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Abstract

Existing Web service notification and eventing standards are useful in many applications, but they have 
serious limitations that make them ill-suited for large-scale deployments, or as a middleware or a com-
ponent-integration technology in today’s data centers. For example, it is not possible to use IP multicast, 
or for recipients to forward messages to others, scalable notification trees must be setup manually, and no 
end-to-end security, reliability, or QoS guarantees can be provided. We propose an architecture that is free 
of such limitations and that may serve as a basis for extending or complementing the existing standards. 
The approach emerges from our work on QuickSilver, a new, extremely modular and extensible platform 
for high-performance, scalable, reliable eventing.
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Introduction

Motivation
Notification is a valuable, widely used primitive 
for designing distributed systems. The growing 
popularity of RSS feeds and similar technologies 
shows that this is also true at the Internet scales. 
The WS-Notification (Graham et al., 2004) 
and WS-Eventing (Box et al., 2004) standards 

have been offered as a basis for interoperation 
of heterogeneous systems deployed across the 
Internet. Unlike RSS, they are subscription-
based and, hence, free of the scalability problems 
of polling, and they support proxy nodes that 
could be used to build scalable notification 
trees. Nonetheless, they embody restrictions 
that make them unsuitable as a middleware 
technology in large-scale systems:
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•	 No forwarding among recipients: 
Many content distribution schemes build 
overlays within which content recipients 
participate in message delivery. In cur-
rent Web services notification standards, 
however, recipients are passive (limited 
to data reception). For example, given 
the tremendous success of BitTorrent for 
multicast file transfer, one could imagine 
a future event notification system that uses 
a BitTorrent-like protocol for data transfer. 
But BitTorrent depends on direct peer-to-
peer interactions by recipients.

•	 Not self-organizing: While both standards 
permit the construction of notification trees, 
such trees must be manually configured and 
require the use of dedicated infrastructure 
nodes (“proxies”). Automated setup of 
dissemination trees by means of a protocol 
running directly between the recipients is 
often preferable, but the standards preclude 
this possibility.

•	 Weak reliability: Reliability in the existing 
schemes is limited to per-link guarantees 
resulting from the use of TCP. In many 
applications, end-to-end guarantees are 
required, and often of strong flavor, for 
example, to support virtually synchronous, 
transactional, or state-machine replication. 
Because receivers are assumed passive 
and cannot cache, forward messages, or 
participate in multiparty protocols, even 
weak guarantees of these sorts cannot be 
provided.

•	 Difficult to manage: It is hard to create 
and maintain an Internet-scale dissemina-
tion structure that would permit any node 
to serve as a publisher or as a subscriber, 

for this requires many parties to maintain a 
common infrastructure and agree on stan-
dards, topology, and other factors. Any such 
large-scale infrastructure should respect 
local autonomy, whereby the owner of a 
portion of a network can set up policies for 
local routing, availability of IP multicast, 
and so forth.

•	 Inability to use external multicast frame-
works: The standards leave it entirely to the 
recipients to prepare their communication 
endpoints for message delivery. This makes 
it impossible for a group of recipients to 
dynamically agree upon a shared IP mul-
ticast address, or to construct an overlay 
multicast within a segment of the network. 
Yet such techniques are central to achieving 
high performance and scalability, and can 
also be used to provide QoS guarantees or 
to leverage emergent technologies. 

In this article, we propose a principled ap-
proach to Web service notification in large-scale 
systems, free of the limitations listed above, 
which is modular and highly extensible. The 
design presented here is a basis for Quicksilver 
(Ostrowski & Birman, 2006c; Ostrowski, Bir-
man & Dolev, 2006), a novel, reliable, and ex-
tremely scalable platform for publish-subscribe 
eventing and notification, under development at 
Cornell. While this architecture is inspired by 
our prior work on QuickSilver, it is designed 
to be generic, and it is compatible, in general, 
with a wide range of existing protocols. 

Model
We employ the usual terminology, where 
events are associated with topics, produced 
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Figure 1. Publishers and subscribers register for a topic with the subscription manager
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by publishers, and delivered to subscribers. 
We use the term “group X” to refer to the set 
of nodes subscribed to topic “X.” More than 
one node may publish to a given topic. The 
prospective publishers and subscribers register 
with a subscription manager. This entity can be 
independent of the publishers (Figure 1). The 
manager may be replicated to tolerate failures, 
or hierarchical, to scale. A single manager may 
track the publishers and subscribers for many 
topics, and many independent managers may 
coexist. Nodes may reside in many administra-
tive domains (LANs, data centers, etc.). Nodes 
in the same domain may be jointly managed. It 
is often convenient to define policies, such as 
for message forwarding or resource allocation, 
in a way that respects domain boundaries, for 
example, for administrative reasons, or because 
communication within a domain is cheaper than 
across domains, as it is often related to network 
topology. Publishers and subscribers might be 
scattered across organizations. These need to 
cooperate in message dissemination, which 
often presents a logistic challenge (Figure 2).

Example
To facilitate discussion, the article uses a run-
ning example. Obviously, the architecture is 
not limited to any particular application; the 
architecture is intended to be flexible enough 
to serve as a general, multipurpose middleware 
component-integration technology, and to be 
used in settings such as large data centers, 
trading systems, military infrastructure, and so 
forth. However, the example helps us illustrate 
the architecture with specific scenarios that 
highlight the role of specific features.

The example involves a possible vision for 
the future of the Internet. Even today, the Web 
is moving towards very dynamic and interactive 
content. Massively multiplayer online gaming 
and virtual realities, such as the World of War-
craft and Second Life, are becoming increas-
ingly popular. However, current techniques are 
insufficient for massive-scale deployments. As 
of this writing, the latter platform is reported 
to host online 17,000 of a total of 2 million 
of its users, on a server farm of nearly 2,600 
dual-core Opteron machines. As the number of 
online users simultaneously browsing through 
such virtual realities will grow to tens and 
hundreds of millions, as users start to expect 
a smoother and more realistic experience, and 
they start transmitting high-resolution audio, 
video, and animation streams, it will become 
very difficult to host entire virtual worlds in a 
centralized manner. Centralized systems are 
invariably costly and suffer from bottlenecks 
and high latencies. We believe that the most 
cost-effective (and perhaps ultimately the only 
feasible) way to implement such scenarios is 
for the virtual worlds to be decentralized, and 
for the users to interact directly, without any 
expensive servers in the middle. 

Apart from the scalability aspect mentioned 
above, we also believe that the Internet com-
munity is unlikely to accept a situation where all 
content is controlled by a handful of providers. 
Instead, we envision that just as today users 
create Web pages, they would eventually want 
to be able to create their own virtual rooms or 
landscapes, where participants could interact 
with one-another much as they do in online 
multiplayer games. A successful technology 
base of this sort could eventually transform 
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Figure 2. Nodes can be scattered across administrative domains hierarchically divided into 
subdomains
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the Web into a multi-verse, a federation of 
millions of interconnected virtual places or 
entire worlds, created and hosted by the Internet 
community collaboratively, with a mixture of 
infrastructure services, services hosted on data 
centers, and services introduced and hosted by 
individual users. 

A high-performance, scalable, and reliable 
variant of the publish-subscribe paradigm could 
be the enabling technology for such applica-
tions. To see this, think of each location in a 
virtual world as a separate publish-subscribe 
topic, and of the users that currently reside 
inside the location as subscribers (Figure 3). 
The state of the room, for example, its interior, 
user positions, actions in progress, all objects 
inside the room, and so forth, is replicated 
among all the subscribers. The state is loaded 
by the users upon entering the room, and can be 
updated in a consistent manner by multicasting 
any updates (such as users speaking, moving, 
handing objects to each other, etc.) reliably 
to the set of all subscribers. The state can be 
retained while no visitors are in the room by a 
room guardian, a special entity that can either 
stay in the room at all times, or slip in only if 
the last “regular” user leaves, depending on how 
the room is setup. Unlike in the centralized ap-
proaches, here users interact directly with each 
other, with no server in between. Although this 
solution does require infrastructure components, 
for example, to track subscriptions, inform users 
of each other’s existence, control the “guard,” 
and so forth, none of the required infrastructure 

sits on the “critical path” and acts as a proxy or 
intermediary. If one user speaks or projects a 
video clip to others, the data can be transmitted 
directly to participants, without the involvement 
of any such infrastructure. Infrastructure that 
controls a virtual location could thus be hosted 
even on a home machine of the user who cre-
ated it. The network of users’ home machines, 
hosting their virtual rooms connected by virtual 
corridors, can thus form a background backbone 
structure that controls the virtual reality in a 
way similar to how DNS serves as a backbone 
of the Internet. 

To realize the vision outlined above, we 
need a publish-subscribe platform that can 
provide very high performance, scalability in 
multiple dimensions, such as the size of the 
system, the number of publish-subscribe topics, 
or data rates, and so forth, end-to-end reliability 
guarantees, and a way to integrate with mod-
ern development platforms. In work reported 
elsewhere, we have created a system with these 
attributes. Initial results from experiments on 
the system (Quicksilver Scalable Multicast, or 
QSM) suggest that these goals can be achieved 
(Ostrowski & Birman, 2006b, 2006c). However, 
for truly massive adoption, we need publish-
subscribe interoperability standards that allow 
a large number of independent users, residing 
in different administrative domains scattered 
across the Internet, to collaboratively form a 
single infrastructure for reliable publish-sub-
scribe notification. This was our original reason 
to explore the architectural proposal that is the 
subject of this article.

users in the room
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enter the room 
= subscribe

and load state

room = publish-subscribe topic
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replicated room state

move, talk = 
publish state 
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Figure 3. A virtual room in a virtual world, modeled as a “publish-subscribe” topic
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Let’s now revisit the problems listed in the 
section entitled “Motivation” in the context of 
our example. Consider a user sitting in a caf-
eteria with his laptop that enters a virtual room 
and starts interacting with friends in our three-
dimensional virtual reality. The user would act 
as one of several publishers and subscribers. 
Because such interactions would be ad-hoc, the 
technique that the users would use to disseminate 
data between them should be self-organizing, 
that is, it should not rely on proxies, or other 
dedicated infrastructure. 

A simple way to meet this requirement 
could be for each publisher to send updates 
directly to all subscribers over TCP, but this 
is not acceptable for several reasons. First, to 
ensure that all users see a consistent history of 
events, we’d need reliability guarantees, such 
as a global ordering of all updates published by 
different users (so that all of them see events 
occurring in the same order, or that two users 
don’t pick up the same object), atomicity (so 
that if one user can see something happening, 
then so do all the others) and so forth. While 
solutions to such problems are well known 
from the literature, they need more than a 
plain point-to-point TCP-based dissemination 
scheme. Thus, the users would need to run a 
suite of special reliability protocols. 

Second, the wireless link of the user in 
the cafeteria, or his laptop, may not be fast 
enough to simultaneously send updates to ten 
other people who may be in the virtual room. If 
other users are connected, for example, directly 
to the campus network, over a wire, it may be 
desirable to arrange it so that the wireless user 
publishes updates to a user on a campus LAN, 
which is then responsible for forwarding it to 
the others. If the campus LAN is configured to 
enable IP multicast, it would be desirable to be 
able to exploit such external mechanisms. The 
users should thus be able to quickly form small 
overlays that can efficiently utilize whatever 
resources are available. 

Finally, note that users will often reside in 
different administrative domains, for example, 
in a cafeteria wireless network, in different 
campus networks, on a cable LAN, and so forth. 

The administrators of these domains may need 
to impose acceptable use policies that specify 
how dissemination should be performed inter-
nally in the domain they own. For example, 
one domain might disallow IP multicast, while 
another might permit IP multicast provided 
that various rules are respected. Policies could 
govern sharing of connections, what data rates 
are acceptable, what multicast protocol to use, 
and so forth. 

Different domains will often have distinct 
administrative policies. And yet, users residing 
in those domains would expect a smooth opera-
tion, as if the entire Internet formed a single, 
fully-connected administrative domain. Such 
management issues are a logistic headache, and 
require better interoperability standards. An up-
date published by the user in the cafeteria should 
be disseminated in every campus network, or 
among wireless users, locally according to the 
local policies setup by the domain administra-
tors, but all these domains need to cooperate 
with each other, ideally without reliance on 
costly proxies. Existing eventing standards have 
overlooked such issues, but they form the core 
of our proposal.

Design Principles
The limitations of the existing architectures, 
listed in the section on “Motivation,” and our 
experience in designing scalable multicast 
systems, led us to the following design prin-
ciples:

•	 Programmable nodes: Senders and re-
cipients should not be limited to sending or 
receiving. They should be able to perform 
certain basic operations on data streams, 
such as forwarding or annotating data with 
information to be used by other peers, in 
support of local forwarding policies. The 
latter must be expressive enough to support 
protocols used in today’s content delivery 
networks, such as overlay trees, rings, mesh 
structures, gossip, link multiplexing, or 
delivery along redundant paths. 

•	 External control: Forwarding policies 
used by subscribers must be selected and 
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updated in a consistent manner. A node 
cannot predict a-priori what policy to use, 
or which other nodes to peer with; it must 
thus permit an external trusted entity or an 
agreement protocol to control it: determine 
the protocol it follows, install rules for 
message forwarding or filtering, and so 
forth.

•	 Channel negotiation: The creation of 
communication channels should permit a 
handshake. A recipient might be requested 
to, for example, join an IP multicast address 
or subscribe to an external system. The 
recipient could also make configuration 
decisions on the basis of the information 
about the sender. For example, a LAN 
domain asked to create a communication 
endpoint for receiving could select a well-
provisioned node as its entry point to handle 
the anticipated load. 

•	 Managed channels: Communication 
channels should be modeled as contracts 
in which receivers have a degree of control 
over the way the senders are transmitting. 
In self-organizing systems, reconfigura-
tion triggered by churn is common and 
communication channels often need to be 
reopened or updated to adapt to the chang-
ing topology, traffic patterns, or capacities. 
For example, a channel that previously 
requested that a given source transmits 
messages to one node may notify the source 
that messages should now be transmitted 
to some two other nodes. 

