
18 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Abstract

Existing Web service notification and eventing standards are useful in many applications, but they have
serious limitations that make them ill-suited for large-scale deployments, or as a middleware or a com-
ponent-integration technology in today’s data centers. For example, it is not possible to use IP multicast,
or for recipients to forward messages to others, scalable notification trees must be setup manually, and no
end-to-end security, reliability, or QoS guarantees can be provided. We propose an architecture that is free
of such limitations and that may serve as a basis for extending or complementing the existing standards.
The approach emerges from our work on QuickSilver, a new, extremely modular and extensible platform
for high-performance, scalable, reliable eventing.

Keywords:	 architecture; eventing; extensible; multicast; notification; publish-subscribe; reliable;
scalable

Extensible Architecture for
High-Performance, Scalable,
Reliable Publish-Subscribe
Eventing and Notification

Krzysztof Ostrowski, Cornell University, USA

Ken Birman, Cornell University, USA

Danny Dolev, The Hebrew University of Jerusalem, Israel

Introduction

Motivation
Notification is a valuable, widely used primitive
for designing distributed systems. The growing
popularity of RSS feeds and similar technologies
shows that this is also true at the Internet scales.
The WS-Notification (Graham et al., 2004)
and WS-Eventing (Box et al., 2004) standards

have been offered as a basis for interoperation
of heterogeneous systems deployed across the
Internet. Unlike RSS, they are subscription-
based and, hence, free of the scalability problems
of polling, and they support proxy nodes that
could be used to build scalable notification
trees. Nonetheless, they embody restrictions
that make them unsuitable as a middleware
technology in large-scale systems:

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 19

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

•	 No forwarding among recipients:
Many content distribution schemes build
overlays within which content recipients
participate in message delivery. In cur-
rent Web services notification standards,
however, recipients are passive (limited
to data reception). For example, given
the tremendous success of BitTorrent for
multicast file transfer, one could imagine
a future event notification system that uses
a BitTorrent-like protocol for data transfer.
But BitTorrent depends on direct peer-to-
peer interactions by recipients.

•	 Not self-organizing: While both standards
permit the construction of notification trees,
such trees must be manually configured and
require the use of dedicated infrastructure
nodes (“proxies”). Automated setup of
dissemination trees by means of a protocol
running directly between the recipients is
often preferable, but the standards preclude
this possibility.

•	 Weak reliability: Reliability in the existing
schemes is limited to per-link guarantees
resulting from the use of TCP. In many
applications, end-to-end guarantees are
required, and often of strong flavor, for
example, to support virtually synchronous,
transactional, or state-machine replication.
Because receivers are assumed passive
and cannot cache, forward messages, or
participate in multiparty protocols, even
weak guarantees of these sorts cannot be
provided.

•	 Difficult to manage: It is hard to create
and maintain an Internet-scale dissemina-
tion structure that would permit any node
to serve as a publisher or as a subscriber,

for this requires many parties to maintain a
common infrastructure and agree on stan-
dards, topology, and other factors. Any such
large-scale infrastructure should respect
local autonomy, whereby the owner of a
portion of a network can set up policies for
local routing, availability of IP multicast,
and so forth.

•	 Inability to use external multicast frame-
works: The standards leave it entirely to the
recipients to prepare their communication
endpoints for message delivery. This makes
it impossible for a group of recipients to
dynamically agree upon a shared IP mul-
ticast address, or to construct an overlay
multicast within a segment of the network.
Yet such techniques are central to achieving
high performance and scalability, and can
also be used to provide QoS guarantees or
to leverage emergent technologies.

In this article, we propose a principled ap-
proach to Web service notification in large-scale
systems, free of the limitations listed above,
which is modular and highly extensible. The
design presented here is a basis for Quicksilver
(Ostrowski & Birman, 2006c; Ostrowski, Bir-
man & Dolev, 2006), a novel, reliable, and ex-
tremely scalable platform for publish-subscribe
eventing and notification, under development at
Cornell. While this architecture is inspired by
our prior work on QuickSilver, it is designed
to be generic, and it is compatible, in general,
with a wide range of existing protocols.

Model
We employ the usual terminology, where
events are associated with topics, produced

subscribers

notification

publishers

node

subscription
manager

register
as a publisher

subscribe as
a receiver

Figure 1. Publishers and subscribers register for a topic with the subscription manager

20 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

by publishers, and delivered to subscribers.
We use the term “group X” to refer to the set
of nodes subscribed to topic “X.” More than
one node may publish to a given topic. The
prospective publishers and subscribers register
with a subscription manager. This entity can be
independent of the publishers (Figure 1). The
manager may be replicated to tolerate failures,
or hierarchical, to scale. A single manager may
track the publishers and subscribers for many
topics, and many independent managers may
coexist. Nodes may reside in many administra-
tive domains (LANs, data centers, etc.). Nodes
in the same domain may be jointly managed. It
is often convenient to define policies, such as
for message forwarding or resource allocation,
in a way that respects domain boundaries, for
example, for administrative reasons, or because
communication within a domain is cheaper than
across domains, as it is often related to network
topology. Publishers and subscribers might be
scattered across organizations. These need to
cooperate in message dissemination, which
often presents a logistic challenge (Figure 2).

Example
To facilitate discussion, the article uses a run-
ning example. Obviously, the architecture is
not limited to any particular application; the
architecture is intended to be flexible enough
to serve as a general, multipurpose middleware
component-integration technology, and to be
used in settings such as large data centers,
trading systems, military infrastructure, and so
forth. However, the example helps us illustrate
the architecture with specific scenarios that
highlight the role of specific features.

The example involves a possible vision for
the future of the Internet. Even today, the Web
is moving towards very dynamic and interactive
content. Massively multiplayer online gaming
and virtual realities, such as the World of War-
craft and Second Life, are becoming increas-
ingly popular. However, current techniques are
insufficient for massive-scale deployments. As
of this writing, the latter platform is reported
to host online 17,000 of a total of 2 million
of its users, on a server farm of nearly 2,600
dual-core Opteron machines. As the number of
online users simultaneously browsing through
such virtual realities will grow to tens and
hundreds of millions, as users start to expect
a smoother and more realistic experience, and
they start transmitting high-resolution audio,
video, and animation streams, it will become
very difficult to host entire virtual worlds in a
centralized manner. Centralized systems are
invariably costly and suffer from bottlenecks
and high latencies. We believe that the most
cost-effective (and perhaps ultimately the only
feasible) way to implement such scenarios is
for the virtual worlds to be decentralized, and
for the users to interact directly, without any
expensive servers in the middle.

Apart from the scalability aspect mentioned
above, we also believe that the Internet com-
munity is unlikely to accept a situation where all
content is controlled by a handful of providers.
Instead, we envision that just as today users
create Web pages, they would eventually want
to be able to create their own virtual rooms or
landscapes, where participants could interact
with one-another much as they do in online
multiplayer games. A successful technology
base of this sort could eventually transform

Org1 Org2

Org3

Organization

LAN1

LAN2

not associated publishers

subscribers

Figure 2. Nodes can be scattered across administrative domains hierarchically divided into
subdomains

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 21

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the Web into a multi-verse, a federation of
millions of interconnected virtual places or
entire worlds, created and hosted by the Internet
community collaboratively, with a mixture of
infrastructure services, services hosted on data
centers, and services introduced and hosted by
individual users.

A high-performance, scalable, and reliable
variant of the publish-subscribe paradigm could
be the enabling technology for such applica-
tions. To see this, think of each location in a
virtual world as a separate publish-subscribe
topic, and of the users that currently reside
inside the location as subscribers (Figure 3).
The state of the room, for example, its interior,
user positions, actions in progress, all objects
inside the room, and so forth, is replicated
among all the subscribers. The state is loaded
by the users upon entering the room, and can be
updated in a consistent manner by multicasting
any updates (such as users speaking, moving,
handing objects to each other, etc.) reliably
to the set of all subscribers. The state can be
retained while no visitors are in the room by a
room guardian, a special entity that can either
stay in the room at all times, or slip in only if
the last “regular” user leaves, depending on how
the room is setup. Unlike in the centralized ap-
proaches, here users interact directly with each
other, with no server in between. Although this
solution does require infrastructure components,
for example, to track subscriptions, inform users
of each other’s existence, control the “guard,”
and so forth, none of the required infrastructure

sits on the “critical path” and acts as a proxy or
intermediary. If one user speaks or projects a
video clip to others, the data can be transmitted
directly to participants, without the involvement
of any such infrastructure. Infrastructure that
controls a virtual location could thus be hosted
even on a home machine of the user who cre-
ated it. The network of users’ home machines,
hosting their virtual rooms connected by virtual
corridors, can thus form a background backbone
structure that controls the virtual reality in a
way similar to how DNS serves as a backbone
of the Internet.

