
translating source and destination  
addresses in NAT-style, TCPR also 
updates the TCP sequence numbers. 
The effect is to connect the new con-
nection to an existing, active, TCP 
connection that is open at a peer, in a 
manner that won’t lose any data and 
imposes just milliseconds of delay.

We’ve focused primarily on the 
shim; let’s next look at our approach’s 
other components in more detail. 

FTSS
FTSS is a fault-tolerant storage solu-
tion that saves and replicates state so 
that in the event of a failure, a state-
dependent component can recover its 
previous configuration. In our archi-
tecture, the shim is the only com-
ponent that interacts directly with 
FTSS, using it to store the wrapped  
BGPD’s state, incoming and out-
going BGP updates, the routing infor-
mation table, and a small amount 
of additional state associated with 
TCPR. FTSS runs on all nodes within 
the router; in our target setting, this 
would range from a few dozen nodes 
to several hundred.

FTSS is implemented as a one-hop, 
in-memory, performance-optimized 
distributed hash table (DHT). Each 
state record has a unique ID (basi-
cally, a file name and a block num-
ber), and FTSS uses this as a key. 
The component maps the key to a 
few nodes within the router (recall 
that the router is a cluster), and FTSS 
agents on these nodes replicate the 
update. Lookup works the same way. 

FTSS maintains full membership 
tables (with at most a few hundred 
nodes in each router, and often far 
fewer, the full address list easily fits 
in memory). Consequently, FTSS can 
perform requests with a single RPC 
to each target node. FTSS also lever-
ages parallelism: we break the BGP 
state into a large number of small 
chunks and spread these over many 
machines, doing PUT and GET oper-
ations in parallel, and in this way 
gain roughly an order of magnitude 
in speed. Even when we take into 
account delays associated with the 
need to replicate data for robustness, 
this yields a fast, flexible store. In 
fact, accessing remote memory in this 
manner is approximately two orders 
of magnitude cheaper than file I/O  
to a standard local disk, and many 
orders of magnitude faster than 
remote file I/O. To support check-
points and complex object stor-
age, FTSS extends the usual DHT  

key-value model to also support  
record linking and offers efficient ways 
to traverse linked data structures.

BGPD
As noted, we made only minor 
changes to the existing BGPDs with 
which we worked (we’ve applied our 
methodology to two, so far: Quagga 
BGPD and a proprietary Cisco BGPD). 
The main change was to have BGPD 
connect to the shim rather than 
directly to its remote peers. A side 
effect is that without further modifi-
cation, when BGPD restarts, the shim 
can supply the initial routing state: 
rather than informing remote peers of 
the restart, the shim itself senses the 
restart, pulls the needed state from 
FTSS, and pushes it into BGPD at a 
very high data rate. In our experi-
ments, using state typical of real 
core-Internet routing conditions, this 
took as little as 1.5 to 4 seconds. The 
remote peers, of course, remain com-
pletely unaware of the event. Finally, 
when the remote peer set changes, 
BGPD informs the shim so that it can 
manage the associated connections.

TCPR
TCPR is a TCP-splicing technology. 
The approach is best understood by 
first considering the behavior of a 
standard NAT box: it has the effect of 
grafting a TCP end point that thinks 
itself to be connected to server X 
on port P to a server that might 
really be running on machine Y using  
port S. The NAT box translates 
back and forth. TCPR works in much 
the same way but at the level of the  
byte-sequence numbering used within 
TCP’s sliding window protocol.

The key idea is very NAT-like: when 
a restarting BGPD’s shim wrapper tries 
to connect to a peer, TCPR intercepts 
the three-way handshake so that the 
remote peer won’t see a connection 
reset. Instead, it computes the “delta” 
between the randomly chosen initial 
sequence number for the new connec-
tion and the sequence numbering used 
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in the old connection. As packets are 
sent back and forth, TCPR adds or sub-
tracts the delta, depending on which 
way the packets are going. Thus the 
new connection end point finds itself 
talking to the old remote end point. 
TCPR handles the TCP options used in 
routing protocols such as BGP, includ-
ing the MD5 signatures. In our experi-
ments, TCPR splicing takes as little as 
350 microseconds, and having TCPR 
on the path has a negligible impact on 
TCP connection performance.

TCPR and the shim cooperate 
in several ways. First, TCPR delays 
outgoing acknowledgments until the 
shim confirms that it’s backed up the 
associated incoming data; this ensures 
that, after a crash, the new BGPD 
won’t see any gaps or duplicated bytes 
in the incoming data stream. Simi-
larly, the shim backs up any outgo-
ing data so that, after a node crash, the 
recovered shim/BGPD pair can finish 
transmitting any data that was being 
sent at the time of the crash. Finally, 
the shim backs up parts of the TCPR 
state, enabling TCPR itself to recover 
if a node running it crashes and the 
TCPR daemon must restart.

Solution Performance
As this article was going to press, we 
were just finishing our port of the full 
fault-tolerant BGP implementation to 
an actual CRS-1 router and hadn’t yet 
measured recovery times or the corres-
ponding router-availability levels in 
a true Internet deployment. However, 
we do have a full implementation 
running on a testbed, and were able 
to experiment with it using realis-
tic BGP routing tables and update  
traffic. The results are encourag-
ing: complete recovery finished in 
as little as 30 ms for a BGPD that had 
no routes to recover (for instance, 
one with an empty routing table) and 
405 ms for a BGPD with a large rout-
ing table containing 157,975 entries. 
These numbers were essentially 
unchanged when we tested with BGP 
updates arriving every 130 ms, and 

fall within the window of normal 
asynchrony between BGP peers in 
the core Internet. Overall, the abi-
lity to fail and recover transparently, 
coupled with the ability to test new 
versions and configurations of rout-
ing software in production without 
risk, eliminates many of what used 
to be the biggest causes of downtime.

Today’s cloud computing systems 
are appealing for their low cost 

of ownership, amazing scalability, 
and flexibility. The cloud even brings 
environmental benefits: users share 
computing resources, which are used 
more efficiently, and the data centers 
are typically located near power- 
generating sources: by using the net-
work to move data to a data center, the 
need to move electricity to widely scat-
tered computing devices is reduced. 
However, for many applications, net-
work routing instabilities make the 
cloud less reliable than it needs to be.

Our work tackles a root cause for 
this problem, and by dramatically 
improving router availability, offers 
a path toward better stability in the 
Internet as a whole. The technique 
is incrementally deployable (mean-
ing that it can be rolled out without 
change to routers that run existing 
protocols) and brings immediate ben-
efit to any path that traverses even 
just a few routers using our approach. 
With enough routers using the 
method, we could imagine that VoIP 
telephony could achieve the same  
(or even better) quality of service seen 
in wired telephone networks, and 
that other kinds of streaming media 
applications could be deployed with 
sharply improved quality guarantees 
relative to what’s feasible today. 
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