•	 Hierarchical structure: The principles 
listed above should apply to not just 
individual nodes, but also to entire ad-
ministrative domains, such as LANs, 
data centers, or corporate networks. This 
allows the definition and enforcement of 
Internet-scale forwarding policies, facili-
tating cooperation among organizations in 
maintaining the global infrastructure. The 
way messages are delivered to subscribers 
across the Internet thus reflects policies 
defined at various levels (for example, 
policies “internal” to data centers, and a 
global policy “across” all data centers).

•	 Isolation and local autonomy: A degree of 
a local autonomy of the individual adminis-
trative domains, such as how messages are 
forwarded internally, which nodes are used 
to receive incoming traffic or relay data 
to other domains, and so forth, should be 
preserved. In essence, the internal structure 
of an administrative domain should be hid-
den from other domains it is peering with 
and from the higher layers. Likewise, the 
details of the subcomponents of a domain 
should be as opaque as possible.

•	 Reusability: It should be possible to 
specify a policy for message forwarding 
or loss recovery in a standard way and 
post it into an online library of such poli-
cies as a contribution to the community. 
Administrators willing to deploy a given 
policy within their administrative domain 
should be able to do so in a simple way, 
for example, by drag-and-drop, within a 
suitable GUI.

•	 Separation of concerns: Motivated by 
the end-to-end principle, we separate 
implementation of loss recovery and other 
reliability properties from the unreliable 
dissemination of messages, as well as 
from message ordering, security, and 
subscription management. Accordingly, 
our design includes reliability, dissemi-
nation, ordering, security, and manage-
ment frameworks, five independent, yet 
complementary structures. This decoupling 
gives our system an elegant structure and a 
degree of modularity and flexibility unseen 
in existing architectures. 

Hierarchical View of the Network
A group X of subscribers for a given topic across 
the entire Internet can be divided into subsets 
Y1, Y2, . . ., YN of subscribers in N top-level 
administrative domains (Figure 4). This may 
continue recursively, leading to a hierarchical 
perspective on the group X. Hierarchies of this 
sort have been previously exploited in scalable 
multicast protocols, for example, in RMTP 
(Paul, Sabnani, Lin, & Bhattacharyya, 1997), 
or in the context of content-based filtering 
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(Banavar, Chandra, Mukherjee, Nagarajarao, 
Strom, & Sturman, 1999). The underlying prin-
ciple, implicit in many scalable protocols, is to 
exploit locality. Following this principle, sets of 
nodes, clustered based on proximity or interest, 
cooperate semi-autonomously in message rout-
ing and forwarding, loss recovery, managing 
membership and subscriptions, failure detec-
tion, and so forth. Each such set is treated as 
a single cell within a larger infrastructure. A 
protocol running at a global level connects all 
cells into a single structure. Scalability arises as 
in the divide-and-conquer principle. Addition-
ally, the cells can locally share workload and 
amortize dissemination or control overheads, 
for example, buffer messages from different 
sources and locally disseminate such combined 
bundles, and so forth. 

In the architecture described here we go one 
step further. Following our principle of isola-
tion and local autonomy, each administrative 
domain should manage the registration of its 
own publishers and subscribers internally, and 
it should be able to decide how to distribute 
messages among them or how to perform loss 
recovery according to its local policy. Unlike 
in most hierarchical systems, where hierarchy 
and protocol are inseparable, and hence the 
“subprotocols” used at all levels of the hierarchy 
are identical, in our architecture we decouple 
the creation of the hierarchy from the specific 
“subprotocols” used at different levels of the 
hierarchy and we allow the “subprotocols” 
to differ. Thus for example, our architecture 
permits the creation of a single, global dis-
semination scheme for a topic that uses differ-
ent mechanisms to distribute data in different 
organizations or data centers. Likewise, it 

permits the creation of a single Internet-scale 
loss recovery scheme that employs different 
recovery policies within different administrative 
domains. Previously, this has only been possible 
with proxies, which can be costly, and which 
introduce latency and bottleneck. In this article, 
we propose a way to do this efficiently, and 
in a very generic, flexible manner. This novel 
hierarchical protocol “composition” approach, 
motivated by the principles of locality and local 
autonomy, is central to our architecture.

Architecture

The Hierarchy of Scopes
Our architecture is organized around the fol-
lowing key concepts: management scope, for-
warding policy, channel, filter, session, recovery 
protocol, recovery domain, and agent. 

A management scope (or simply scope) 
represents a set of jointly managed nodes. It 
may include a single node, span over a set of 
nodes residing within a certain administrative 
domain, or include nodes clustered based on 
other criteria, such as common interest. In the 
extreme, a scope may span across the entire 
Internet. We do not assume a 1-to-1 correspon-
dence between administrative domains and the 
scopes defined based on such domains, but that 
will often be the case. A LAN scope (or just a 
LAN) will refer to a scope spanning all nodes 
residing within a LAN. The reader might find 
it easier to understand our design with such 
examples in mind. 

A scope is not just any group of nodes; the 
assumption that they are jointly managed is es-
sential. The existence of a scope is dependent 
upon the existence of an infrastructure that 

Figure 4. A hierarchical decomposition of the set of subscribers along the domain boundaries
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maintains its membership and administers it. For 
a scope that corresponds to a LAN, this could be 
a server managing all local nodes. In a domain 
that spans several data centers in an organization, 
it could be a management infrastructure, with a 
server in the company headquarters indirectly 
managing the network via subordinate servers 
residing in every data center. No such global 
infrastructure or administrative authority exists 
for the Internet, but organizations could provide 
servers to control the Internet scope in support 
of their own publishers or to manage the dis-
tribution of messages in topics of importance 
to them. Many global scopes, independently 
managed, could thus co-exist. 

Like administrative domains, scopes 
form a hierarchy, defined by the relation of 
membership: one scope may declare itself to 
be a member (or a “subscope”) of another. If X 
declares itself to be a member of Y, it means X 
is either physically or logically a part (subset) of 
Y. Typically, a scope defined for a subdomain X 
of an administrative domain Y will be a member 
of the scope defined for Y. For example, a node 
may be a member of a LAN. The LAN may be 
a member of a data center, which in turn may 
be a member of a corporate network. A node 
may also be a member of a scope of an overlay 
network. For a data center, two scopes may be 
defined, for example, monitoring and control 
scopes, both covering the entire data center, 
with some LANs being a part of one scope, 
or the other, or both. The corporate scope may 
be a member of several Internet-wide scopes, 
and so forth. 

The generality in these definitions allows 
us to model various special cases, such as 
clustering of nodes based on interest or other 
factors. Such clusters, formed, for example, by 
a server managing a LAN and based on node 
subscription patterns, could also be treated as 
(virtual) scopes, all managed by the same server. 
Nodes would thus be members of clusters, and 
clusters (not nodes) would be members of the 
LAN. As we shall explain below, every such 
cluster, as a separate scope, could be locally and 
independently managed. For example, suppose 
that we are building an event notification system 

that needs to disseminate events reliably, and is 
implemented by an unreliable multicast mecha-
nism coupled to a reliability layer that recovers 
lost packets. In the proposed architecture, dif-
ferent clusters could run different multicast or 
loss recovery protocols; this technique is used 
in the QSM platform (Ostrowski & Birman, 
2006b, 2006c). Thus, if one cluster happens to 
reside within a LAN that permits the use of IP 
multicast, it could use that technology, while 
a different cluster on a network that prohibits 
IP multicast, or consisting of a large number of 
nodes across the Internet, could instead form 
an end-to-end multicast overlay.

The scope hierarchy need not necessar-
ily be a tree (Figure 5). There may be many 
global scopes, or many superscopes for any 
given scope. However, a scope decomposes 
into a tree of subscopes, down to the level of 
nodes. The span of a scope X is the set of all 
nodes at the bottom of the hierarchy of scopes 
rooted at X. For a given topic X, there always 
exists a single global scope responsible for it, 
that is, such that all subscribers to X reside in 
the span of X. Publishing a message to a topic 
is thus always equivalent to delivering it to all 
subscribers in the span of some global scope, 
which may be further recursively decomposed 
into the sets of subscribers in the spans of its 
subscopes. 

Suppose that Alice and Bob are sitting with 
their laptops in a cafeteria, while Charlie is in a 
library. Both the cafeteria’s wireless network and 
the local network in the library are separately 
managed administrative domains, and they 
define their own management scopes. Alice’s 
and Bob’s laptops are also scopes, both of which 

Figure 5. An example hierarchy of management 
scopes in a game
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become members of the cafeteria’s scope. Now 
suppose that Alice opens her virtual realities 
browser and enters a virtual place “Room1” 
in the virtual reality, while Bob and Charlie 
enter “Room2.” Each of the virtual rooms de-
fines a global, Internet-wide scope that could 
be thought of as “the scope of all users in this 
room, wherever they are.” If the networking 
support for Alice and Bob is still provided by 
the cafeteria and library wireless networks re-
spectively, when the students enter the rooms, 
the cafeteria’s and library’s scopes become 
members of these global scopes (Figure 5).

The Anatomy of a Scope
The infrastructure component administering a 
scope is referred to as a scope manager (SM). A 
single SM may control multiple scopes. It may 
be hosted on a single node, or distributed over 
a set of nodes, and it may reside outside of the 
scope it controls. It exposes a control interface, 
a Web service hosted at a well-known address, 
to dispatch control requests (e.g., “subscribe”) 
directed to the scopes it controls (Figure 6). 

A scope maintains communication chan-
nels for use by other scopes. A channel is a 
mechanism through which a message can be 
delivered to all those nodes in the span of this 
scope that subscribed to any of a certain set 
of topics. In a scope spanning a single node, a 
channel may be just an address/protocol pair; 
creating it would mean arranging for a local 
process to open a socket. In a distributed scope, 
a channel could be an IP multicast address; creat-
ing it would require all local nodes to listen at 
this address. It could also be a list of addresses, 
if messages are to be delivered to all of them, 

or if addresses are to be used in a random or a 
round-robin fashion. In an overlay network, for 
example, a channel could lead to a small set of 
nodes that forward messages across the entire 
overlay. In general, a scope that spans a set of 
nodes can thus be governed by a forwarding 
policy that determines how messages originat-
ing within the scope, or arriving through some 
communication channel, are disseminated 
internally, within the local scope.

Continuing our example, the cafeteria and 
the library would host the managers of their 
scopes on dedicated servers, and each of the 
student laptops would run a local service that 
serves as a scope manager for the local machine. 
The library’s SM may be on a campus network 
with IP multicast enabled. When the cafeteria’s 
SM requests a channel from the library’s SM, 
the latter might, for example, dedicate some 
machine as the entry point for all messages com-
ing from the cafeteria, instruct it to retransmit 
these messages to the IP multicast address, and 
instruct all other laptops to join the IP multicast 
address. Similarly, the cafeteria’s SM might 
setup a local forwarding tree. In most settings, a 
scope manager would live on a dedicated server. 
It is also conceivable to offload, in certain sce-
narios, parts of the SM’s functionality to nodes 
currently in the scope (e.g., to Alice’s and Bob’s 
laptops), but a single “point of contact” for the 
scope would still need to exist.

The control interfaces “exposed” by scopes 
(interfaces exposed by their scope managers) 
are “accessed” by other scopes (i.e., by their 
SMs). When interacting, scopes can play one 
of a few standard roles, corresponding to the 
three principal interaction patterns: member-

Figure 6. A scope is controlled by a scope manager, which exposes a standardized control interface, 
and may create a number of incoming data channels, to serve as “entry points” for the scope
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owner, sender-receiver, and client-host (see 
Figure 7). A member registers with an owner 
to establish a relation of membership, that is, 
to “declare” itself as a subscope of the owner. 
After such a relationship has been established, 
the member may then register with the owner as 
a publisher or subscriber in one or more topics. 
Depending on the topics for which the mem-
ber has registered and its role in these topics, 
it may be requested by the owner to perform 
relevant actions, for example, by forwarding 
messages or participating in the construction 
of an overlay structure. At the same time, the 
owner is responsible for tracking the health of its 
members, and in particular for detecting failures 
and performing local reconfiguration. 

The client-host relationship is similar to 
member-owner, in that a client can register with 
a host as a publisher or as a subscriber. However, 
unlike the member-owner relationship, which 
involves a mutual commitment, the client-host 
relationship is more casual, in the sense that the 
host cannot rely on the client to perform any 
tasks for the system, or even to notify the host 
when it leaves, and similarly, the client cannot 
rely on the host to provide it with the same 
quality of service and reliability properties as 
the regular members. Thus for example, while 
a member can form a part of a forwarding tree, 
a client will not; the latter will also typically 
get weaker reliability guarantees, because the 
protocols run by the scope members will not be 
prevented from making progress when transient 

clients are unreachable. The same applies to 
publishers. A long-term publisher that forms a 
part of a corporate infrastructure will register 
as a member, but handheld devices roaming 
on a wireless network will usually register as 
clients.

The sender-receiver relationship is similar 
to a publisher registering as a client or member 
in that the sender registers with the receiver 
to send data. However, whereas a member 
registers with its owner to publish to the set 
of all subscribers in a topic, including nodes 
inside as well as nodes outside of the owner, a 
sender will register with a receiver to establish 
a communication channel between the two to 
disseminate messages only within the scope 
of the receiver. When a publisher registers as 
a member with an owner scope that is not the 
global scope for the given topic, the owner may 
itself be forced to subscribe with its superscope. 
The sender-receiver relationship is horizontal; 
no cascading subscriptions take place. On 
the other hand, while a member scope never 
exchanges data with the owner (instead, it is 
“told” by the owner to form part of a dissemi-
nation structure that the owner controls), the 
sender-receiver relationship serves exactly this 
purpose; the two parties involved in the latter 
will negotiate protocols, addresses, transmission 
rates, and so forth.