To realize the vision outlined above, we
need a publish-subscribe platform that can
provide very high performance, scalability in
multiple dimensions, such as the size of the
system, the number of publish-subscribe topics,
or data rates, and so forth, end-to-end reliability
guarantees, and a way to integrate with mod-
ern development platforms. In work reported
elsewhere, we have created a system with these
attributes. Initial results from experiments on
the system (Quicksilver Scalable Multicast, or
QSM) suggest that these goals can be achieved
(Ostrowski & Birman, 2006b, 2006c). However,
for truly massive adoption, we need publish-
subscribe interoperability standards that allow
a large number of independent users, residing
in different administrative domains scattered
across the Internet, to collaboratively form a
single infrastructure for reliable publish-sub-
scribe notification. This was our original reason
to explore the architectural proposal that is the
subject of this article.

users in the room
= subscribers

enter the room
= subscribe

and load state

room = publish-subscribe topic

leave =
ubsubscribe

replicated room state

move, talk =
publish state

updates
user

Figure 3. A virtual room in a virtual world, modeled as a “publish-subscribe” topic

22 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Let’s now revisit the problems listed in the
section entitled “Motivation” in the context of
our example. Consider a user sitting in a caf-
eteria with his laptop that enters a virtual room
and starts interacting with friends in our three-
dimensional virtual reality. The user would act
as one of several publishers and subscribers.
Because such interactions would be ad-hoc, the
technique that the users would use to disseminate
data between them should be self-organizing,
that is, it should not rely on proxies, or other
dedicated infrastructure.

A simple way to meet this requirement
could be for each publisher to send updates
directly to all subscribers over TCP, but this
is not acceptable for several reasons. First, to
ensure that all users see a consistent history of
events, we’d need reliability guarantees, such
as a global ordering of all updates published by
different users (so that all of them see events
occurring in the same order, or that two users
don’t pick up the same object), atomicity (so
that if one user can see something happening,
then so do all the others) and so forth. While
solutions to such problems are well known
from the literature, they need more than a
plain point-to-point TCP-based dissemination
scheme. Thus, the users would need to run a
suite of special reliability protocols.

Second, the wireless link of the user in
the cafeteria, or his laptop, may not be fast
enough to simultaneously send updates to ten
other people who may be in the virtual room. If
other users are connected, for example, directly
to the campus network, over a wire, it may be
desirable to arrange it so that the wireless user
publishes updates to a user on a campus LAN,
which is then responsible for forwarding it to
the others. If the campus LAN is configured to
enable IP multicast, it would be desirable to be
able to exploit such external mechanisms. The
users should thus be able to quickly form small
overlays that can efficiently utilize whatever
resources are available.

Finally, note that users will often reside in
different administrative domains, for example,
in a cafeteria wireless network, in different
campus networks, on a cable LAN, and so forth.

The administrators of these domains may need
to impose acceptable use policies that specify
how dissemination should be performed inter-
nally in the domain they own. For example,
one domain might disallow IP multicast, while
another might permit IP multicast provided
that various rules are respected. Policies could
govern sharing of connections, what data rates
are acceptable, what multicast protocol to use,
and so forth.

Different domains will often have distinct
administrative policies. And yet, users residing
in those domains would expect a smooth opera-
tion, as if the entire Internet formed a single,
fully-connected administrative domain. Such
management issues are a logistic headache, and
require better interoperability standards. An up-
date published by the user in the cafeteria should
be disseminated in every campus network, or
among wireless users, locally according to the
local policies setup by the domain administra-
tors, but all these domains need to cooperate
with each other, ideally without reliance on
costly proxies. Existing eventing standards have
overlooked such issues, but they form the core
of our proposal.

Design Principles
The limitations of the existing architectures,
listed in the section on “Motivation,” and our
experience in designing scalable multicast
systems, led us to the following design prin-
ciples:

•	 Programmable nodes: Senders and re-
cipients should not be limited to sending or
receiving. They should be able to perform
certain basic operations on data streams,
such as forwarding or annotating data with
information to be used by other peers, in
support of local forwarding policies. The
latter must be expressive enough to support
protocols used in today’s content delivery
networks, such as overlay trees, rings, mesh
structures, gossip, link multiplexing, or
delivery along redundant paths.

•	 External control: Forwarding policies
used by subscribers must be selected and

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 23

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

updated in a consistent manner. A node
cannot predict a-priori what policy to use,
or which other nodes to peer with; it must
thus permit an external trusted entity or an
agreement protocol to control it: determine
the protocol it follows, install rules for
message forwarding or filtering, and so
forth.

•	 Channel negotiation: The creation of
communication channels should permit a
handshake. A recipient might be requested
to, for example, join an IP multicast address
or subscribe to an external system. The
recipient could also make configuration
decisions on the basis of the information
about the sender. For example, a LAN
domain asked to create a communication
endpoint for receiving could select a well-
provisioned node as its entry point to handle
the anticipated load.

•	 Managed channels: Communication
channels should be modeled as contracts
in which receivers have a degree of control
over the way the senders are transmitting.
In self-organizing systems, reconfigura-
tion triggered by churn is common and
communication channels often need to be
reopened or updated to adapt to the chang-
ing topology, traffic patterns, or capacities.
For example, a channel that previously
requested that a given source transmits
messages to one node may notify the source
that messages should now be transmitted
to some two other nodes.

•	 Hierarchical structure: The principles
listed above should apply to not just
individual nodes, but also to entire ad-
ministrative domains, such as LANs,
data centers, or corporate networks. This
allows the definition and enforcement of
Internet-scale forwarding policies, facili-
tating cooperation among organizations in
maintaining the global infrastructure. The
way messages are delivered to subscribers
across the Internet thus reflects policies
defined at various levels (for example,
policies “internal” to data centers, and a
global policy “across” all data centers).

•	 Isolation and local autonomy: A degree of
a local autonomy of the individual adminis-
trative domains, such as how messages are
forwarded internally, which nodes are used
to receive incoming traffic or relay data
to other domains, and so forth, should be
preserved. In essence, the internal structure
of an administrative domain should be hid-
den from other domains it is peering with
and from the higher layers. Likewise, the
details of the subcomponents of a domain
should be as opaque as possible.

•	 Reusability: It should be possible to
specify a policy for message forwarding
or loss recovery in a standard way and
post it into an online library of such poli-
cies as a contribution to the community.
Administrators willing to deploy a given
policy within their administrative domain
should be able to do so in a simple way,
for example, by drag-and-drop, within a
suitable GUI.

•	 Separation of concerns: Motivated by
the end-to-end principle, we separate
implementation of loss recovery and other
reliability properties from the unreliable
dissemination of messages, as well as
from message ordering, security, and
subscription management. Accordingly,
our design includes reliability, dissemi-
nation, ordering, security, and manage-
ment frameworks, five independent, yet
complementary structures. This decoupling
gives our system an elegant structure and a
degree of modularity and flexibility unseen
in existing architectures.

Hierarchical View of the Network
A group X of subscribers for a given topic across
the entire Internet can be divided into subsets
Y1, Y2, . . ., YN of subscribers in N top-level
administrative domains (Figure 4). This may
continue recursively, leading to a hierarchical
perspective on the group X. Hierarchies of this
sort have been previously exploited in scalable
multicast protocols, for example, in RMTP
(Paul, Sabnani, Lin, & Bhattacharyya, 1997),
or in the context of content-based filtering

24 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

(Banavar, Chandra, Mukherjee, Nagarajarao,
Strom, & Sturman, 1999). The underlying prin-
ciple, implicit in many scalable protocols, is to
exploit locality. Following this principle, sets of
nodes, clustered based on proximity or interest,
cooperate semi-autonomously in message rout-
ing and forwarding, loss recovery, managing
membership and subscriptions, failure detec-
tion, and so forth. Each such set is treated as
a single cell within a larger infrastructure. A
protocol running at a global level connects all
cells into a single structure. Scalability arises as
in the divide-and-conquer principle. Addition-
ally, the cells can locally share workload and
amortize dissemination or control overheads,
for example, buffer messages from different
sources and locally disseminate such combined
bundles, and so forth.

In the architecture described here we go one
step further. Following our principle of isola-
tion and local autonomy, each administrative
domain should manage the registration of its
own publishers and subscribers internally, and
it should be able to decide how to distribute
messages among them or how to perform loss
recovery according to its local policy. Unlike
in most hierarchical systems, where hierarchy
and protocol are inseparable, and hence the
“subprotocols” used at all levels of the hierarchy
are identical, in our architecture we decouple
the creation of the hierarchy from the specific
“subprotocols” used at different levels of the
hierarchy and we allow the “subprotocols”
to differ. Thus for example, our architecture
permits the creation of a single, global dis-
semination scheme for a topic that uses differ-
ent mechanisms to distribute data in different
organizations or data centers. Likewise, it

permits the creation of a single Internet-scale
loss recovery scheme that employs different
recovery policies within different administrative
domains. Previously, this has only been possible
with proxies, which can be costly, and which
introduce latency and bottleneck. In this article,
we propose a way to do this efficiently, and
in a very generic, flexible manner. This novel
hierarchical protocol “composition” approach,
motivated by the principles of locality and local
autonomy, is central to our architecture.

Architecture

The Hierarchy of Scopes
Our architecture is organized around the fol-
lowing key concepts: management scope, for-
warding policy, channel, filter, session, recovery
protocol, recovery domain, and agent.

A management scope (or simply scope)
represents a set of jointly managed nodes. It
may include a single node, span over a set of
nodes residing within a certain administrative
domain, or include nodes clustered based on
other criteria, such as common interest. In the
extreme, a scope may span across the entire
Internet. We do not assume a 1-to-1 correspon-
dence between administrative domains and the
scopes defined based on such domains, but that
will often be the case. A LAN scope (or just a
LAN) will refer to a scope spanning all nodes
residing within a LAN. The reader might find
it easier to understand our design with such
examples in mind.

A scope is not just any group of nodes; the
assumption that they are jointly managed is es-
sential. The existence of a scope is dependent
upon the existence of an infrastructure that

Figure 4. A hierarchical decomposition of the set of subscribers along the domain boundaries

Internetsubscribers to X
across the Internet

subscribers
to X in Org1

subscribers
to X in Org2

Org1

Org2

notification
in X

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 25

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

maintains its membership and administers it. For
a scope that corresponds to a LAN, this could be
a server managing all local nodes. In a domain
that spans several data centers in an organization,
it could be a management infrastructure, with a
server in the company headquarters indirectly
managing the network via subordinate servers
residing in every data center. No such global
infrastructure or administrative authority exists
for the Internet, but organizations could provide
servers to control the Internet scope in support
of their own publishers or to manage the dis-
tribution of messages in topics of importance
to them. Many global scopes, independently
managed, could thus co-exist.

Like administrative domains, scopes
form a hierarchy, defined by the relation of
membership: one scope may declare itself to
be a member (or a “subscope”) of another. If X
declares itself to be a member of Y, it means X
is either physically or logically a part (subset) of
Y. Typically, a scope defined for a subdomain X
of an administrative domain Y will be a member
of the scope defined for Y. For example, a node
may be a member of a LAN. The LAN may be
a member of a data center, which in turn may
be a member of a corporate network. A node
may also be a member of a scope of an overlay
network. For a data center, two scopes may be
defined, for example, monitoring and control
scopes, both covering the entire data center,
with some LANs being a part of one scope,
or the other, or both. The corporate scope may
be a member of several Internet-wide scopes,
and so forth.

The generality in these definitions allows
us to model various special cases, such as
clustering of nodes based on interest or other
factors. Such clusters, formed, for example, by
a server managing a LAN and based on node
subscription patterns, could also be treated as
(virtual) scopes, all managed by the same server.
Nodes would thus be members of clusters, and
clusters (not nodes) would be members of the
LAN. As we shall explain below, every such
cluster, as a separate scope, could be locally and
independently managed. For example, suppose
that we are building an event notification system

that needs to disseminate events reliably, and is
implemented by an unreliable multicast mecha-
nism coupled to a reliability layer that recovers
lost packets. In the proposed architecture, dif-
ferent clusters could run different multicast or
loss recovery protocols; this technique is used
in the QSM platform (Ostrowski & Birman,
2006b, 2006c). Thus, if one cluster happens to
reside within a LAN that permits the use of IP
multicast, it could use that technology, while
a different cluster on a network that prohibits
IP multicast, or consisting of a large number of
nodes across the Internet, could instead form
an end-to-end multicast overlay.

The scope hierarchy need not necessar-
ily be a tree (Figure 5). There may be many
global scopes, or many superscopes for any
given scope. However, a scope decomposes
into a tree of subscopes, down to the level of
nodes. The span of a scope X is the set of all
nodes at the bottom of the hierarchy of scopes
rooted at X. For a given topic X, there always
exists a single global scope responsible for it,
that is, such that all subscribers to X reside in
the span of X. Publishing a message to a topic
is thus always equivalent to delivering it to all
subscribers in the span of some global scope,
which may be further recursively decomposed
into the sets of subscribers in the spans of its
subscopes.

Suppose that Alice and Bob are sitting with
their laptops in a cafeteria, while Charlie is in a
library. Both the cafeteria’s wireless network and
the local network in the library are separately
managed administrative domains, and they
define their own management scopes. Alice’s
and Bob’s laptops are also scopes, both of which

Figure 5. An example hierarchy of management
scopes in a game

BobAlice Charlie

Cafeteria Library

Room 1 Room 2
Internet

26 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

become members of the cafeteria’s scope. Now
suppose that Alice opens her virtual realities
browser and enters a virtual place “Room1”
in the virtual reality, while Bob and Charlie
enter “Room2.” Each of the virtual rooms de-
fines a global, Internet-wide scope that could
be thought of as “the scope of all users in this
room, wherever they are.” If the networking
support for Alice and Bob is still provided by
the cafeteria and library wireless networks re-
spectively, when the students enter the rooms,
the cafeteria’s and library’s scopes become
members of these global scopes (Figure 5).

The Anatomy of a Scope
The infrastructure component administering a
scope is referred to as a scope manager (SM). A
single SM may control multiple scopes. It may
be hosted on a single node, or distributed over
a set of nodes, and it may reside outside of the
scope it controls. It exposes a control interface,
a Web service hosted at a well-known address,
to dispatch control requests (e.g., “subscribe”)
directed to the scopes it controls (Figure 6).

A scope maintains communication chan-
nels for use by other scopes. A channel is a
mechanism through which a message can be
delivered to all those nodes in the span of this
scope that subscribed to any of a certain set
of topics. In a scope spanning a single node, a
channel may be just an address/protocol pair;
creating it would mean arranging for a local
process to open a socket. In a distributed scope,
a channel could be an IP multicast address; creat-
ing it would require all local nodes to listen at
this address. It could also be a list of addresses,
if messages are to be delivered to all of them,

or if addresses are to be used in a random or a
round-robin fashion. In an overlay network, for
example, a channel could lead to a small set of
nodes that forward messages across the entire
overlay. In general, a scope that spans a set of
nodes can thus be governed by a forwarding
policy that determines how messages originat-
ing within the scope, or arriving through some
communication channel, are disseminated
internally, within the local scope.

Continuing our example, the cafeteria and
the library would host the managers of their
scopes on dedicated servers, and each of the
student laptops would run a local service that
serves as a scope manager for the local machine.
The library’s SM may be on a campus network
with IP multicast enabled. When the cafeteria’s
SM requests a channel from the library’s SM,
the latter might, for example, dedicate some
machine as the entry point for all messages com-
ing from the cafeteria, instruct it to retransmit
these messages to the IP multicast address, and
instruct all other laptops to join the IP multicast
address. Similarly, the cafeteria’s SM might
setup a local forwarding tree. In most settings, a
scope manager would live on a dedicated server.
It is also conceivable to offload, in certain sce-
narios, parts of the SM’s functionality to nodes
currently in the scope (e.g., to Alice’s and Bob’s
laptops), but a single “point of contact” for the
scope would still need to exist.