The reader should recognize in our con-
struction the design principles we articulated 
earlier. Scopes, whether individual nodes, LANs 

Figure 7. When interacting, scopes follow one of a few standardized relationship patterns, in 
which they can play one of a few standard roles
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or overlays, are externally controlled using the 
control interfaces exposed by SMs, may be 
programmed with policies that govern the way 
messages are distributed internally, forwarded 
to other scopes, and so forth, and transmit mes-
sages via managed communication channels, 
established through a dialogue between a pair 
of SMs, and dynamically reconfigured.

Hierarchical Composition of 
Policies
Following our design principles, we propose to 
solve the issue of a large-scale global coopera-
tion in message delivery between independently 
managed administrative domains by introducing 
a hierarchical structure in which forwarding 
policies defined at various levels are merged 
into a single dissemination scheme. Each 
scope is configured with a policy dictating, on 
a per-topic (and perhaps a per-sender) basis, 
how messages are forwarded among its mem-
bers. For example, a policy governing a global 
scope might determine how messages in topic 
T, originating in a corporate network X, are 
forwarded between the various organizations. 
A policy of a scope of the given organization’s 
network might determine how to forward mes-
sages among its data centers, and so forth. A 
policy defined for a particular scope X is always 
defined at the granularity of X’s members (not 
individual nodes). The way a given subscope Y 
of X delivers messages internally is a decision 

made autonomously by Y. Similarly, X’s policy 
may specify that Y should forward messages to 
Z, but it is up to Y’s policy to determine how 
to perform this task. 

Accordingly, a global policy may request 
that organization X forward messages in topic 
T to organizations Y and Z. A policy govern-
ing X may then determine that to distribute 
messages in X, they must be sent to LAN1, 
which will forward them to LAN2. The same 
policy might also specify which LANs within 
X should forward to Y and Z, and finally, the 
policies of these LANs will delegate these 
forwarding tasks to individual nodes they own. 
When all the policies defined at all the involved 
scopes are combined together, they yield a 
global forwarding structure that completely 
determines the way messages are disseminated 
(Figure 8). In the examples given, the forward-
ing policies are simply graphs of connections: 
each message is always forwarded along every 
channel. In general, however, a channel could 
be constrained with a filter that decides, on a 
per-message basis, whether to forward or not, 
and may optionally tag the message with cus-
tom attributes (more details are in the section 
“Communication Channels”). This allows us to 
express many popular techniques, for example, 
using redundant paths, multiplexing between 
dissemination trees, and so forth. 

Every scope manager maintains a map-
ping from topics to their forwarding policies. 
A forwarding policy is defined as an object that 

Figure 8. Channels created in support of forwarding policies defined at different levels
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lives in an abstract context, and that exposes 
a fixed set of events to which members must 
be prepared to react, and the operations and 
attributes. A scope manager might be thought 
of as a container for objects representing 
policies. The interfaces that the container and 
the policies expose to each other and interact 
with are standardized, and may include, for 
example, an event informing the policy that 
a new member has been added to the set of 
members locally subscribed to the topic, or an 
operation exposed by the container that allows 
the policy to request a member to establish a 
channel to another member and instantiate a 
given type of filter (Figure 9). A scope manger 
thus provides a runtime environment in which 
policies can be hosted. This allows policies to 
be defined in a standard way, independent not 
only of the platform, but also of the type of the 
administrative domain. For example, one can 
imagine a policy that uses some sort of a novel 
mesh-like forwarding structure with a sophisti-
cated adaptive flow and rate control algorithm. 
Our architecture would allow that policy to be 
deployed, without any modifications, in the con-
text of a LAN, data center, corporate network, 
or a global scope. In effect, we’ve separated 
the policy from the details of how it should be 
implemented in a particular domain. Policies 
may be implemented in any language, expose 
and consume Web service APIs, stored online 

in protocol libraries, downloaded as needed, 
and executed in a secure manner. 

Graphs of connections for different top-
ics, generated by their respective policies, are 
superimposed (Figure 10). The SM of the scope 
maintains an aggregate structure of channels 
and filters, and issues requests to the SMs of its 
members to create channels, instantiate filters, 
and so forth. If multiple policies request chan-
nels between the same pair of nodes, the SM will 
not create multiple channels, but rather a single 
channel, for multiple topics. To avoid the situ-
ation where every member talks to every other 
member, the SM may use a single forwarding 
policy for multiple topics, to ensure that chan-
nels created for different topics overlap. 

Communication Channels
Consider a node X, which is a member of a 
scope Y that, based on a forwarding policy at 
Y, has been requested to create a communica-
tion channel to scope Z to forward messages 
in topic T. Following the protocol, X asks the 
SM of Z for the specification of the channel 
to Z that should be used for messages in topic 
T. The SM of Z might respond with an ad-
dress/protocol pair that X should use to send 
over this channel. Alternatively, a forwarding 
policy defined for T at scope Z may dictate 
that, in order to send to Z in topic T, scope X 
should establish channels to members A and B 

Figure 9. A forwarding policy as a code snippet
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of Z, constrained with filters α and β. After X 
learns this from the SM of Z, it contacts SMs 
of A and B for further details. Notice that the 
channel to Z decomposes into subchannels to A 
and B through a policy at a target scope Z. This 
procedure will continue hierarchically, until 
the point when X is left with a tree with filters 
in the internal nodes and address and protocol 
pairs at the leaves (Figure 11). Now, to send 
a message along a channel constructed in this 
way, X executes filters, starting from the root, 
to determine recursively which subchannels to 
use, proceeding until it is left with just a list of 
address/protocol pairs, and then transmits the 
message. Filters will usually be simple, such as 
modulo-n; hence X can perform this procedure 
very efficiently. Indeed, with network cards 
becoming increasingly powerful and easily 
programmable (Weinsberg, Dolev, Anker, & 
Wyckoff, 2006), such functionality might even 
be offloaded to hardware.

Accordingly, to support the hierarchical 
composition of policies described in the preced-
ing section, we define a channel as one of the 
following: an address/protocol pair, a reference 
to an external multicast mechanism, or a set of 
subchannels accompanied by filters. In the latter 
case, the filters jointly implement a multiplexing 
scheme that determines which subchannels to 
use for sending, on a per-message basis (Figure 
12, Figure 13). 

Consider now the situation where scope 
X, spanning a set of nodes, has been requested 
to create a channel to scope Y. Through a dia-
logue with Y and its subscopes, X can obtain a 
detailed channel definition, but unlike in prior 
examples, X now spans a set of nodes, and 
as such, it cannot execute filters or send mes-
sages. To address this issue, we now propose 
two simple, generic techniques: delegation and 
replication (Figure 14). Both of them rely on 
the fact that if X receives messages in a topic T, 
then some of its members, Z, must also receive 

Figure 11. A channel split into subchannels and a possible filter tree corresponding to it
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them (for otherwise X would not declare itself 
as a subscriber and it would not be made part 
of the forwarding structure for topic T by X’s 
superscope). In case of delegation, X requests 
such a subscope Z to create the channel on behalf 
of X, essentially “delegating” the entire channel 
to its member. The problem can be recursively 
delegated, down to the level where a single 
physical node is requested to create the channel, 
and to forward messages it receives along the 
channel. A more sophisticated use of delegation 
would be for X to delegate subchannels. In such 
case, X would first contact Y to obtain the list 
of subchannels and the corresponding filters, 
and for each of these subchannels, delegate it 
to its subscopes. In any case, X delegates the 
responsibility for forwarding over a channel 
to its subscopes. 

Our approach is flexible enough to support 
even more sophisticated policies. An example of 
one such policy is a replication strategy, outlined 
here. In this scheme, scope X could request that 
n of its subscopes create the needed channel, 
constraining each with a modulo-n filter based 
on a message sequence number. Hence, while 
each of the subscopes would create the same 
channel on behalf of its parent scope (hence the 
name “replication”), subscope k would only 
forward messages with numbers m such that 
m mod n equals k. By doing this, X effectively 
implements a round-robin policy of the sort pro-
posed in protocols such as MIT’s SplitStream. 
Although all subscopes would create the same 
channel, the round-robin filtering policy would 
ensure that every message is forwarded only by 

one of them. This technique could be useful, 
for example, in the cases where the volume of 
data in a topic is so high that delegation to a 
single subscope is simply not feasible.

Our point is not that this particular way of 
decomposing functionality should be required of 
all protocols, but rather that for an architecture 
to be powerful enough and flexible enough to 
be used with today’s cutting-edge protocols 
and to support state-of-the-art technologies, it 
needs to be flexible enough to accommodate 
even these kinds of “fancy” behaviors. Our 
proposed architecture can do so. The existing 
standards proposals, in contrast, are incred-
ibly constraining. Each only accommodates a 
single rather narrowly conceived style of event 
notification system. 

Constructing the Dissemination 
Structure
A detailed discussion of how forwarding 
policies can be defined and translated to filter 
networks is beyond the scope of this article. 
We describe here just one simple, yet fairly 
expressive scheme. 

Suppose that the forwarding policies in all 
scopes define forwarding trees on a per-topic 
basis and possibly also depending on the loca-
tion at which the message locally originated. By 
saying that a message locally originated from 
a member X of scope Y, we mean that either 
the message was created by X (if X is itself a 
node) or a member of X, or that the message 
was created outside of Y, but X is (or contains) 
the first node in all of Y to which the message 

Figure 14. Channel algorithms are realized as sets of filters, one per subchannel, deciding 
whether to forward, and optionally adding custom tags.
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was forwarded. The technique described here 
implicitly assumes that messages do not ar-
rive along redundant paths, that is, that the 
forwarding policy at each level is a tree, not a 
mesh. This scheme may be extended to cover 
the more general case with redundant paths and 
randomized policies, but we omit it here, for it 
would unnecessarily complicate our example. 
A comprehensive treatment of dissemination 
policies is beyond the scope of this article.

A scope manager thus maintains a graph, in 
which the scope members are linked by edges, 
labeled with constraints such as β:X, µ:Y, …, 
meaning that a message is forwarded along 
the edge if it was sent in topic β and locally 
originates at X, or if it was sent in topic µ and 
locally originates at Y, and so on. We shall now 
describe, using a simple example, how a struc-
ture of channels is established based on scope 
policies, and how filters are instantiated. We 
shall then explain how messages are routed.

Consider the structure of scopes depicted 
on Figure 15. Here A, B, C, D, and E are student 
laptops. P, Q, and R are three departments on 

a campus, with independent networks, hence 
they are separate scopes. X represents the entire 
campus. All students subscribe to topic T. Topic 
T is local to the campus, and X serves as its root. 
The scopes first register with each other. Then, 
the laptops send requests to subscribe for topics 
to P, Q, and R. Laptop A requests the publisher 
role, all others request to be subscribers. None 
of P, Q, or R are roots for the topic, hence they 
themselves subscribe for topic T with X, in a 
cascading manner. Now, all scopes involved 
create objects that represent local forwarding 
policies for topic T, and feed these objects with 
the “new member” events. The policy at P for 
messages in T originating at A creates a chan-
nel from A to B. Similarly, the policy at X for 
messages in T originating at P creates channels 
P to Q and Q to R (Figure 16). Each channel has 
a label of the form “X-Y, T:Z”, meaning that 
it is a channel from X to Y, for messages in T 
originating at Z. Note that no channels have been 
created in scope Q. Until now, Q is not aware 
of any message sources because neither C nor 
D is a publisher, and because no other scope 
has so far requested a channel to Q, hence there 
is no need to forward anything. Channels are 
now delegated to individual nodes, as described 
in the section “Communication Channels.” P 
delegates its channel to B, and Q delegates to 
D (Figure 17, delegated channels are in blue). 
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X

Figure 15. An example hierarchy of scopes with 
cascading subscriptions
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Figure 16. Channels created by the policies 
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Channel labels are extended to reflect the fact 
that they have been delegated, for example, 
P-Q becomes P:B-Q, which means that P has 
delegated its source endpoint to its member B, 
and so forth. At this point, B and D contact the 
destinations Q and R and request the channels 
be created. Q and R select C and E as their 
entry points for these channels. Now Q also 
has a local source of messages (node C, the 
entry point), so now it also creates an instance 
of a forwarding policy, which determines that 
messages in T, locally originating at C, are for-
warded to D (Figure 18). The entire forwarding 
structure is complete. 

A message in transit is a tuple of the form 
(T, k, r), where T is the topic, k is the identi-
fier that may include the source name, one or 
more sequence numbers, and so forth, and r 
is a routing record. The routing record is an 
object of the form (XK–YK), (X(K-1)–Y(K-1)), …, 
(X1–Y1), in which every pair of elements (Xi, 
Yi) represents the state of dissemination in 
one scope; Xi is the member of the scope that 
the message locally originated from and Yi is 
the member of the scope that the message is 
moving inside of or that it is entering. Pair (X1, 
Y1) represents individual nodes, and for each 
i, scopes Xi and Yi are a level below Xi+1 and 

Yi+1, respectively, and Yi is always a member 
of Yi+1. This list of entries does not need to 
“extend” all the way up to the root. If entries 
at a certain level are missing, they will be filled 
up when the message jumps across scopes, as 
it is explained below.