The control interfaces “exposed” by scopes
(interfaces exposed by their scope managers)
are “accessed” by other scopes (i.e., by their
SMs). When interacting, scopes can play one
of a few standard roles, corresponding to the
three principal interaction patterns: member-

Figure 6. A scope is controlled by a scope manager, which exposes a standardized control interface,
and may create a number of incoming data channels, to serve as “entry points” for the scope

control
interface

incoming
data channels

scope manager

managed entity
(scope)forwarding

policy

sm

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 27

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

owner, sender-receiver, and client-host (see
Figure 7). A member registers with an owner
to establish a relation of membership, that is,
to “declare” itself as a subscope of the owner.
After such a relationship has been established,
the member may then register with the owner as
a publisher or subscriber in one or more topics.
Depending on the topics for which the mem-
ber has registered and its role in these topics,
it may be requested by the owner to perform
relevant actions, for example, by forwarding
messages or participating in the construction
of an overlay structure. At the same time, the
owner is responsible for tracking the health of its
members, and in particular for detecting failures
and performing local reconfiguration.

The client-host relationship is similar to
member-owner, in that a client can register with
a host as a publisher or as a subscriber. However,
unlike the member-owner relationship, which
involves a mutual commitment, the client-host
relationship is more casual, in the sense that the
host cannot rely on the client to perform any
tasks for the system, or even to notify the host
when it leaves, and similarly, the client cannot
rely on the host to provide it with the same
quality of service and reliability properties as
the regular members. Thus for example, while
a member can form a part of a forwarding tree,
a client will not; the latter will also typically
get weaker reliability guarantees, because the
protocols run by the scope members will not be
prevented from making progress when transient

clients are unreachable. The same applies to
publishers. A long-term publisher that forms a
part of a corporate infrastructure will register
as a member, but handheld devices roaming
on a wireless network will usually register as
clients.

The sender-receiver relationship is similar
to a publisher registering as a client or member
in that the sender registers with the receiver
to send data. However, whereas a member
registers with its owner to publish to the set
of all subscribers in a topic, including nodes
inside as well as nodes outside of the owner, a
sender will register with a receiver to establish
a communication channel between the two to
disseminate messages only within the scope
of the receiver. When a publisher registers as
a member with an owner scope that is not the
global scope for the given topic, the owner may
itself be forced to subscribe with its superscope.
The sender-receiver relationship is horizontal;
no cascading subscriptions take place. On
the other hand, while a member scope never
exchanges data with the owner (instead, it is
“told” by the owner to form part of a dissemi-
nation structure that the owner controls), the
sender-receiver relationship serves exactly this
purpose; the two parties involved in the latter
will negotiate protocols, addresses, transmission
rates, and so forth.

The reader should recognize in our con-
struction the design principles we articulated
earlier. Scopes, whether individual nodes, LANs

Figure 7. When interacting, scopes follow one of a few standardized relationship patterns, in
which they can play one of a few standard roles

host

sm senderreceiver

clientmember

member

owner sm

smsubscribe

manage
member

owner

manage sender

sm sm

want
to send

sender

receiver

manage client

sm sm

want to publish

client

host

28 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

or overlays, are externally controlled using the
control interfaces exposed by SMs, may be
programmed with policies that govern the way
messages are distributed internally, forwarded
to other scopes, and so forth, and transmit mes-
sages via managed communication channels,
established through a dialogue between a pair
of SMs, and dynamically reconfigured.

Hierarchical Composition of
Policies
Following our design principles, we propose to
solve the issue of a large-scale global coopera-
tion in message delivery between independently
managed administrative domains by introducing
a hierarchical structure in which forwarding
policies defined at various levels are merged
into a single dissemination scheme. Each
scope is configured with a policy dictating, on
a per-topic (and perhaps a per-sender) basis,
how messages are forwarded among its mem-
bers. For example, a policy governing a global
scope might determine how messages in topic
T, originating in a corporate network X, are
forwarded between the various organizations.
A policy of a scope of the given organization’s
network might determine how to forward mes-
sages among its data centers, and so forth. A
policy defined for a particular scope X is always
defined at the granularity of X’s members (not
individual nodes). The way a given subscope Y
of X delivers messages internally is a decision

made autonomously by Y. Similarly, X’s policy
may specify that Y should forward messages to
Z, but it is up to Y’s policy to determine how
to perform this task.

Accordingly, a global policy may request
that organization X forward messages in topic
T to organizations Y and Z. A policy govern-
ing X may then determine that to distribute
messages in X, they must be sent to LAN1,
which will forward them to LAN2. The same
policy might also specify which LANs within
X should forward to Y and Z, and finally, the
policies of these LANs will delegate these
forwarding tasks to individual nodes they own.
When all the policies defined at all the involved
scopes are combined together, they yield a
global forwarding structure that completely
determines the way messages are disseminated
(Figure 8). In the examples given, the forward-
ing policies are simply graphs of connections:
each message is always forwarded along every
channel. In general, however, a channel could
be constrained with a filter that decides, on a
per-message basis, whether to forward or not,
and may optionally tag the message with cus-
tom attributes (more details are in the section
“Communication Channels”). This allows us to
express many popular techniques, for example,
using redundant paths, multiplexing between
dissemination trees, and so forth.

Every scope manager maintains a map-
ping from topics to their forwarding policies.
A forwarding policy is defined as an object that

Figure 8. Channels created in support of forwarding policies defined at different levels

channel to
scope

channel to
sub-scope

channel to
physical node

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 29

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

lives in an abstract context, and that exposes
a fixed set of events to which members must
be prepared to react, and the operations and
attributes. A scope manager might be thought
of as a container for objects representing
policies. The interfaces that the container and
the policies expose to each other and interact
with are standardized, and may include, for
example, an event informing the policy that
a new member has been added to the set of
members locally subscribed to the topic, or an
operation exposed by the container that allows
the policy to request a member to establish a
channel to another member and instantiate a
given type of filter (Figure 9). A scope manger
thus provides a runtime environment in which
policies can be hosted. This allows policies to
be defined in a standard way, independent not
only of the platform, but also of the type of the
administrative domain. For example, one can
imagine a policy that uses some sort of a novel
mesh-like forwarding structure with a sophisti-
cated adaptive flow and rate control algorithm.
Our architecture would allow that policy to be
deployed, without any modifications, in the con-
text of a LAN, data center, corporate network,
or a global scope. In effect, we’ve separated
the policy from the details of how it should be
implemented in a particular domain. Policies
may be implemented in any language, expose
and consume Web service APIs, stored online

in protocol libraries, downloaded as needed,
and executed in a secure manner.

Graphs of connections for different top-
ics, generated by their respective policies, are
superimposed (Figure 10). The SM of the scope
maintains an aggregate structure of channels
and filters, and issues requests to the SMs of its
members to create channels, instantiate filters,
and so forth. If multiple policies request chan-
nels between the same pair of nodes, the SM will
not create multiple channels, but rather a single
channel, for multiple topics. To avoid the situ-
ation where every member talks to every other
member, the SM may use a single forwarding
policy for multiple topics, to ensure that chan-
nels created for different topics overlap.

Communication Channels
Consider a node X, which is a member of a
scope Y that, based on a forwarding policy at
Y, has been requested to create a communica-
tion channel to scope Z to forward messages
in topic T. Following the protocol, X asks the
SM of Z for the specification of the channel
to Z that should be used for messages in topic
T. The SM of Z might respond with an ad-
dress/protocol pair that X should use to send
over this channel. Alternatively, a forwarding
policy defined for T at scope Z may dictate
that, in order to send to Z in topic T, scope X
should establish channels to members A and B

Figure 9. A forwarding policy as a code snippet

.NET
class

forwarding algorithmIForwardingAlgorithm

IForwardingAlgorithmContext

added or removed
senders, members,
or receivers

create, delete or
update channels
between nodes

Figure 10. Forwarding graphs for different topics are superimposed. Two members may be linked
by multiple channels, each with a different filter

filter

filter

30 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

of Z, constrained with filters α and β. After X
learns this from the SM of Z, it contacts SMs
of A and B for further details. Notice that the
channel to Z decomposes into subchannels to A
and B through a policy at a target scope Z. This
procedure will continue hierarchically, until
the point when X is left with a tree with filters
in the internal nodes and address and protocol
pairs at the leaves (Figure 11). Now, to send
a message along a channel constructed in this
way, X executes filters, starting from the root,
to determine recursively which subchannels to
use, proceeding until it is left with just a list of
address/protocol pairs, and then transmits the
message. Filters will usually be simple, such as
modulo-n; hence X can perform this procedure
very efficiently. Indeed, with network cards
becoming increasingly powerful and easily
programmable (Weinsberg, Dolev, Anker, &
Wyckoff, 2006), such functionality might even
be offloaded to hardware.

Accordingly, to support the hierarchical
composition of policies described in the preced-
ing section, we define a channel as one of the
following: an address/protocol pair, a reference
to an external multicast mechanism, or a set of
subchannels accompanied by filters. In the latter
case, the filters jointly implement a multiplexing
scheme that determines which subchannels to
use for sending, on a per-message basis (Figure
12, Figure 13).

Consider now the situation where scope
X, spanning a set of nodes, has been requested
to create a channel to scope Y. Through a dia-
logue with Y and its subscopes, X can obtain a
detailed channel definition, but unlike in prior
examples, X now spans a set of nodes, and
as such, it cannot execute filters or send mes-
sages. To address this issue, we now propose
two simple, generic techniques: delegation and
replication (Figure 14). Both of them rely on
the fact that if X receives messages in a topic T,
then some of its members, Z, must also receive

Figure 11. A channel split into subchannels and a possible filter tree corresponding to it

filter

filter

filter

filter
filter

transmit

transmit
transmit

Figure 12. A channel may be an address/protocol pair (left), or it may consist of subchannels,
with an algorithm deciding what goes where (right)

Figure 13. A distributed scope may delegate a channel or some of its subchannels to its members,
or it may replicate the channel among members with filters that jointly implement a round-robin
policy, and so forth

channel
algorithm

send to subchannelsend to channel

protocol +
address

transmit

filter
filter

filter

send to channel filter

fwd? tag

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 31

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

them (for otherwise X would not declare itself
as a subscriber and it would not be made part
of the forwarding structure for topic T by X’s
superscope). In case of delegation, X requests
such a subscope Z to create the channel on behalf
of X, essentially “delegating” the entire channel
to its member. The problem can be recursively
delegated, down to the level where a single
physical node is requested to create the channel,
and to forward messages it receives along the
channel. A more sophisticated use of delegation
would be for X to delegate subchannels. In such
case, X would first contact Y to obtain the list
of subchannels and the corresponding filters,
and for each of these subchannels, delegate it
to its subscopes. In any case, X delegates the
responsibility for forwarding over a channel
to its subscopes.

Our approach is flexible enough to support
even more sophisticated policies. An example of
one such policy is a replication strategy, outlined
here. In this scheme, scope X could request that
n of its subscopes create the needed channel,
constraining each with a modulo-n filter based
on a message sequence number. Hence, while
each of the subscopes would create the same
channel on behalf of its parent scope (hence the
name “replication”), subscope k would only
forward messages with numbers m such that
m mod n equals k. By doing this, X effectively
implements a round-robin policy of the sort pro-
posed in protocols such as MIT’s SplitStream.
Although all subscopes would create the same
channel, the round-robin filtering policy would
ensure that every message is forwarded only by

one of them. This technique could be useful,
for example, in the cases where the volume of
data in a topic is so high that delegation to a
single subscope is simply not feasible.

Our point is not that this particular way of
decomposing functionality should be required of
all protocols, but rather that for an architecture
to be powerful enough and flexible enough to
be used with today’s cutting-edge protocols
and to support state-of-the-art technologies, it
needs to be flexible enough to accommodate
even these kinds of “fancy” behaviors. Our
proposed architecture can do so. The existing
standards proposals, in contrast, are incred-
ibly constraining. Each only accommodates a
single rather narrowly conceived style of event
notification system.

Constructing the Dissemination
Structure
A detailed discussion of how forwarding
policies can be defined and translated to filter
networks is beyond the scope of this article.
We describe here just one simple, yet fairly
expressive scheme.

Suppose that the forwarding policies in all
scopes define forwarding trees on a per-topic
basis and possibly also depending on the loca-
tion at which the message locally originated. By
saying that a message locally originated from
a member X of scope Y, we mean that either
the message was created by X (if X is itself a
node) or a member of X, or that the message
was created outside of Y, but X is (or contains)
the first node in all of Y to which the message

Figure 14. Channel algorithms are realized as sets of filters, one per subchannel, deciding
whether to forward, and optionally adding custom tags.

delegationreplication

X Y X Y

X Y
filter

filter
X Y

delegate
channel

delegate
sub-

channels

32 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

was forwarded. The technique described here
implicitly assumes that messages do not ar-
rive along redundant paths, that is, that the
forwarding policy at each level is a tree, not a
mesh. This scheme may be extended to cover
the more general case with redundant paths and
randomized policies, but we omit it here, for it
would unnecessarily complicate our example.
A comprehensive treatment of dissemination
policies is beyond the scope of this article.

A scope manager thus maintains a graph, in
which the scope members are linked by edges,
labeled with constraints such as β:X, µ:Y, …,
meaning that a message is forwarded along
the edge if it was sent in topic β and locally
originates at X, or if it was sent in topic µ and
locally originates at Y, and so on. We shall now
describe, using a simple example, how a struc-
ture of channels is established based on scope
policies, and how filters are instantiated. We
shall then explain how messages are routed.

Consider the structure of scopes depicted
on Figure 15. Here A, B, C, D, and E are student
laptops. P, Q, and R are three departments on

a campus, with independent networks, hence
they are separate scopes. X represents the entire
campus. All students subscribe to topic T. Topic
T is local to the campus, and X serves as its root.
The scopes first register with each other. Then,
the laptops send requests to subscribe for topics
to P, Q, and R. Laptop A requests the publisher
role, all others request to be subscribers. None
of P, Q, or R are roots for the topic, hence they
themselves subscribe for topic T with X, in a
cascading manner. Now, all scopes involved
create objects that represent local forwarding
policies for topic T, and feed these objects with
the “new member” events. The policy at P for
messages in T originating at A creates a chan-
nel from A to B. Similarly, the policy at X for
messages in T originating at P creates channels
P to Q and Q to R (Figure 16). Each channel has
a label of the form “X-Y, T:Z”, meaning that
it is a channel from X to Y, for messages in T
originating at Z. Note that no channels have been
created in scope Q. Until now, Q is not aware
of any message sources because neither C nor
D is a publisher, and because no other scope
has so far requested a channel to Q, hence there
is no need to forward anything. Channels are
now delegated to individual nodes, as described
in the section “Communication Channels.” P
delegates its channel to B, and Q delegates to
D (Figure 17, delegated channels are in blue).

A B C D E

P Q R

X

Figure 15. An example hierarchy of scopes with
cascading subscriptions

Figure 18. Channels are delegated

Figure 16. Channels created by the policies
based on subscriptions

A B C D E

P Q R

X

t:P t:P

t:A
A b

P Q Q r

Figure 17. B and D contact Q and R to create
channels. Q and R select C and E as entry points.
Q now has a local message source and creates
its own local channel, from C do D

A B C D E

P Q R

t:P t:P
t:A

A b
P:b Q Q:d r

A B C D E

P Q Rt:P t:P

t:A t:c
A b

P:b Q:c Q:d r:E

c d

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 33

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Channel labels are extended to reflect the fact
that they have been delegated, for example,
P-Q becomes P:B-Q, which means that P has
delegated its source endpoint to its member B,
and so forth. At this point, B and D contact the
destinations Q and R and request the channels
be created. Q and R select C and E as their
entry points for these channels. Now Q also
has a local source of messages (node C, the
entry point), so now it also creates an instance
of a forwarding policy, which determines that
messages in T, locally originating at C, are for-
warded to D (Figure 18). The entire forwarding
structure is complete.