When a message arrives at a node, the 
node iterates over all of its outgoing channels, 
and matches channel filters against the routing 
record. Message T, k, ((XK–YK), (X(K-1)–Y(K-

1)), …, (X1–Y1)) matches channel (PL:PL-1:…:
P1 – QL:QL-1:…:Q1 , T:R) when (K ≥ L ˄ XL 
= R ˅ K < L ˄ PL = R) holds. This condition 
has two parts. If K ≥ L, then in the scope in 
which the channel endpoints PL, QL and R are 
members, the message originated at XL and 
is currently at YL. According to our rules, the 
message should be forwarded iff XL = R (and 
YL = PL, but this is always true). If K < L, then 
the routing record does not carry any state for 
the scope at which PL, QL and R are members. 
This means the message must have originated 
in this scope (the recovery record is filled up 
when the message is forwarded, as explained 
below), hence the condition PL = R. Note that 
there might be several channels originating 
at the node; the message is forwarded across 
each one it matches. Now, when the message 

Figure 19. The flow of messages (rounded rectangles, left), and the channels (square rectangles, 
right) in the scenario of Figure 17. Elements compared against each other are shown as black, 
bold, and underlined
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is forwarded, its routing record is modified as 
follows. First, the record is extended. If K < L, 
then for each i such that i > K and i ≤ L, we set 
Xi = Pi and Yi = Pi. Then, the details internal 
to the scope that the channel is leaving are 
replaced with the details internal to the scope 
the channel is entering, so for each i such that 
i < L, we set Xi = Qi and Yi = Qi. Finally, the 
current scope at the level at which the chan-
nel is defined is updated, we set YL = QL. The 
original value of XL, once set, is not changed 
until the message is forwarded out of the scope 
of which XL is the member. Entries for i > L 
also remain unchanged.

The flow of messages and matching in the 
example of Figure 18 is shown on Figure 19. 
When created on the publisher A, the message 
initially has a routing record A–A, since we 
know that it originated locally at A and that it 
is still at A. No entries are included at this point 
for routing in the scopes above A. There is no 
need for doing so since no routing has been 
done so far at those higher levels, so there is 
no state to maintain. Now the routing record is 
compared against channel A-B, T:A. The local 
origin A does match the channel’s constraint A, 
so the message is forwarded along A-B, with 
a new record A-B to reflect the fact that it is 
now entering B. While matching this record 
to channel P:B–Q:C at B, we find that the 
record lacks routing information for the scope 
at which this channel is defined. This means 
that the message must have originated at the 
channel’s source endpoint (which we know 
is P from the channel’s description). We find 
that the channel’s constraint P is the same as 
the channel’s source endpoint P, so we again 
forward the message. While doing so, we ex-
tend its routing record with a new entry P-Q 
to record the fact that we made progress at this 
higher level. We also replace information lo-
cal to P (the entry A-B) with new information 
local to Q (the new entry C-C). Forwarding 
at C and D works similarly to how it worked 
on A and B.

The Local Architecture of a 
Dissemination Scope 
So far we focused in our description on peer-to-
peer aspects of the dissemination framework, 
but we have not described how applications 
use this infrastructure, and how leaf scopes are 
internally organized. Of a number of possible 
architectures of the leaf scopes, the most general 
one involves the following components: scope 
manager, local controller, and controlled ele-
ment (Figure 20). The controlled element is a 
very thin layer that resides in the application 
process. Its purpose is to serve as a hookup to 
the application process that allows for control-
ling the way the application communicates over 
the network. As such, it serves two principal 
purposes: (a) passing to the local controller 
requests to subscribe/unsubscribe, and (b) 
opening send and receive sockets in the process 
per request from the controller. The controlled 
element does not forward messages, nor does it 
include any other peer-to-peer functionality, and 
it is not a part of the management network. This 
simplicity allows it to be easily incorporated 
into legacy applications. It can be implemented 
in any way, for as long as it exposes a control 
endpoint (Figure 20, thin, black), a standard-
ized Web service interface, and as long as it can 

Figure 20. The architecture of a leaf scope in 
the most general scenario, with a local scope 
manager, a thin controlled element linked to 
the application, and with a local controller 
to handle peer-to-peer aspects, for example, 
forwarding
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create communication endpoints (thick, red) to 
receive or connect to remote endpoints to send. 
The local controller implements all the peer-
to-peer functionality such as forwarding, and 
so forth, and hosts such elements as channels 
or filters. It may also create communication 
endpoints, and may send data to or receive it 
from the controlled element. The controller is 
not a part of the management network, and it 
does not interact with any scope mangers besides 
the local one. These interactions are the job of 
the local SM, which, on the other hand, never 
sends or receives any messages itself.

In general, the three components can live 
in separate processes, or even physically on 
different machines, and may communicate over 
local sockets or over the network. However, 
in the typical scenario, the scope manager and 
local controllers are located in a single process 
(“manager”). The manager runs as a system 
service and may control multiple applications, 
either local or running on subordinate devices 
managed by the local node, through the con-
trol elements embedded in these applications. 
Within this scenario, we can distinguish three 
basic subscenarios, or three patterns of usage 
(Figure 21), depending on whether applications 
participate in sending or receiving directly, or 
only through the manager. 

In the first scenario, the applications only 
receive data, directly from the network (Figure 
21, left). When the manager is requested to create 
an incoming channel to the scope, it may either 
arrange for all applications to open the same 
socket to receive messages directly from the 
network (if the applications are all hosted one 
the same machine), or it may make them all sub-

scribe to the same IP multicast address (if they 
are running on multiple subordinate devices), 
or it may have them create multiple endpoints, 
in which case the definition of the local channel 
endpoint will include a set of addresses rather 
than just one. The manager does not sit on the 
critical path; hence we avoid bottleneck and 
latency. If the local scope is required to forward 
data to other scopes, the manager also creates an 
endpoint (opens the same socket, or extends the 
receive channel endpoint definition to include 
its own address), to receive the data that needs 
to be forwarded.

In our example, the library’s server might 
act as a leaf scope, and students’ laptops might 
act as subordinate devices that do not host their 
own local scope managers and do not forward 
messages. Applications on the laptops would 
have the embedded controlled elements that 
communicate with the local controller on the 
library server via a standard Web interface. 
When students subscribe to a local topic, such 
as an online lecture transmitted by another 
department, the server chooses an IP multicast 
address and has all the laptops subscribe to it. 
The data arriving on the local network is received 
by all devices without any intermediary. If the 
library needs to forward messages, the server 
also subscribes to the IP multicast address and 
creates all the required channels and filters. 

In the second scenario, the applications 
act as publishers (Figure 21, center). There is 
no need to forward data, hence the manager 
does not create any send or receive channels. 
In order to support this scenario, the controlled 
element must allow transmitting data to multiple 
IP addresses; embed various headers provided 
by the local controller, and so forth. There can 
be different “classes” of controlled elements, 
depending on what functionality they provide; 
this scenario might be feasible only for some 
such classes. This scenario avoids proxies, thus 
it could be useful, for example, in streaming 
systems. 

In the third scenario, the applications 
communicate only with the local controller, 
which acts as a proxy (Figure 21, right). Un-
like in the first two scenarios, this introduces 

Figure 21. Three example architectures with the 
scope manager and the local controller merged 
into a single local system “daemon”
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a bottleneck, but since the controlled elements 
do not need to support any external protocols 
or to be able to embed or strip any external 
headers, this scenario is always feasible. This 
scenario could also be used to interoperate with 
other eventing standards, such as WS-Eventing 
or WS-Notification. Here, the manager could 
act as the publisher or a proxy from the point 
of view of the application, and provide or 
consume messages in the format defined by all 
those other standards, while using our general 
infrastructure “under the hood.” And similarly, 
for high-performance applications that reside on 
the server, an efficient implementation is pos-
sible using shared memory as a communication 
channel between the manager and the applica-
tions, and permitting applications to deserialize 
the received data directly from the manager’s 
receive buffers, without requiring extra copy 
or marshaling across domains.

Sessions
We now shift focus to consider architectural 
implications of reliability protocols. Protocols 
that provide stronger reliability guarantees 
traditionally express them in terms of what we 
shall call epochs, corresponding to what in group 
communication systems are called membership 
views. In group communication systems, the 
lifetime of a topic (also referred to as a group) 
is divided into a sequence of views. Whenever 
the set of topic subscribers changes after a 
“subscribe” or an “unsubscribe” request, or a 
failure, a new view is created. In group com-
munication systems, the corresponding event 
initiates a new epoch. Subscribers are notified 
of the beginnings or endings of epochs, and of 
the membership of the topic for each epoch. 
One then defines consistency in terms of which 
messages can be delivered to which subscribers 
and at what time relative to epoch boundaries. 
The set of subscribers during a given epoch is 
always fixed. 

Whereas group communication views are 
often defined using fairly elaborate models 
(such as virtual synchrony, a model used in 
some of our past research, or consensus, the 
model used in Lamport’s Paxos protocol suite), 

the architectural standard proposed here needs 
to be flexible enough to cover a range of reli-
ability protocols, include many that have very 
weak notions of views. For example, simple 
protocols, such as SRM or RMTP, do not pro-
vide any guarantees of consistent membership 
views for topics.

In developing our architectural proposal, 
we found that even for protocols such as these 
two, in which properties are not defined in terms 
of epochs, epochs can still be a very useful, if 
not a universal, necessary concept. In a dynamic 
system, configuration changes, especially those 
resulting from crashes, usually require recon-
figuration or cleanup, for example, to rebuild 
distributed structures, release resources, or 
cancel activities that are no longer necessary. 
Most simple protocols lack the notion of an 
epoch because they do not take such factors 
into account and do not support reconfiguration. 
Others do address some of these kinds of issues, 
but without treating them in a systematic man-
ner. By reformulating such mechanisms in terms 
of epochs, we can standardize a whole family 
of behaviors, making it easier to talk about 
different protocols using common language, to 
compare protocols, and to design applications 
that can potentially run over any of a number of 
protocols, with the actual binding made on the 
basis of runtime information, policy, or other 
considerations.

Our design includes two epoch-like con-
cepts: sessions, which are global to the entire 
topic, across the Internet, are shared by dif-
ferent frameworks (reliability, ordering, etc.), 
and which we discuss in this section, and local 
views, which are local to scopes, and which 
are discussed in the section on “Building the 
Hierarchy of Recovery Domains”. 

A session is a generalization of an epoch. 
In our system, sessions are used primarily as 
means of reconfiguring the topic to alter its 
security or reliability properties, or for other 
administrative changes that must be performed 
online, while the system is running.

The lifetime of any given topic is always 
divided into a sequence of sessions. However, 
session changes may be unrelated to member-
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ship changes of the topic. Since introducing a 
new session involves a global reconfiguration, 
as described further, it is infeasible for an In-
ternet-scale system to introduce a new session, 
and disseminate membership views, every time 
a node joins or leaves. Instead, such events are 
handled locally, in the scopes in which they 
occur, and without introducing a new, global, 
Internet-wide epoch. 

Session numbers are assigned globally, for 
consistency. As explained before, for a given 
topic, a single global scope (“root”) always 
exists such that all subscribers to that topic 
reside within its span. Although, as we shall 
explain, dissemination, reliability, and other 
frameworks may use different scope hierarchies, 
the root scope is always the same and all the 
dissemination, reliability, and other aspects 
of it are normally managed by a single scope 
manager. This top-level scope manager main-
tains the topic’s metadata; it is also responsible 
for assigning and updating session numbers. 
Note that local topics, for example, internal 
to an organization, may be rooted locally, for 
example, in the headquarters, and managed by a 
local SM, much in a way local newsgroups are 
managed locally. Accordingly, for such topics, 
sessions are managed by a local server (internal 
to the organization).

To conclude, we explain how sessions im-
pact the behavior of publishers and subscribers. 
After registering, a publisher waits for the SM 
to notify it of the session number to use for a 
particular topic. A publisher is also notified 
of changes to the session number for topics 
it registered with. All published messages are 
tagged with the most recent session number, 
so that whenever a new session is started for a 
topic, within a short period of time no further 
messages will be sent in the previous session. 
Old sessions eventually quiesce as receivers 
deliver messages and the system completes 
flushing, cleanup, and other reliability mecha-
nisms used by the particular protocol. Similarly, 
after subscribing to a topic, a node does not 
process messages tagged as committed to ses-
sion k until it is explicitly notified that it should 
receive messages in that session. Later, after 

session k+1 starts, all subscribers are notified 
that session k is entering a flushing phase (this 
term originates in virtual synchrony protocols, 
but similar mechanisms are common in many 
reliable protocols; a protocol lacking a flush 
mechanism simply ignores such notifications). 
Eventually, subscribers report that they have 
completed flushing and a global decision is made 
to cease any activity and cleanup all resources 
pertaining to session k, thus completing the 
transition.

Incorporating Reliability, Ordering, 
and Security
As mentioned earlier, we rooted our design in 
the principle of separation of concerns, and we 
implement tasks such as reliability, ordering, 
security, or scope management independently 
from dissemination. In the section entitled 
“The Local Architecture of a Dissemination 
Scope,” we explained how the management 
and the dissemination infrastructures interact 
in our system. The remaining frameworks, reli-
ability, security, and ordering, are decomposed 
in a similar manner, and they also include three 
base components: (a) the controlled element 
that lives in the application processes and 
implements only base functionality, related 
to sending or receiving from the applications, 
but none of the peer-to-peer or management 
aspects, (b) the local controller that may live 
outside of the application process, and where 
all the peer-to-peer aspects are implemented, 
and (c) the scope manager that implements the 
interactions with other scope managers, but 
that is not involved in any activities related to 
the data flows, such as forwarding, calculating 
recovery state, managing encryption keys, as-
signing message order, and so forth. 

In general, each of the dissemination, reli-
ability, security, and ordering frameworks has 
a separate hierarchy of scopes and a separate 
network of scope managers. For example, 
reliability scopes isolate and encapsulate the 
local aspects related to reliability, such as loss 
recovery, and so forth, and hide their internal 
details from other scopes, just like dissemina-
tion scopes manage local dissemination and 
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hide the local aspects of message delivery. In 
some cases, the different scopes would overlap. 
This will be normally the case, for example, 
with the four “flavors” of scopes (ordering, 
security, reliability, and dissemination) local 
to a node. In such cases, a single local service 
would act as a scope manager for all the scopes 
of all four flavors. The same would typically be 
the case for the servers that control administra-
tive domains, such as a departmental LAN, a 
wireless network in a cafeteria, a data center, a 
corporate network, and so forth. Scopes of all 
flavors would again overlap, and they would 
be managed by a single server.