A message in transit is a tuple of the form
(T, k, r), where T is the topic, k is the identi-
fier that may include the source name, one or
more sequence numbers, and so forth, and r
is a routing record. The routing record is an
object of the form (XK–YK), (X(K-1)–Y(K-1)), …,
(X1–Y1), in which every pair of elements (Xi,
Yi) represents the state of dissemination in
one scope; Xi is the member of the scope that
the message locally originated from and Yi is
the member of the scope that the message is
moving inside of or that it is entering. Pair (X1,
Y1) represents individual nodes, and for each
i, scopes Xi and Yi are a level below Xi+1 and

Yi+1, respectively, and Yi is always a member
of Yi+1. This list of entries does not need to
“extend” all the way up to the root. If entries
at a certain level are missing, they will be filled
up when the message jumps across scopes, as
it is explained below.

When a message arrives at a node, the
node iterates over all of its outgoing channels,
and matches channel filters against the routing
record. Message T, k, ((XK–YK), (X(K-1)–Y(K-

1)), …, (X1–Y1)) matches channel (PL:PL-1:…:
P1 – QL:QL-1:…:Q1 , T:R) when (K ≥ L ˄ XL
= R ˅ K < L ˄ PL = R) holds. This condition
has two parts. If K ≥ L, then in the scope in
which the channel endpoints PL, QL and R are
members, the message originated at XL and
is currently at YL. According to our rules, the
message should be forwarded iff XL = R (and
YL = PL, but this is always true). If K < L, then
the routing record does not carry any state for
the scope at which PL, QL and R are members.
This means the message must have originated
in this scope (the recovery record is filled up
when the message is forwarded, as explained
below), hence the condition PL = R. Note that
there might be several channels originating
at the node; the message is forwarded across
each one it matches. Now, when the message

Figure 19. The flow of messages (rounded rectangles, left), and the channels (square rectangles,
right) in the scenario of Figure 17. Elements compared against each other are shown as black,
bold, and underlined

A-b,t:A

P:b-Q:c,t:P

c-d,t:c

Q:d-r:E,t:P

t,k,(P-r,E-E)

t,k,(P-Q,c-d)

t,k,(P-Q,c-c)

t,k,(A-b)

t,k,(A-A) A

b

c

d

E

34 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

is forwarded, its routing record is modified as
follows. First, the record is extended. If K < L,
then for each i such that i > K and i ≤ L, we set
Xi = Pi and Yi = Pi. Then, the details internal
to the scope that the channel is leaving are
replaced with the details internal to the scope
the channel is entering, so for each i such that
i < L, we set Xi = Qi and Yi = Qi. Finally, the
current scope at the level at which the chan-
nel is defined is updated, we set YL = QL. The
original value of XL, once set, is not changed
until the message is forwarded out of the scope
of which XL is the member. Entries for i > L
also remain unchanged.

The flow of messages and matching in the
example of Figure 18 is shown on Figure 19.
When created on the publisher A, the message
initially has a routing record A–A, since we
know that it originated locally at A and that it
is still at A. No entries are included at this point
for routing in the scopes above A. There is no
need for doing so since no routing has been
done so far at those higher levels, so there is
no state to maintain. Now the routing record is
compared against channel A-B, T:A. The local
origin A does match the channel’s constraint A,
so the message is forwarded along A-B, with
a new record A-B to reflect the fact that it is
now entering B. While matching this record
to channel P:B–Q:C at B, we find that the
record lacks routing information for the scope
at which this channel is defined. This means
that the message must have originated at the
channel’s source endpoint (which we know
is P from the channel’s description). We find
that the channel’s constraint P is the same as
the channel’s source endpoint P, so we again
forward the message. While doing so, we ex-
tend its routing record with a new entry P-Q
to record the fact that we made progress at this
higher level. We also replace information lo-
cal to P (the entry A-B) with new information
local to Q (the new entry C-C). Forwarding
at C and D works similarly to how it worked
on A and B.

The Local Architecture of a
Dissemination Scope
So far we focused in our description on peer-to-
peer aspects of the dissemination framework,
but we have not described how applications
use this infrastructure, and how leaf scopes are
internally organized. Of a number of possible
architectures of the leaf scopes, the most general
one involves the following components: scope
manager, local controller, and controlled ele-
ment (Figure 20). The controlled element is a
very thin layer that resides in the application
process. Its purpose is to serve as a hookup to
the application process that allows for control-
ling the way the application communicates over
the network. As such, it serves two principal
purposes: (a) passing to the local controller
requests to subscribe/unsubscribe, and (b)
opening send and receive sockets in the process
per request from the controller. The controlled
element does not forward messages, nor does it
include any other peer-to-peer functionality, and
it is not a part of the management network. This
simplicity allows it to be easily incorporated
into legacy applications. It can be implemented
in any way, for as long as it exposes a control
endpoint (Figure 20, thin, black), a standard-
ized Web service interface, and as long as it can

Figure 20. The architecture of a leaf scope in
the most general scenario, with a local scope
manager, a thin controlled element linked to
the application, and with a local controller
to handle peer-to-peer aspects, for example,
forwarding

Scope
Manager

Local
Controller

Controlled
ElementApp

DataControl
Process

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 35

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

create communication endpoints (thick, red) to
receive or connect to remote endpoints to send.
The local controller implements all the peer-
to-peer functionality such as forwarding, and
so forth, and hosts such elements as channels
or filters. It may also create communication
endpoints, and may send data to or receive it
from the controlled element. The controller is
not a part of the management network, and it
does not interact with any scope mangers besides
the local one. These interactions are the job of
the local SM, which, on the other hand, never
sends or receives any messages itself.

In general, the three components can live
in separate processes, or even physically on
different machines, and may communicate over
local sockets or over the network. However,
in the typical scenario, the scope manager and
local controllers are located in a single process
(“manager”). The manager runs as a system
service and may control multiple applications,
either local or running on subordinate devices
managed by the local node, through the con-
trol elements embedded in these applications.
Within this scenario, we can distinguish three
basic subscenarios, or three patterns of usage
(Figure 21), depending on whether applications
participate in sending or receiving directly, or
only through the manager.

In the first scenario, the applications only
receive data, directly from the network (Figure
21, left). When the manager is requested to create
an incoming channel to the scope, it may either
arrange for all applications to open the same
socket to receive messages directly from the
network (if the applications are all hosted one
the same machine), or it may make them all sub-

scribe to the same IP multicast address (if they
are running on multiple subordinate devices),
or it may have them create multiple endpoints,
in which case the definition of the local channel
endpoint will include a set of addresses rather
than just one. The manager does not sit on the
critical path; hence we avoid bottleneck and
latency. If the local scope is required to forward
data to other scopes, the manager also creates an
endpoint (opens the same socket, or extends the
receive channel endpoint definition to include
its own address), to receive the data that needs
to be forwarded.

In our example, the library’s server might
act as a leaf scope, and students’ laptops might
act as subordinate devices that do not host their
own local scope managers and do not forward
messages. Applications on the laptops would
have the embedded controlled elements that
communicate with the local controller on the
library server via a standard Web interface.
When students subscribe to a local topic, such
as an online lecture transmitted by another
department, the server chooses an IP multicast
address and has all the laptops subscribe to it.
The data arriving on the local network is received
by all devices without any intermediary. If the
library needs to forward messages, the server
also subscribes to the IP multicast address and
creates all the required channels and filters.

In the second scenario, the applications
act as publishers (Figure 21, center). There is
no need to forward data, hence the manager
does not create any send or receive channels.
In order to support this scenario, the controlled
element must allow transmitting data to multiple
IP addresses; embed various headers provided
by the local controller, and so forth. There can
be different “classes” of controlled elements,
depending on what functionality they provide;
this scenario might be feasible only for some
such classes. This scenario avoids proxies, thus
it could be useful, for example, in streaming
systems.

In the third scenario, the applications
communicate only with the local controller,
which acts as a proxy (Figure 21, right). Un-
like in the first two scenarios, this introduces

Figure 21. Three example architectures with the
scope manager and the local controller merged
into a single local system “daemon”

Mgr

APP

Mgr

APP

Mgr

APP

DataControl

36 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

a bottleneck, but since the controlled elements
do not need to support any external protocols
or to be able to embed or strip any external
headers, this scenario is always feasible. This
scenario could also be used to interoperate with
other eventing standards, such as WS-Eventing
or WS-Notification. Here, the manager could
act as the publisher or a proxy from the point
of view of the application, and provide or
consume messages in the format defined by all
those other standards, while using our general
infrastructure “under the hood.” And similarly,
for high-performance applications that reside on
the server, an efficient implementation is pos-
sible using shared memory as a communication
channel between the manager and the applica-
tions, and permitting applications to deserialize
the received data directly from the manager’s
receive buffers, without requiring extra copy
or marshaling across domains.