Irrespective of whether components of 
the four different frameworks overlap, or are 
physically hosted on the same machine or 
in the same process, the frameworks always 
logically converge in the application (Figure 
22). The complete local architecture includes a 
multiplexer (MUX), which serves as the entry 
point for messages from the application, and 
assigns messages to sessions, and a separate 
protocol stack for each session (rows on Fig-
ure 22). Elements of the per-session stacks are 
subcomponents owned by the four “controlled 
elements” (columns on Figure 22): security 
(SEC), dissemination (DISS), reliability (REL), 
and ordering (ORD), each of which exposes the 
standard Web interface required for interaction 
with its corresponding local controller. Now, 
when the application sends a message, it is 
first assigned to a session by the multiplexer, 
and assigned a local sequence number within 
the session. It is then passed to the appropriate 

per-session protocol stack, simultaneously to 
the subcomponents that handle security and 
ordering. Each of these two subcomponents 
processes the message independently and 
concurrently. The security component may 
encrypt and sign it, if necessary, and then pass 
it further to the dissemination component for 
transmission, and independently, to the reli-
ability component to place it in a local cache 
for the purpose of retransmission, forwarding, 
and so forth, and to update the local structures 
to record the fact that the message was created. 
At the same time, the ordering component, also 
working in parallel with the dissemination and 
reliability components, records the presence 
of the message in its own structures, which 
are used later by the ordering infrastructure to 
generate ordering requests, to be submitted to 
the orderer (for details, see the section entitled 
“Ordering”). 

On the receive path, the process would 
look similar (Figure 23). Messages may arrive 
either through the dissemination framework, 
in the normal case, or via the reliability frame-
work if they were initially lost, and have been 
later recovered. Messages that arrive from the 
dissemination framework are routed via the 
reliability subcomponent so that they are regis-
tered, can be cached, or so that delivery can be 
suppressed. When ordering arrives from the or-
dering framework, messages can be decrypted, 
placed in a buffer (BUF), and delivered in the 
appropriate order to the application. 

The exact manner in which the subtasks 
performed by the four subcomponents are syn-

Figure 22. Internal architecture of the application process
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chronized may vary. On the send path, messages 
may not be transmitted until the entire protocol 
stack for a given session can be assembled, that 
is, if the dissemination framework learned of 
a new session, but the reliability framework 
has not, the transmission might be postponed 
until the information about the new session 
propagates across the reliability framework as 
well, to avoid problems stemming from such 
misalignments. On the receive path, the decryp-
tion of the message might be postponed until 
the ordering is known, to avoid maintaining two 
copies of the message in memory, one for the 
purpose of loss recovery (encrypted) and one 
for delivering to the application (decrypted), 
and so forth.

Hierarchical Approach to 
Reliability
Our approach to reliability resembles our hi-
erarchical approach to dissemination. Just as 
channels are decomposed into subchannels, in 
the reliability framework we decompose the 
task of loss repair and providing other reli-

ability goals. Recovering messages in a given 
scope is modeled as recovering within each of 
its subscopes, concurrently and independently, 
then recovering across all the subscopes (Figure 
24). For example, suppose that scope X has 
members Y1, Y2, …, YK. A simple reliability 
property P(X) requiring that “if some node x in 
the span of scope X receives a message m, then 
for as long as either x or some other node keeps 
a copy of it, every other node y in the span of X 
will also eventually get m,” can be decomposed 
as follows. First, we ensure P(Yi) for every Yi, 
that is, we ensure that in each subscope Yi of 
scope X, if one node has the message, then so 
eventually do the others. The protocols that 
lead to this goal can run in all these subscopes 
independently and concurrently. Then, we run 
a protocol across subscopes Y1, Y2, …, YK, 
to ensure that if any of them has in its span 
a node x that received message m, then each 
of the other Yi also eventually has a node that 
received m. When these tasks, that is, recovery 
in each Yi plus the extra recovery across all Yi, 
are all performed for sufficiently long, P(X) is 
eventually established. 

Coming back to our example, assume that 
students with their laptops sit in university de-
partments, each of which is a scope. Suppose 
that some, but not all of the students received 
a message with a homework problem set from 
their professor sitting in a cafeteria. We would 
like to ensure that the problem set gets reliably 
delivered to all students. In our architecture, 
this would be achieved by a combination of 
protocols: a protocol running in each depart-
ment would ensure that internally, for every 

Figure 23. Processing messages on the send 
path (red and solid lines) and on the receive 
path (blue and dotted lines)
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pair x, y of students, if x got the message then 
so eventually does y, and likewise a protocol 
running across the departments ensures that for 
each pair of departments x, y, if some students 
in x got the message, so eventually do some 
students in y. In the end, this yields the desired 
outcome.

Just like recovery among individual nodes, 
recovery among LANs might also involve 
comparing their “state” (such as aggregated 
ACK/NAK information for the entire LAN) 
or forwarding lost messages between them. 
We give an example of this in the section on 
“Recovery Agents.” As mentioned earlier, in 
our architecture, different recovery schemes 
may be used in different scopes, to reflect dif-
ferences in the network topologies, node or 
communication link capacities, the availability 
of IP multicast and other local infrastructure, the 
way subscribers are distributed (e.g., clustered 
or scattered) and so forth. 

For example, in one department, the 
machines of the students subscribed to topic 
T could form a spanning tree. The property 
we mentioned above could be guaranteed by 
making neighbors in the tree compare their 
state, and upon discovering that one of them 
has a message m that the other is missing, 
forwarding m between the two of them. The 
same approach may also be used across the 
departments, that is, departments would form 
a tree, the departments “neighboring” on that 
tree could compare what their students got, and 
perhaps arrange for messages to be forwarded 
between them. For the latter to be possible, 
the departments need a way to calculate “what 
their students got,” which is an example of an 
aggregated, “department-wide” state. Finally, 
some departments could use a different ap-
proach. For example, a department enamored 
of gossip protocols might require that student 
machines randomly gossip about messages they 
got; a department that has had bad experiences 
with IP multicast and with gossip might favor 
a reliability protocol that runs on a token ring 
instead of a tree, and a department with a site-
license for a protocol such as SRM (which runs 
on IP multicast) might favors its use, where the 

option is available. In each department, a dif-
ferent protocol could be used locally. As long 
as each protocol produces the desired outcome 
(satisfies the reliability property inside of the 
department), and as long as the department has 
a way to calculate aggregate “department-wide” 
state needed for inter-department recovery, these 
very different policies can be simultaneously 
accommodated.

Just as messages are disseminated through 
channels, forming what might be termed dis-
semination domains, reliability is achieved 
via recovery domains. A recovery domain D 
in scope X may be thought of as a “distributed 
recovery protocol running among some nodes 
within X that performs recovery-related tasks 
for a certain set of topics.” 

For example, when some of the students 
sitting in a library subscribe to topic T, the 
library might create a “local recovery domain 
for topic T.” This domain could be “realized,” 
for example, as a spanning tree connecting the 
laptops of the subscribed students and running 
a recovery protocol between them. The library 
could internally create many domains, for ex-
ample, many such trees of student’s laptops. 

The concept of a recovery domain is dual 
to the notion of a channel; here we present the 
analogy:

•	 Just like a channel is created to disseminate 
messages for some topics T1, T2, …. Tk in 
scope X, a recovery domain is created to 
handle loss recovery and other reliability 
tasks, again for a specific set of topics, and 
in a specific scope. Just like there could exist 
multiple channels to a scope, for example, 
for different sets of topics, there could also 
exist multiple recovery domains within 
a single reliability scope, each ensuring 
reliability for different sets of topics.

•	 Just as channels may be composed of sub-
channels, a recovery domain D defined at a 
scope X may be composed of subdomains 
D1, D2, …. Dn defined at subscopes of X 
(we will call them the members of D). 
Each such subdomain Di handles recovery 
for a set of subscribers in the respective 
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subscope, while D handles recovery across 
the subdomains. The hierarchy of recovery 
domains reflects the hierarchy of scopes 
that have created them, just as channels 
are decomposed in ways that reflect the 
hierarchy of scopes that have exposed those 
channels.

•	 Just as channels are composed of sub-
channels via applying filters assigned by 
forwarding policies, a recovery domain 
D performs its recovery tasks using a re-
covery protocol. Such a protocol, assigned 
to D, specifies how to combine recovery 
mechanisms in the subdomains of D into a 
mechanism for all of D. Recovery protocols 
are defined in terms of how the subdomains 
“interact” with each other. We explain how 
this is done in more detail in the section 
entitled “Hierarchical Approach to Reli-
ability.”

•	 Just like a single channel may be used to 
disseminate messages in multiple topics, 
a recovery domain may run a single pro-
tocol to perform recovery simultaneously 
for a set of topics. In both cases, reusing a 
single mechanism (a channel, a token ring, 
a tree, etc.) may significantly improve per-
formance due to the reduction in the total 
number of control messages and other such 
optimizations. Indeed, we implemented and 
evaluated this idea in QSM (Ostrowski & 
Birman, 2006b, 2006c).

Each individual node is a recovery domain 
on its own. On the other hand, in a distributed 
scope such as a LAN, the library in our example, 
many cases are possible. In one extreme, a single 
domain may cover the entire LAN. All internal 
nodes could thus form a token ring, or gossip 
randomly to exchange ACKs for messages in all 
topics simultaneously, and use this to arrange 
for local repairs. In the other extreme, separate 
domains could be created for every individual 
topic; subscribers to the different topics could 
thus form separate structures, such as separate 
rings and trees, and run separate protocol in-
stances in each of them, exchanging state and 
the lost messages. In our system, recovery 

domains actually handle recovery for specific 
sessions, not just specific topics. Each of the 
recovery domains created internally by a scope 
performs recovery for some set of sessions, and 
these sets are such that for each session in which 
this scope has subscribers, there is a recovery 
domain in this scope that performs recovery 
for this session.

A recovery domain D of a data center 
could have as its members recovery domains 
created by the LANs in that data center (by the 
SMs of these LANs). Note that in this case, 
members of D would themselves be distributed 
domains, that is, sets of nodes. A recovery 
protocol running in D would specify how all 
these different sets of nodes should exchange 
state and forward lost messages to one another. 
Note the similarity to a forwarding policy in a 
data center, which would also specify how mes-
sages are forwarded among sets of nodes. As 
explained in the section on “Recovery Agents” 
and the section on “Implementing Recovery 
Domains with Agents,” recovery protocols 
are implemented through delegation, just like 
forwarding. A concept of a recovery protocol is, 
to some extent, dual, symmetric to the notion 
of a forwarding policy.

Building the Hierarchy of 
Recovery Domains
Before we show how the hierarchical recovery 
scheme can be implemented, we need to explain 
how domains created at different scopes are re-
lated to each other. As explained in the preceding 
section, domains are organized by the relation 
of membership: domains in superscopes can be 
thought of as containing domains in subscopes 
as members. Just as was the case for scopes, 
a given domain can have many parents, and 
there may be multiple global domains, but for 
a given topic, all domains involved in recovery 
for that topic always form a tree. Domains 
know their members (subdomains) and own-
ers (superdomains), and through a mechanism 
described below, also their peers (other domains 
that have the same parent). This knowledge of 
membership allows the scopes that create those 
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domains to establish distributed structures in 
an efficient way.

A consistent view of membership is the 
basis for many reliable protocols, and could 
benefit many others that don’t assume it. Know-
ing the members of a topic helps to determine 
which nodes have crashed or disconnected. In 
existing group communication systems, this 
is usually achieved by a Global Membership 
Service (GMS) that monitors failures and 
membership changes for all nodes, decides 
when to “install” new membership views for 
topics, and notifies the affected members of 
these new views, including the lists of topic 
members. Nodes then use those membership 
views to determine, for example, what other 
nodes should be their neighbors in a tree, who 
should act as a leader, and so forth.

In our framework, the manager of the root 
scope for a given topic is responsible for creat-
ing the top-level recovery domain, announcing 
when sessions for that topic begin or end, and 
so forth. However, if the root SM, which in case 
of an Internet-wide scope would “manage” the 
entire Internet, had to process all subscriptions, 
and respond to every failure across the Internet, 
it would lead to a non-scalable design: beyond 
a certain point the system would be constantly 
in the state of reconfiguration, trying to change 
membership or install new sessions, and hence 
unable to make useful progress. It would also 
violate the principle of isolation: the higher-level 
scopes would process information that should 
be local, for example, a corporate network 
would have to know which nodes in data cen-
ters are subscribers, whereas according to our 
architectural principles, the administrator of a 
corporate network, and the policies defined at 
this level, should treat the entire data centers 
as black boxes.

To avoid the problem just mentioned, 
rather than collecting all information about 
membership in a topic T and processing it 
centrally, we distribute this information across 
all scope managers in the hierarchy of scopes 
for topic T (recall this hierarchy defined in the 
section entitled “The Hierarchy of Scopes”). 
Each SM thus has only a partial membership 

view for each topic and session. This scheme 
is outlined below. 

In the reliability framework, if a scope X 
subscribes to a topic T, it first selects or creates 
a local recovery domain D that will handle the 
recovery for topic T locally in X, and then sends 
a request to one of its parent scopes, some Y, 
asking to subscribe this specific domain, to topic 
T. At this point, it is not significant which of its 
parent scopes X directs the request to. X may 
be manually setup by an administrator with the 
list of parent scopes, and to send requests in all 
topics that have names matching a certain pattern 
to a given parent, or it could use an automated, 
or a semi-automated scheme to discover the 
parent scopes that it should subscribe with. 
Exactly how such a discovery scheme can be 
most efficiently constructed is beyond the scope 
of this article, but we do hope to explore the 
issue in a future work.

The superscope Y processes the X’s sub-
scription request jointly with requests from other 
of its subscopes, for example, batching them 
together for efficiency. It then either joins X and 
other subscopes to an existing recovery domain 
or creates a new one, some D’. When joining an 
existing recovery domain, Y follows a special 
protocol, some details of which are given in 
the section entitled “Reconfiguration”. In any 
case, scope Y informs all scopes of the new 
membership of domain D’. So for each recovery 
domain D’’ that is a member of D’, the subscope 
of Y that owns this domain will be notified by 
Y that domain D’ changed membership, and 
will be given the list of all subdomains of D’ 
together with the names of the scopes that own 
those subdomains. Finally, if domain D’ has just 
been created, and scope Y is not the root scope 
for the topic, Y itself sends a request to one of 
its parent scopes, asking to subscribe domain 
D’ to the topic. Topic subscriptions thus travel 
all the way to the root scope for the topic, in a 
cascading manner, creating a tree of recovery 
domains in a bottom-up fashion. 

In our example, when a student A sitting in 
a library L enters a virtual room T, A’s laptop 
creates a local recovery domain DA, and sends a 
request to the library server. Suppose that there 
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are other students in the library that are already 
subscribed to T, so the library server already has 
a recovery domain DL that performs recovery 
in topic T. In this case all that is left to do for 
the library server is to update the membership 
of DL, and to inform student A’s laptop, as well 
as the laptops of the other students subscribed 
to T, of the new membership of DL, so that the 
laptops can update the distributed recovery 
structure, and build a new distributed structure. 
For example, if laptops used a spanning tree, or 
a token ring, to compare the sets of messages 
they have received and exchange messages 
between neighbors, the spanning tree or the 
ring may be updated to include the new laptop. 
On the other hand, suppose that student A is 
the first in the library to subscribe to T. In this 
case, the library server creates a new recovery 
domain DL, with DA as its only member, and 
sends its own request, in a cascading manner, 
to a campus server C, asking to subscribe DL 
to topic T, and so on. 

The above procedure effectively constructs 
a hierarchy of subdomains, with the property 
that for each topic T, the recovery domains 

subscribed to T form a tree. At the same time, 
a membership hierarchy is built in a distributed 
manner. Specifically, for each domain µ in 
some scope S, S will maintain a list of the form 
{ X1:β1, X2:β2, …, XK:βK }, in which β1, β2, 
…, βK are the members, that is, subdomains of 
domain µ, and X1, X2, …, XK are the names of 
the scopes that own those subdomains (i.e., that 
created them). In the process of establishing 
this structure, each of the scopes Xi receives 
the list, along with any future updates to it. 
This information is not “pushed” all the way 
down to the leaf nodes. Instead, every scope 
maintains the membership of the domains it 
created (so, for example, scope S maintains 
the list mentioned above), plus a copy of the 
membership of all superdomains of the domains 
it created (so, for example, each Xi has a copy 
of the list above), but not the membership of 
any domains created below it (so, for example, 
S would not track the membership of any of the 
domains β1, β2, …, βK), more than one level 
above it (so, for example, while scope S would 
know what are the peers of its own domain µ, 
scopes X1, X2, …, XK would not know those 

Figure 25. Node A subscribes to topic T with the library L. Library L subscribes with campus 
C. Membership information and view numbers are passed one level down (never up) the hier-
archy.
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peers, because this information is, logically, 
two levels “above”), or any internal details 
of its peers (so, for example, while all of X1, 
X2, …, XK would know the membership of µ, 
that is, the entire list { X1:β1, X2:β2, …, XK:
βK }, they would not know the membership 
of any of the domains β1, β2, …, βK besides 
their own; they only know the names of their 
peer domains). 

Figure 25 shows an example of the structure 
the system would construct in a scenario similar 
to the one above. Laptop A creates a new domain 
α, which may have a version number, like any 
other domain, say α1. Then, A directs a request 
subscribe A:α to T to the library L. Note that 
the version number of α was not included in the 
request to L. This is a detail internal to A that L 
does not need to know about. Now, the library 
creates a new domain μ, and gives it a version 
number, say μ1, and directs subscribe L:μ to T 
to the campus C (omitting the version number). 
Concurrently, L notifies A that A:α is now a 
member of μ1. This means that a domain μ has 
been created at L, and version (view) number 1 
of μ has just a single member A:α. Similarly, 
C creates a new domain ε with initial version 
ε1 that includes a single member L:μ and noti-
fies L. Later, another laptop B in the library L 
also joins topic T. This time, no request is sent 
to campus C. The library handles the request 
internally. A new version (view) μ2 of domain μ 
is created with two members A:α and B:β, and 
both A and B are notified of this new view. A 
and B undergo a special protocol to “transition” 
from recovery domain μ1 to recovery domain μ2 
in a reliable manner, and the protocol running 
for μ1 eventually quiesces. The protocols that 
run at higher levels are unaffected. Domain 
ε1 still has only a single member L:μ, and the 
view change that occurred internally in domain 
μ is transparent to C, and to the protocols that 
run at this level, and handled internally in the 
library L, between nodes A and B.

By keeping the information about the hi-
erarchy of domains distributed, and by limiting 
the way in which this information is propagated 
to only one level below, we remain faithful to 
the principles of isolation and local autonomy 

laid out earlier. At the same time, this enables 
significant scalability and performance ben-
efits. Because parent domains are oblivious 
to the membership of their subdomains, and 
reconfiguration can often be handled internally, 
as in the example above, churn and failures in 
lower layers of the hierarchy do not translate to 
churn and failures in higher layers. A failure of 
a node or a mobile user with a laptop joining or 
leaving the system does not need to cause the 
Internet-wide structure of recovery domains, 
potentially spanning across tens of thousands 
of nodes, to fluctuate and reconfigure. 

As stated earlier, a single recovery domain 
may perform recovery for multiple topics (ses-
sions), simultaneously. Additionally, recall that 
the domain hierarchy, with multiple topics, may 
not be a tree. We now present an example of how 
and why this could be the case. Suppose that 
nodes in a certain scope L are clustered based 
on their interest. Nodes A and B would be in the 
same cluster if A and B subscribed to the same 
topics. Clusters are thus defined by sets of topic 
names, for example, cluster RXY would include 
nodes that have subscribed to topics X and Y, 
and that have not subscribed to any other topics 
besides these two. The set of nodes subscribed 
to each topic would thus include nodes in a 
certain set of clusters. We might even think of 
as topics “including” clusters, and the clusters 
including the individual nodes (Figure 26). Ac-
cordingly, a scope manager in L might create a 
separate recovery domain for each cluster, and 
then a separate recovery domain for each topic. 
If node A subscribes to topic X, and nodes B 
and C subscribe to topic Y, then L could cre-
ate a recovery domain RX for cluster RX and a 
recovery domain RXY for cluster RXY. Domain 
RX would have a single member A:α, while 
RXY would have two members, B:β and C:φ. 
Scope L would also create a local domain L:X 
for topic X and L:Y for topic Y. Domain L:X 
would have members L:RX and L:RXY while 
domain L:Y would have a single member L:
RXY. Domains L:X and L:Y defined at scope L 
could themselves be members of some higher-
level domains, defined at a higher-level scope 
C, and so on. Now, the protocol running in 
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domain RXY at scope L, for example, would 
perform recovery simultaneously for topics X 
and Y. As said earlier, the protocol running in 
RXY would also be used to calculate aggregate 
information about domain RXY, to be used in 
the higher-level protocols. In our example, the 
information collected by the protocol running in 
L:RXY would be used by two such protocols, a 
protocol running in domain L:X and a protocol 
running in L:Y.

While the structure just described may 
seem complex, the ability to perform recovery 
in multiple topics simultaneously is important 
in systems like our virtual worlds, where the 
number of topics (virtual rooms) may be very 
large. QSM, mentioned previously, uses the 
architecture just presented, and is able to scale 
to thousands of publish-subscribe topics. 

To complete the discussion of recovery 
hierarchy, we now turn to sessions. As explained 
earlier, in our architecture recovery is always 
performed in the context of individual ses-
sions, not topics, because whenever a session 
changes, so can the reliability properties of the 
topic. The creation of the domain hierarchy, 
outlined above, is mostly independent of the 
creation of sessions. The only case when these 
two processes are synchronized arises when the 
last member, across the entire Internet, leaves 
the topic, or when the first member rejoins the 
topic after a period when no members existed, 
for in such cases, it is impossible to handle the 
event via a local reconfiguration between mem-
bers (such as transferring the state from some 

existing member to the newly joining member, 
or “flushing” any changes from the departing 
member to some of the existing members). 
Such an event will force an existing session to 
be flushed or a new session to be created.

In any case, sessions for a topic T are 
created by the scope that serves as the root for 
T. The root maintains topic metadata and the 
information about sessions in persistent stor-
age. It assigns new session number whenever 
a new session is created, and then installs the 
new session and flushes the existing session in 
the top-level recovery domain that it created to 
perform recovery in topic T. More on how the 
installing and flushing of a session are realized 
will be explained in the section “Implement-
ing Recovery Domains with Agents.” Now, 
concurrently with installing of a new session 
and flushing of the old session in the top-level 
recovery domain, the scope manager passes the 
session change event further, to the subdomains 
that are members of this global recovery domain, 
by communicating with the scope managers 
that created those subdomains. This notifica-
tion travels down the hierarchy of recovery 
domains in a cascading manner, until the ses-
sion change events are disseminated across the 
entire structure.

Recovery Agents
The reader will have noticed by now that 
the structure of recovery domains we’ve just 
described “exists” only virtually, inside the 
scope managers. These recovery domains are 

Figure 26. A hierarchy of recovery domains in a system that clusters nodes based on interest
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“implemented” by physical protocols running 
directly between physical nodes, the publishers 
and subscribers, in a manner similar to how 
we implemented channels between scopes, by 
delegating the tasks that the recovery domains 
are responsible for to physical nodes. Just as 
channels between scopes are “implemented” 
by physical connections between nodes that 
can be constrained with filter chains and that 
are “installed” in the physical nodes by their 
superscopes, in the reliability framework re-
covery domains are “implemented” by agents. 
Similarly to filters, these agents are also small, 
“downloadable” components, which are in-
stalled on physical nodes by their superscopes. 
Before going into details of how precisely this 
is done, however, we first explain how exist-
ing recovery protocols can be modeled in a 
hierarchical manner that is compatible with 
our architecture.

Modeling Recovery Protocols
The reliability framework is based on an abstract 
model of a scalable distributed protocol dealing 
with loss recovery and other reliability proper-
ties. In this model, a protocol such as SRM, 
RMTP, virtual synchrony, or atomic commit, 
is defined in terms of a group of cooperating 
peers that exchange control messages and can 
forward lost packets to each other, and that may 
perhaps interact with a distinguished node, such 
as a sender or some node higher in a hierarchy, 
which we will refer to as a controller (Figure 
27). The controller does not have to be a separate 
node; this function could be served by one of the 
peers. The distinction between the peers and the 
controller may be purely functional. The point 

is that the group of peers, as a whole, may be 
asked to perform a certain action, or calculate 
a value, for some higher-level entity, such as a 
sender, a higher-level protocol, or a layer in a 
hierarchical structure. Examples of such actions 
include retransmitting or requesting a retrans-
mission for all peers, reporting which messages 
were successfully delivered to all peers, which 
messages have been missed by all peers, and so 
forth. Irrespectively of how exactly the interac-
tion with the controller is realized, it is present 
in this form or another in almost every protocol 
run by a set of receivers. We shall refer to the 
possible interactions between the peers and the 
controller as the upper interface. Notice that 
some reliability protocols aren’t traditionally 
thought of as hierarchical; we would view 
them as supporting only a one-level hierarchy. 
The benefit of doing so is that those protocols 
can then be treated side by side with protocols 
such as SRM and RMTP, in which hierarchy 
plays a central role.

Each peer inspects and controls its local 
state. Such state could include, for example, a 
list of messages received, and perhaps copies 
of those that are cached (for loss recovery), 
the list and the order of messages delivered, 
and so forth. Operations that a peer may issue 
to change the local state could include retriev-
ing or purging messages from cache, marking 
messages as deliverable, delivering some of the 
previously missed message to the application, 
and so forth. We refer to such operations, used 
to view or control the local state of a peer, as a 
bottom interface.

In protocols offering strong guarantees, 
peers are typically given the membership of 

Figure 27. A group of peers in a reliable protocol

peer peer

app app

peer

app

peer

app

group 
of peers

local state

controller communication 
with controller

communication 
between peers



 International Journal of Web Services Research, 4(4), 18-58, October-December 2007   47

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of  IGI Global 
is prohibited.

their group, received as a part of the initializa-
tion process, and subsequently updated via 
membership change events. Peers send control 
messages to each other to share state or to 
request actions, such as forwarding messages. 
Sometimes, as in SRM, a multicast channel to 
the entire peer group exists.

To summarize, in most reliable protocols, 
a peer could be modeled as a component that 
runs in a simple environment that provides 
the following interface: a membership view 
of its peer group, channels to all other peers, 
and sometimes to the entire group, a bottom 
interface to inspect or control local state, and 
an upper interface, to interact with the sender 
or the higher levels in the hierarchy concerning 
the aggregate state of the peer group (Figure 28). 
In some protocols, certain parts of this interface 
might be unavailable, for example, in SRM 
peers might not know other peers. The bottom 
and upper interfaces also would vary.

This model is flexible enough to capture 
the key ideas and features of a wide class of 
protocols, including virtual synchrony. How-
ever, because in our framework protocols must 
be reusable in different scopes, they may need 
to be expressed in a slightly different way, as 
explained below. 

In RMTP, the sender and the receivers 
for a topic form a tree. Within this tree, every 
subset of nodes consisting of a parent and its 
child nodes represents a separate local recovery 
group. The child nodes in every such group send 
their local ACK/NAK information to the parent 
node, which arranges for a local recovery within 

the recovery group. The parent itself is either 
a child node in another recovery group, or it is 
a sender, at the root of the tree. Packet losses 
in this scheme are recovered on a hop-by-hop 
basis, either top-down or bottom-up, one level 
at a time. This scheme distributes the burden of 
processing the individual ACKs/NAKs, and of 
retransmissions, which is normally the respon-
sibility of the sender. This improves scalability 
and prevents ACK implosion.