Sessions
We now shift focus to consider architectural
implications of reliability protocols. Protocols
that provide stronger reliability guarantees
traditionally express them in terms of what we
shall call epochs, corresponding to what in group
communication systems are called membership
views. In group communication systems, the
lifetime of a topic (also referred to as a group)
is divided into a sequence of views. Whenever
the set of topic subscribers changes after a
“subscribe” or an “unsubscribe” request, or a
failure, a new view is created. In group com-
munication systems, the corresponding event
initiates a new epoch. Subscribers are notified
of the beginnings or endings of epochs, and of
the membership of the topic for each epoch.
One then defines consistency in terms of which
messages can be delivered to which subscribers
and at what time relative to epoch boundaries.
The set of subscribers during a given epoch is
always fixed.

Whereas group communication views are
often defined using fairly elaborate models
(such as virtual synchrony, a model used in
some of our past research, or consensus, the
model used in Lamport’s Paxos protocol suite),

the architectural standard proposed here needs
to be flexible enough to cover a range of reli-
ability protocols, include many that have very
weak notions of views. For example, simple
protocols, such as SRM or RMTP, do not pro-
vide any guarantees of consistent membership
views for topics.

In developing our architectural proposal,
we found that even for protocols such as these
two, in which properties are not defined in terms
of epochs, epochs can still be a very useful, if
not a universal, necessary concept. In a dynamic
system, configuration changes, especially those
resulting from crashes, usually require recon-
figuration or cleanup, for example, to rebuild
distributed structures, release resources, or
cancel activities that are no longer necessary.
Most simple protocols lack the notion of an
epoch because they do not take such factors
into account and do not support reconfiguration.
Others do address some of these kinds of issues,
but without treating them in a systematic man-
ner. By reformulating such mechanisms in terms
of epochs, we can standardize a whole family
of behaviors, making it easier to talk about
different protocols using common language, to
compare protocols, and to design applications
that can potentially run over any of a number of
protocols, with the actual binding made on the
basis of runtime information, policy, or other
considerations.

Our design includes two epoch-like con-
cepts: sessions, which are global to the entire
topic, across the Internet, are shared by dif-
ferent frameworks (reliability, ordering, etc.),
and which we discuss in this section, and local
views, which are local to scopes, and which
are discussed in the section on “Building the
Hierarchy of Recovery Domains”.

A session is a generalization of an epoch.
In our system, sessions are used primarily as
means of reconfiguring the topic to alter its
security or reliability properties, or for other
administrative changes that must be performed
online, while the system is running.

The lifetime of any given topic is always
divided into a sequence of sessions. However,
session changes may be unrelated to member-

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 37

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

ship changes of the topic. Since introducing a
new session involves a global reconfiguration,
as described further, it is infeasible for an In-
ternet-scale system to introduce a new session,
and disseminate membership views, every time
a node joins or leaves. Instead, such events are
handled locally, in the scopes in which they
occur, and without introducing a new, global,
Internet-wide epoch.

Session numbers are assigned globally, for
consistency. As explained before, for a given
topic, a single global scope (“root”) always
exists such that all subscribers to that topic
reside within its span. Although, as we shall
explain, dissemination, reliability, and other
frameworks may use different scope hierarchies,
the root scope is always the same and all the
dissemination, reliability, and other aspects
of it are normally managed by a single scope
manager. This top-level scope manager main-
tains the topic’s metadata; it is also responsible
for assigning and updating session numbers.
Note that local topics, for example, internal
to an organization, may be rooted locally, for
example, in the headquarters, and managed by a
local SM, much in a way local newsgroups are
managed locally. Accordingly, for such topics,
sessions are managed by a local server (internal
to the organization).

To conclude, we explain how sessions im-
pact the behavior of publishers and subscribers.
After registering, a publisher waits for the SM
to notify it of the session number to use for a
particular topic. A publisher is also notified
of changes to the session number for topics
it registered with. All published messages are
tagged with the most recent session number,
so that whenever a new session is started for a
topic, within a short period of time no further
messages will be sent in the previous session.
Old sessions eventually quiesce as receivers
deliver messages and the system completes
flushing, cleanup, and other reliability mecha-
nisms used by the particular protocol. Similarly,
after subscribing to a topic, a node does not
process messages tagged as committed to ses-
sion k until it is explicitly notified that it should
receive messages in that session. Later, after

session k+1 starts, all subscribers are notified
that session k is entering a flushing phase (this
term originates in virtual synchrony protocols,
but similar mechanisms are common in many
reliable protocols; a protocol lacking a flush
mechanism simply ignores such notifications).
Eventually, subscribers report that they have
completed flushing and a global decision is made
to cease any activity and cleanup all resources
pertaining to session k, thus completing the
transition.

Incorporating Reliability, Ordering,
and Security
As mentioned earlier, we rooted our design in
the principle of separation of concerns, and we
implement tasks such as reliability, ordering,
security, or scope management independently
from dissemination. In the section entitled
“The Local Architecture of a Dissemination
Scope,” we explained how the management
and the dissemination infrastructures interact
in our system. The remaining frameworks, reli-
ability, security, and ordering, are decomposed
in a similar manner, and they also include three
base components: (a) the controlled element
that lives in the application processes and
implements only base functionality, related
to sending or receiving from the applications,
but none of the peer-to-peer or management
aspects, (b) the local controller that may live
outside of the application process, and where
all the peer-to-peer aspects are implemented,
and (c) the scope manager that implements the
interactions with other scope managers, but
that is not involved in any activities related to
the data flows, such as forwarding, calculating
recovery state, managing encryption keys, as-
signing message order, and so forth.

In general, each of the dissemination, reli-
ability, security, and ordering frameworks has
a separate hierarchy of scopes and a separate
network of scope managers. For example,
reliability scopes isolate and encapsulate the
local aspects related to reliability, such as loss
recovery, and so forth, and hide their internal
details from other scopes, just like dissemina-
tion scopes manage local dissemination and

38 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

hide the local aspects of message delivery. In
some cases, the different scopes would overlap.
This will be normally the case, for example,
with the four “flavors” of scopes (ordering,
security, reliability, and dissemination) local
to a node. In such cases, a single local service
would act as a scope manager for all the scopes
of all four flavors. The same would typically be
the case for the servers that control administra-
tive domains, such as a departmental LAN, a
wireless network in a cafeteria, a data center, a
corporate network, and so forth. Scopes of all
flavors would again overlap, and they would
be managed by a single server.

Irrespective of whether components of
the four different frameworks overlap, or are
physically hosted on the same machine or
in the same process, the frameworks always
logically converge in the application (Figure
22). The complete local architecture includes a
multiplexer (MUX), which serves as the entry
point for messages from the application, and
assigns messages to sessions, and a separate
protocol stack for each session (rows on Fig-
ure 22). Elements of the per-session stacks are
subcomponents owned by the four “controlled
elements” (columns on Figure 22): security
(SEC), dissemination (DISS), reliability (REL),
and ordering (ORD), each of which exposes the
standard Web interface required for interaction
with its corresponding local controller. Now,
when the application sends a message, it is
first assigned to a session by the multiplexer,
and assigned a local sequence number within
the session. It is then passed to the appropriate

per-session protocol stack, simultaneously to
the subcomponents that handle security and
ordering. Each of these two subcomponents
processes the message independently and
concurrently. The security component may
encrypt and sign it, if necessary, and then pass
it further to the dissemination component for
transmission, and independently, to the reli-
ability component to place it in a local cache
for the purpose of retransmission, forwarding,
and so forth, and to update the local structures
to record the fact that the message was created.
At the same time, the ordering component, also
working in parallel with the dissemination and
reliability components, records the presence
of the message in its own structures, which
are used later by the ordering infrastructure to
generate ordering requests, to be submitted to
the orderer (for details, see the section entitled
“Ordering”).