There are two ways to express RMTP in our 
model. One approach is to view each recovery 
group consisting of a parent node and its child 
nodes as a separate group of peers (Figure 29). 
Since internal nodes in the RMTP tree simulta-
neously play two roles, a “parent” node in one 
recovery group and a “child” node in another, 
we could think of each node as running two 
“agents,” each representing a different “half” 
of the node, and serving as a peer in a separate 
peer group. In this perspective it would be 
not the nodes, but their “halves” that would 
represent peers. Every group of peers, in this 
perspective, would include the “bottom agent” 
of the parent node, and the “upper agents” of its 
child nodes. When a node sends messages to its 
child nodes as a result of receiving a message 
from its parent, of vice versa, we may think 
of those two “agents” as interacting with each 
other through a certain interface that one of 
them views as upper, and the other as bottom. 
These two types of agents play different roles 
in the protocol, as explained below.

The bottom agent of each node interacts 
via its bottom interface with the local state of 

Figure 28. A peer modeled as a component living in abstract environment (events, interfaces, 
and so forth)
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the node. It also serves as a distinguished peer 
in the peer group, composed of itself and the 
upper agents of the child nodes. A protocol 
running in this peer group is used to exchange 
ACKs between child nodes and the parent node 
and arrange for message forwarding between 
peers, but also to calculate collective ACKs for 
the peer group, that is, which messages were not 
recoverable in the group. This is communicated 
by the bottom agent, via its upper interface, 
to the upper agent. The upper agent of every 
node interacts via its bottom interface with the 
bottom agent. What the upper agent considers 
as its “local state” is not the local state of the 
node. Instead, it is the state of the entire recovery 
group, including the parent and child nodes, that 
is collected for the upper agent by the bottom 
agent though the protocol that the bottom agent 
runs with the upper agents in child nodes. Such 
interactions, between a component that is logi-
cally a part of a “higher layer” (“upper agent”) 
with components that reside in a “lower layer” 
(“bottom agent”), both components co-located 
on the same physical node, and connected via 
their upper and bottom interfaces, are the key 
element in our architecture. 

At the top of this hierarchy is the sender, the 
root of the tree. The bottom agent of the sender 
node collects for the upper agent the state of 
the top-level recovery group, which subsumes 
the state of the entire tree, and passes it to the 
upper agent through its upper interface. The 
upper agent of the sender can thus be thought 
of as “controlling” through its bottom interface 
the entire receiver tree.

The second way to model RMTP, which 
builds on the concepts we just introduced, 
captures the very essence of our approach to 
combining protocols. It is similar to the first 
model, but instead of the “upper” and “bot-
tom” agents, each node can now host multiple 
agents, again connected to each other through 
their “bottom” and “upper” interfaces. Each 
of these agents works at a different level. We 
may think of every node as hosting a “stack” 
of interconnected agents (Figure 30). In this 
structure, the sender would not be the root of the 
hierarchy any more. Rather, it would be treated 
in the very same way as any of the receivers. The 
same structure could feature multiple senders, 
and a single recovery protocol would run for 
all of them simultaneously.

Figure 29. RMTP expressed in our model. A node hosts “agents” playing different roles

Figure 30. Another way to express RMTP. Each node hosts multiple “agents” that act as peers 
at different levels of the RMTP hierarchy
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Focusing for a moment on a concrete ex-
ample, assume that nodes reside in three LANs, 
which are part of a single data center (Figure 
30). Each of these administrative domains is a 
scope. Each node hosts, in its “agent stack,” a 
“node agent” (bottom level, green, Figure 30). 
The “local state” of the node agent, accessed by 
the node agent through its bottom interface, is 
the state of the node, such as the messages that 
the node received or missed, and so forth. Now, 
in each LAN, the node agents of all nodes in 
that LAN form a peer group and communicate 
with each other to compare their local state, or 
to arrange for forwarding messages between 
them. One of these node agents in each LAN 
serves as a leader (or “parent”), and the others 
serve as subordinates (or “children”). The leader 
collects the aggregate ACK/NAK information 
about the LAN from the entire peer group. 
The node that hosts the leader also runs anther, 
higher-level component that we shall call a 
“LAN agent” (middle level, orange, Figure 30). 
The LAN agent accesses, through its bottom 
interface, the aggregated state of the LAN that 
the “leader” node agent, co-located with it on 
the same “leader” node, calculated. The LAN 
agent can therefore be thought of as controlling, 
through its bottom interface, the entire LAN, 
just like a node agent was controlling the lo-

cal node. Now, all the LAN agents in the data 
center again form a peer group, compare their 
state (which are aggregate states of their LANs), 
arrange for forwarding (between the LANs), 
and calculate aggregate ACK/NAK informa-
tion about the data center. Finally, one of the 
nodes that host the LAN agents hosts an even 
higher-level component, a “data center agent” 
(top level, blue, Figure 30). The aggregate state 
of the data center, collected by the peer group 
of LAN agents, is communicated through the 
upper interface of the “leader” LAN agent to the 
data center agent; the latter can now be thought 
as controlling, through its bottom interface, the 
entire data center. In a larger system, the hier-
archy could be deeper, and the scheme could 
continue recursively.

Note the symmetry between the different 
categories of agents. In essence, for every entity, 
be it a single node, a LAN, or a data center, 
there exists exactly one agent that collects, 
via lower-level agents, the state of the entity 
it represents, and that acts on behalf of this 
entity in a protocol that runs in its peer group. 
The agent that represents a distributed scope is 
always hosted together with one of the agents 
that represent subscopes. By now, the reader 
should appreciate that this structure corresponds 
to the hierarchy of recovery domains we intro-

Figure 31. A node as a “container” for agents
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duced in the section “Building the Hierarchy 
of Recovery Domains.” In our design, every 
recovery domain is represented, as a part of some 
higher-level domain, by an agent that collects 
the state of the domain, which it represents, 
and acts on behalf of it in a protocol that runs 
among the agents representing other recovery 
domains that have the same parent (Figure 31). 
In order to be able to do their job, these agents 
are updated whenever a relevant event occurs. 
For example, they receive a membership change 
notification, with the list of their peer agents, 
when a new recovery domain is created. To 
this end, each agent maintains a bi-directional 
channel from the scope that created the recovery 
domain represented by this agent, down to the 
node that hosts the agent, along what we call 
an agent “delegation chain.” 

Note also that as long as the interfaces used 
by agents to communicate with one-another are 
standardized, each group of agents could run 
an entirely different protocol, because the only 
way the different peer groups are connected 
with each other is through the bottom and up-
per interfaces of their agents. For example, in 
smaller peer groups with small interconnect 
latency agents could use a token ring protocol, 
whereas in very large groups over a wide area 
network, with frequent joins and leaves and 
frequent configuration changes agents might 
use randomized gossip protocol. This flexibility 
could be extremely useful in settings where local 
administrators control policies governing, for 

example, use of IP multicast, and hence where 
different groups may need to adhere to differ-
ent rules. It also allows for local optimizations. 
Protocols used in different parts of the network 
could be adjusted so as to match the local net-
work topology, node capacities, throughput or 
latency, the present of firewalls, security poli-
cies, and so forth. Indeed, we believe that the 
best approach to building high-performance 
systems on the Internet scale is not through 
a uniform approach that forces the use of the 
same protocol in every part of the network, 
but by the sorts of modularity our architecture 
enables, because it can leverage the creativity 
and specific domain expertise of a very large 
class of users, who can tune their local protocols 
to match their very specific needs. 

The flexibility enabled by our architecture 
also brings a new perspective on a node in a 
publish-subscribe system. A node subscrib-
ing to the same topics in different portions 
of the Internet, joining an already established 
infrastructure (existing recovery domains and 
agents implementing them running among 
existing subscribers) may be forced to follow 
a different protocol, potentially not known in 
advance. Indeed, if we exploit the full power 
of modern runtime platforms, a node might be 
asked to use a protocol that must first be down-
loaded and installed, in plug-and-play fashion. 
Because in our architecture, elements “installed” 
in nodes by the forwarding framework (filters 
and channels) and by the recovery framework 
(agents) are very simple, and communicate 
with the node via a small, standardized API 
(recall the abstract model of a peer in Figure 
28, which can also be interpreted as the abstract 
model of an agent in the recovery framework), 
these elements can be viewed as downloadable 
software components. 

Thus, a filter or a recovery agent can be a 
piece of code, written in any popular language, 
such as Java or one of the family of .NET lan-
guages, that exposes (to the node hosting it, or to 
agents above and below in the agent stack) and 
consumes a standardized interface, for example, 
described in WSDL. Such components could be 
stored in online repositories, and downloaded 

Figure 32. A hierarchy of recovery domains 
and agents implementing them
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as needed, much as a Windows XP user who 
tries to open a file in the new Vista XPS format 
will be prompted to download and install an 
XPS driver, or a visitor to a Web page that uses 
some special Active-X control will be given an 
opportunity to download and install that control. 
In this perspective, the subscribers and publish-
ers that join a publish-subscribe infrastructure, 
rather than being applications compiled and 
linked with a specific library that implements a 
specific protocol, and thus very tightly coupled 
with the specific publish-subscribe engine, can 
now be thought of as “empty containers” that 
provide a standard set of hookups to host dif-
ferent sorts of agents. Nodes using a publish-
subscribe system are thus runtime platforms, 
programmable “devices,” elements of a large, 
flexible, programmable, dynamically reconfigu-
rable runtime environment, offering the sort of 
flexibility and expressive power unseen in prior 
architectures.

We believe that in light of the huge success 
of extensible, component-oriented program-
ming environments, standards for distributed 
eventing must incorporate the analogous forms 
of flexibility. To do otherwise is to resist the 
commercial, off-the-shelf (COTS) trends, and 
history teaches that COTS solutions almost 
always dominate in the end. It is curious to 
realize that although Web services standards 
were formulated by some of the same companies 
that are leaders in this componentized style of 
programming, they arrived at standards propos-
als that turn out to be both rigid and limited in 
this respect.

One part of our architecture, for which API 
standardization options may not be obvious, 
includes the upper and bottom interfaces. As the 
reader may have realized, the exact form of these 
interfaces would depend on the protocol. For 
example, while a simple protocol implementing 
the “last copy recall” semantics of the sort we 
used in some of our examples require agents 
to be able to exchange a simple ACK/NAK 
information, more complex protocols may need 
to determine if messages have been persisted to 
stable storage, to be able to temporarily suppress 
the delivery of messages to the application, 

control purging messages from cache, decide 
on whether to commit a message (or an opera-
tion represented by it) or abort it, and so forth. 
The “state” of recovery domain and the set of 
actions that can be “requested” from a recovery 
domain may vary significantly. 

As it turns out, however, defining the up-
per and bottom interfaces in a standard way is 
possible for a wide range of protocols. In our 
technical report (Ostrowski et al., 2006), we 
have outlined elements of a novel architecture 
being developed by the three authors of this 
article, called the “QuickSilver Properties 
Framework,” and based on the very architecture 
presented here, that achieves precisely this form 
of standardization. Moreover, the properties 
framework allows a large class of protocols, 
including such protocols as virtually synchro-
nous multicast and multicast with transaction 
semantics, and so forth, to be implemented in 
a declarative manner, using a special, domain-
specific rule-based language, without requiring 
that the developer worry about performance and 
scalability aspects. 

The key idea behind this approach is based 
on the observation that the state of most distrib-
uted protocols can be accurately described by 
a set of “properties.” Properties are essentially 
variables that can be associated with various 
distributed entities (the reader might think of 
these entities as recovery domains, which they 
would indeed be, were the system described 
there to be implemented within the architecture 
described here). An example of a property is 
Received(x), parameterized by an entity name 
x. The value of this variable would be the set 
of identifiers of all messages that have been 
received by at least one node that is still in x. 
Other examples, values of all of which would 
again be sets of message identifiers, include 
Cached(x) – the messages cached at some nodes 
in x, Cleaned(x) – the messages received, but 
no longer cached in x, Stable(x) – messages 
received by all nodes in x, and so on. 

In Ostrowski et al. (2006), we argue that 
the logic of most protocols could be modeled 
as a set of rules that determine how the values 
of such properties are created and propagated. 
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For example, some properties are aggregated. 
For a distributed entity x, Received(x) can be 
defined as the set sum of Received(y) for all 
y that are members of x. If this rule is applied 
recursively to a distributed entity, it will yield 
the set of messages that are received by any 
node in the span of that entity, as requested. 
Similarly, Stable(x) can be defined as the 
set intersection of Stable(y) for all y that are 
members of x. A rule that implements message 
cleanup could be modeled as CanClean(root) 
← Stable(root), where root is the top-level 
entity (the top-level recovery domain), and 
CanClean(x) is a property, the value of which 
is disseminated rather than aggregated, that is, 
passed in a top-down fashion, from the root 
down to the individual nodes. As it turns out, 
such rules can be implemented on top of the 
architecture outlined in this article, using a 
special version of an agent that supports a few 
simple mechanisms, such as different flavors of 
property aggregation or dissemination, and the 
ability to produce a property based on a value 
of a certain expression, either periodically, or 
in response to events, such as receiving a mes-
sage, and so forth. 

We believe that even without using the 
properties framework, a set of properties, ex-
pressed in a standard manner, including their 
“types,” is a good candidate for the upper or 
bottom interface. Agents could still be imple-
mented in an imperative manner, explicitly 
use the messaging API and the membership 
notifications from the scopes controlling them, 
but using the “properties” API to interact with 
other agents in the agent stack. The details of 
how exactly such interface could be defined 
is, however, beyond the scope of this article. 
Moreover, other similarly expressive schemes 
may exist. Indeed, it is conceivable that agents 
co-located on the stack could be able to “nego-
tiate” the manner in which they interact, and 
download appropriate “converter” components 
if necessary to ensure that their upper and bottom 
interfaces match against each other.

To conclude this section, we now turn to 
recovery in many topics at once. Throughout 
this section, the discussion focused on a single 

topic, or a single session, but as mentioned 
before, the recovery domains created by the 
reliability framework, and hence the sets of 
agents that are instantiated to “implement” those 
recovery domains, may be requested to perform 
recovery in multiple sessions at once, for rea-
sons of scalability. As mentioned earlier, after 
recovery domains are established, and agents 
instantiated, the root scope may issue requests 
to install or flush a session, passed along the 
hierarchy of domains, in a top-down fashion. 
These notifications are a part of the standard 
agent API. Agents respond to the notifications by 
introducing or eliminating information related 
to a particular session in the state they maintain 
or control messages they exchange. 

For example, agents in a peer group could 
use a token ring protocol and tokens circulating 
around that ring could carry a separate recovery 
record for each session. After a new session 
would get installed, the token would start to 
include the recovery record for that session. 
When a flushing request would arrive for a 
session, the session would eventually quiesce, 
and the recovery record related to that session 
would be eliminated from the tokens, and from 
the state kept by the agents. The exact manner 
in which introducing a new session and flushing 
are expressed would depend on how the agent 
implements it. The available agent implementa-
tion might not support parallel recovery in many 
sessions at once; in this case, the scope manager 
could simply create a separate recovery domain 
for each topic, or even for each session, so that 
separate agents are used for each.

If an agent performs recovery for many 
sessions simultaneously, its “upper” and “bot-
tom” interfaces would be essentially arrays 
of interfaces, one for each session. Likewise, 
agent stacks might no longer be vertical. The 
stacks for a scenario of Figure 26 are shown 
on Figure 33. Here, agents on node B form a 
tree. Two parts of the upper interface of one 
agent that correspond to two different sessions 
that the agent is performing recovery for, are 
connected with two bottom interfaces of two 
independent higher-level agents. At this point, 
the structure depicted in this example may seem 
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confusing. In the section entitled “Implement-
ing Recovery Domains with Agents,” we come 
back to this scenario, and we explain how such 
structures are built.

Implementing Recovery Domains 
with Agents
In the section entitled “Building the Hierarchy 
of Recovery Domains,” we’ve explained how 
a hierarchy of recovery domains is built, such 
that for each session, there is a tree of domains 
performing recovery for that session. In the sec-
tion on “Recovery Agents,” we indicated that 
the recovery domains are “implemented” with 
agents, and in the section entitled “Modeling 
Recovery Protocols,” we explained how recov-
ery protocols can be expressed in a hierarchical 
manner, by a hierarchy of agents that represent 
recovery domains. We now explain how agents 
are created.

A distributed recovery domain D in our 
framework (i.e., a domain different than a 
node, not a leaf in the domain hierarchy) will 
correspond to a peer group. When D is created 
at some scope X, the latter selects a protocol 

to run in D, and then every subdomain Yk:Dk 
of D is requested to create an agent that acts 
as a “peer Yk:Dk within peer group X:D”. We 
will refer to an agent defined in this manner as 
“Yk:Dk in X:D.” Note how the membership 
algorithm provides membership view at one 
level “above,” that is, the scope that owns a 
particular domain would learn about domains in 
all the sibling scopes. This is precisely what is 
required for each peer Yk:Dk in a peer group X:
D to learn the membership of its group. Hence, 
the scopes Yk that own the different domains 
Dk will learn of the existence of domain X:
D, each of them will realize that they need to 
create an agent “Yk:Dk in X:D,” and each of 
them will receive from X all the membership 
change events it needs to keep its agent with 
an up to date list of its peers.

For example, on Figure 26, domains B:
β and C:φ are shown as members of L:RXY, 
so according to our rules, agents “B:β in L:
RXY” and “C:φ in L:RXY” should be created 
to implement L:RXY. Indeed, the reader will 
find those agents on Figure 33, in the protocol 
stacks on nodes B and C. 

Figure 33. Agents stacks that are not simply vertical that may be created on nodes in the scenario 
from Figure 26. Agents are shown as gray boxes, with the parts of their upper or bottom interfaces 
corresponding to particular sessions as small yellow boxes. On node B, the bottom-level agent 
connects the two parts of its upper interface to two different higher-level agents, one to each of 
them. The peer groups are circled with thick dotted red lines

X1 Y1

B: in L:RXY

X1 Y1

App on B

X1 Y1

L:RXY in L:X
X1

X1

L:RXY in L:Y
Y1

Y1

L:Y in C:Y
Y1

Y1

X1 Y1

C: in L:RXY

X1 Y1

App on C

X1 Y1

X1

A: in L:RX

X1

App on A

X1

L:RX in L:X
X1

X1

L:X in C:X
X1

X1

Node A Node CNode B



54    International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of  IGI Global
is prohibited.

When the manager of a scope Y discov-
ers that an agent should be created for one of 
its recovery domains Dk that is a member of 
some X:D, two things may happen. If X man-
ages a single node, the agent is created locally. 
Otherwise, Y delegates the task to one of its 
subscopes. As a result, the agents that serve 
as peers at the various levels of the hierarchy 
are eventually delegated to individual nodes, 
their definitions downloaded from an online 
repository if needed, placed on the agent stack 
and connected to other agents or to the applica-
tions. We thus arrive at a structure just like in 
Figure 30, Figure 31, Figure 32, and Figure 33, 
where every node has a stack of agents, linked 
to one another, with each of them operating at 
a different level. 

While agents are delegated, the records 
of it are kept by the scopes that recursively 
delegated the agent, thus forming a delegation 
chain. This chain serves as a means of com-
munication between the agent and the scope 
that originally requested it to be created. The 
scope and the agent can thus send messages 
to one another. This is the way membership 
changes or requests to install or flush sessions 
can be delivered to agents. 

When the node hosting a delegated agent 
crashes, the node to which that agent is del-
egated changes. That is, some other node is 
assigned the role of running this agent, and will 
instantiate a new version of it to take over the 
failed agents responsibilities. Here, we again 
rely on the delegation chain. When the manager 
of the superscope of the crashed node (e.g., a 
LAN scope manager) detects the crash, it can 
determine that an agent was delegated to the 
crashed node, and it can request the agent to 
be redelegated elsewhere. Since our frame-
work would transparently recreate channels 
between agents, it would look to other peers 
agents as if the agent lost its cached state (not 
permanently, for it can still query its bottom 
interface and talk to its peers). On the one part, 
this frees the agent developer from worrying 
about fault-tolerance. On the other part, this 
requires that agent protocols be defined in a 
way that allows peers to crash and “resume” 

with some of their state “erased.” Based on our 
experience, for a wide class of protocols this is 
not hard to achieve.

Reconfiguration
Many large systems struggle with costs triggered 
when nodes join and leave. As a configura-
tion scales up, the frequency of join and leave 
events increases, resulting in a phenomenon 
researchers refer to as “churn.” A goal in our 
architecture was to support protocols that handle 
such events completely close to where they 
occur, but without precluding global reactions 
to a failure or join if the semantics of the pro-
tocol demand it. Accordingly, the architecture 
is designed so that management decisions and 
the responsibility for handling events can be 
isolated in the scope where they occurred. 
For example, in the section on “Building the 
Hierarchy of Recovery Domains,” we saw a 
case in which membership changes resulting 
from failures or nodes joining or leaving were 
isolated in this manner. The broad principle is to 
enable solutions where the global infrastructure 
is able to ignore these kinds of events, leaving 
the local infrastructure to handle them, without 
precluding protocols in which certain events do 
trigger a global reconfiguration. 

An example will illustrate some of the 
tradeoffs that arise. Consider a group of agents 
implementing some recovery domain D that has 
determined that a certain message m is locally 
cached, and reported it as such to a higher-
level protocol. But now suppose that a node 
crashed and that it happens to have been the 
(only) one on which m was cached. To some 
extent, we can hide the consequences of the 
crash: D can reconfigure its peer group to drop 
the dead node and reconstruct associated data 
structures. Yet m is no longer cached in D and 
this may have consequences outside of D: so 
long as D cached m, higher level scopes could 
assume that m would eventually be delivered 
reliably in D; clearly, this is no longer the case. 
Thinking back to the properties framework, the 
example illustrates the risk that a property such 
as Cached(x), defined earlier, might not grow 
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monotonically: here, Cached(x) has lost an 
item as a consequence of the crash

This is not the setting for an extended 
discussion of the ways that protocols handle 
failures. Instead, we limit ourselves to the 
observations already made: a typical protocol 
will want to conceal some aspects of failure 
handling and reconfiguration, by handling 
them locally. Other aspects (here, the fact that 
m is no longer available in scope D) may have 
global consequences and hence some failure 
events need to be visible in some ways outside 
the scope. Our architecture offers the developer 
precisely this flexibility: events that he wishes 
to hide are hidden, and aspects of events that 
he wishes to propagate to higher-level scopes 
can do so.

Joining presents a different set of chal-
lenges. In some protocols, there is little notion 
of state and a node can join without much fuss. 
But there are many protocols in which a joining 
node must be brought up to date and the associ-
ated synchronization is a traditional source of 
complexity. In our own experience, protocols 
implementing reconfiguration (especially joins) 
can be greatly facilitated if members of the re-
covery domains can be assigned certain “roles”. 
In particular, we found it useful to distinguish 
between “regular” members, which are already 
“up to date” and are part of an ongoing run of 
a protocol, and “light” members, which have 
just been added, but are still being brought up 
to date.

When a new member joins a domain, 
its status is initially “light” (unless this is the 
first membership view ever created for this 
domain). The job of the “light” members, and 
their corresponding agents, is to get up-to-date 
with the rest of their peer group. At some point, 
presumably when the light members are more 
or less synchronized with the active ones, the 
“regular” agents may agree to briefly suspend 
the protocol and request some of these “light” 
peers to be promoted to the “regular” status. 

The ability to mark members as “light” or 
“regular” is a fairly powerful tool. It provides 
agents with the ability to implement certain 
forms of agreement, or consensus protocols 

that would otherwise be hard to support. In 
particular, this feature turns out to be sufficient 
to allow our architecture to support virtually 
synchronous, consensus-like, or transactional 
semantics. 

Ordering
As mentioned in the section on “Incorporating 
Reliability, Ordering, and Security,” ordering is 
implemented independently of dissemination. 
When a publisher submits a message to the 
dissemination framework, it simultaneously 
submits an ordering request into the ordering 
framework. An ordering request is a small 
object that lists the sender identifier, message 
topic and a sequence number. In response to 
the ordering requests, the ordering framework 
produces orderings. Orderings are small objects 
assigning indexes to batches of messages, per-
haps coming from different publishers. These 
orderings are then delivered to the interested 
subscribers (Figure 34). 

Because the ordering framework is de-
signed to process requests from different pub-
lishers together, it is possible to, for example, 
totally order messages in each topic, or even 
totally order messages across different topics.

Messages transmitted by publishers may 
be marked as ordered, as a hint for subscribers 
that these messages should not be delivered until 

Figure 34. For all messages for which ordering 
across multiple senders is required, publishers 
create ordering requests and submit these in 
batches to the ordering framework. The latter 
produces orderings in response to the ordering 
requests, and delivers these orderings to the 
subscribers

publisher subscriber

ordering 
framework

dissemination 
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ordering 
request ordering

message message

ordering request



56    International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of  IGI Global
is prohibited.

an ordering for these messages arrives through 
the ordering framework. The subscribers that 
do not care about ordering will simply not 
subscribe to the ordering framework, and will 
ignore such markings.

The ordering framework consists of two 
components: a component that collects ordering 
requests from multiple sources and produces 
orderings in response to these requests, and 
a component that delivers these orderings to 
subscribers. The first of these components is 
essentially an aggregation mechanism, and 
the second is similar to the dissemination 
framework. 

Like every other element of our architec-
ture, ordering is performed in a hierarchical 
manner that respects isolation and local au-
tonomy of administrative domains. Thus, the 
ordering framework also relies on the concept 
of management scopes, in this case the ordering 
scopes, which may or may not overlap with the 
other flavors of scopes. Each scope can define 
its own policies that govern the way ordering is 
performed: how ordering requests are collected, 
which member of the scope should serve as the 
orderer (collect these requests and produce 
orderings), and how these orderings should 
be disseminated to subscribers. The resulting 
architecture is a product of policies defined at 
various levels, just as it was the case for dis-
semination and reliability. 

To prevent the article from becoming 
excessively long, we shall omit the details of 
the ordering framework. The design shares 
common elements and ideas with the dissemi-
nation and reliability frameworks, and will be 
covered comprehensively in the first author’s 
Ph.D. thesis.

Other Possible Frameworks
Up until now, we’ve focused on the dissemina-
tion, recovery, and ordering frameworks within 
our overall architecture. However, the same 
structure can also support additional frame-
works, which exist as logical “siblings” to the 
ones already presented. These include:

•	 Flow and rate control. Architectural mecha-
nisms in support of flow and congestion 
control handling, negotiating rates, manag-
ing leases on bandwidth, and so forth.

•	 Security. Architectural support for integrat-
ing security (managing keys, granting or 
revoking access, managing certificates, 
etc.) into scalable eventing systems.

•	 Auditing. Self-verification, detection of 
inconsistencies (e.g., partitions, invalid 
routing, and so forth).

•	 Failure detection and health monitoring. 
Scalable detection of faulty or underper-
forming machines. 

Conclusion
We have argued that new and more flexible event 
notification standards are going to be needed 
if the Web services community is to gain the 
benefits of architectural standardization while 
also exploiting the full power of component 
architectures and integration platforms. The 
proposal presented here draws heavily from 
our experience building Quicksilver, a new and 
extremely scalable eventing infrastructure that 
scales in multiple dimensions, integrates seam-
lessly with modern component-style platforms, 
and has the flexibility to support a wide range of 
reliability models including best-effort, virtual 
synchrony, consensus, and transactional ones. 
In contrast, our experience trying to express 
Quicksilver within the existing Web services 
options was discouraging; we found them to be 
narrowly conceived and incapable of offering 
needed flexibility and scalability.
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