On the receive path, the process would
look similar (Figure 23). Messages may arrive
either through the dissemination framework,
in the normal case, or via the reliability frame-
work if they were initially lost, and have been
later recovered. Messages that arrive from the
dissemination framework are routed via the
reliability subcomponent so that they are regis-
tered, can be cached, or so that delivery can be
suppressed. When ordering arrives from the or-
dering framework, messages can be decrypted,
placed in a buffer (BUF), and delivered in the
appropriate order to the application.

The exact manner in which the subtasks
performed by the four subcomponents are syn-

Figure 22. Internal architecture of the application process

APP

sEc dIss rEL ord

sEc dIss rEL ord

MuX

controlled
element

single-session
protocol stack

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 39

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

chronized may vary. On the send path, messages
may not be transmitted until the entire protocol
stack for a given session can be assembled, that
is, if the dissemination framework learned of
a new session, but the reliability framework
has not, the transmission might be postponed
until the information about the new session
propagates across the reliability framework as
well, to avoid problems stemming from such
misalignments. On the receive path, the decryp-
tion of the message might be postponed until
the ordering is known, to avoid maintaining two
copies of the message in memory, one for the
purpose of loss recovery (encrypted) and one
for delivering to the application (decrypted),
and so forth.

Hierarchical Approach to
Reliability
Our approach to reliability resembles our hi-
erarchical approach to dissemination. Just as
channels are decomposed into subchannels, in
the reliability framework we decompose the
task of loss repair and providing other reli-

ability goals. Recovering messages in a given
scope is modeled as recovering within each of
its subscopes, concurrently and independently,
then recovering across all the subscopes (Figure
24). For example, suppose that scope X has
members Y1, Y2, …, YK. A simple reliability
property P(X) requiring that “if some node x in
the span of scope X receives a message m, then
for as long as either x or some other node keeps
a copy of it, every other node y in the span of X
will also eventually get m,” can be decomposed
as follows. First, we ensure P(Yi) for every Yi,
that is, we ensure that in each subscope Yi of
scope X, if one node has the message, then so
eventually do the others. The protocols that
lead to this goal can run in all these subscopes
independently and concurrently. Then, we run
a protocol across subscopes Y1, Y2, …, YK,
to ensure that if any of them has in its span
a node x that received message m, then each
of the other Yi also eventually has a node that
received m. When these tasks, that is, recovery
in each Yi plus the extra recovery across all Yi,
are all performed for sufficiently long, P(X) is
eventually established.

Coming back to our example, assume that
students with their laptops sit in university de-
partments, each of which is a scope. Suppose
that some, but not all of the students received
a message with a homework problem set from
their professor sitting in a cafeteria. We would
like to ensure that the problem set gets reliably
delivered to all students. In our architecture,
this would be achieved by a combination of
protocols: a protocol running in each depart-
ment would ensure that internally, for every

Figure 23. Processing messages on the send
path (red and solid lines) and on the receive
path (blue and dotted lines)

APP

sEc dIss

rEL

ord

MuX

buF

recover in Y

recover in X
disseminate

within X

disseminate
within Y

scope X

sub-scope Y

Figure 24. The similarities between a hierarchical dissemination (left) and hierarchical recovery
(right)

40 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

pair x, y of students, if x got the message then
so eventually does y, and likewise a protocol
running across the departments ensures that for
each pair of departments x, y, if some students
in x got the message, so eventually do some
students in y. In the end, this yields the desired
outcome.

Just like recovery among individual nodes,
recovery among LANs might also involve
comparing their “state” (such as aggregated
ACK/NAK information for the entire LAN)
or forwarding lost messages between them.
We give an example of this in the section on
“Recovery Agents.” As mentioned earlier, in
our architecture, different recovery schemes
may be used in different scopes, to reflect dif-
ferences in the network topologies, node or
communication link capacities, the availability
of IP multicast and other local infrastructure, the
way subscribers are distributed (e.g., clustered
or scattered) and so forth.

For example, in one department, the
machines of the students subscribed to topic
T could form a spanning tree. The property
we mentioned above could be guaranteed by
making neighbors in the tree compare their
state, and upon discovering that one of them
has a message m that the other is missing,
forwarding m between the two of them. The
same approach may also be used across the
departments, that is, departments would form
a tree, the departments “neighboring” on that
tree could compare what their students got, and
perhaps arrange for messages to be forwarded
between them. For the latter to be possible,
the departments need a way to calculate “what
their students got,” which is an example of an
aggregated, “department-wide” state. Finally,
some departments could use a different ap-
proach. For example, a department enamored
of gossip protocols might require that student
machines randomly gossip about messages they
got; a department that has had bad experiences
with IP multicast and with gossip might favor
a reliability protocol that runs on a token ring
instead of a tree, and a department with a site-
license for a protocol such as SRM (which runs
on IP multicast) might favors its use, where the

option is available. In each department, a dif-
ferent protocol could be used locally. As long
as each protocol produces the desired outcome
(satisfies the reliability property inside of the
department), and as long as the department has
a way to calculate aggregate “department-wide”
state needed for inter-department recovery, these
very different policies can be simultaneously
accommodated.

Just as messages are disseminated through
channels, forming what might be termed dis-
semination domains, reliability is achieved
via recovery domains. A recovery domain D
in scope X may be thought of as a “distributed
recovery protocol running among some nodes
within X that performs recovery-related tasks
for a certain set of topics.”

For example, when some of the students
sitting in a library subscribe to topic T, the
library might create a “local recovery domain
for topic T.” This domain could be “realized,”
for example, as a spanning tree connecting the
laptops of the subscribed students and running
a recovery protocol between them. The library
could internally create many domains, for ex-
ample, many such trees of student’s laptops.

The concept of a recovery domain is dual
to the notion of a channel; here we present the
analogy:

•	 Just like a channel is created to disseminate
messages for some topics T1, T2, …. Tk in
scope X, a recovery domain is created to
handle loss recovery and other reliability
tasks, again for a specific set of topics, and
in a specific scope. Just like there could exist
multiple channels to a scope, for example,
for different sets of topics, there could also
exist multiple recovery domains within
a single reliability scope, each ensuring
reliability for different sets of topics.

•	 Just as channels may be composed of sub-
channels, a recovery domain D defined at a
scope X may be composed of subdomains
D1, D2, …. Dn defined at subscopes of X
(we will call them the members of D).
Each such subdomain Di handles recovery
for a set of subscribers in the respective

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 41

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

subscope, while D handles recovery across
the subdomains. The hierarchy of recovery
domains reflects the hierarchy of scopes
that have created them, just as channels
are decomposed in ways that reflect the
hierarchy of scopes that have exposed those
channels.

•	 Just as channels are composed of sub-
channels via applying filters assigned by
forwarding policies, a recovery domain
D performs its recovery tasks using a re-
covery protocol. Such a protocol, assigned
to D, specifies how to combine recovery
mechanisms in the subdomains of D into a
mechanism for all of D. Recovery protocols
are defined in terms of how the subdomains
“interact” with each other. We explain how
this is done in more detail in the section
entitled “Hierarchical Approach to Reli-
ability.”

•	 Just like a single channel may be used to
disseminate messages in multiple topics,
a recovery domain may run a single pro-
tocol to perform recovery simultaneously
for a set of topics. In both cases, reusing a
single mechanism (a channel, a token ring,
a tree, etc.) may significantly improve per-
formance due to the reduction in the total
number of control messages and other such
optimizations. Indeed, we implemented and
evaluated this idea in QSM (Ostrowski &
Birman, 2006b, 2006c).

Each individual node is a recovery domain
on its own. On the other hand, in a distributed
scope such as a LAN, the library in our example,
many cases are possible. In one extreme, a single
domain may cover the entire LAN. All internal
nodes could thus form a token ring, or gossip
randomly to exchange ACKs for messages in all
topics simultaneously, and use this to arrange
for local repairs. In the other extreme, separate
domains could be created for every individual
topic; subscribers to the different topics could
thus form separate structures, such as separate
rings and trees, and run separate protocol in-
stances in each of them, exchanging state and
the lost messages. In our system, recovery

domains actually handle recovery for specific
sessions, not just specific topics. Each of the
recovery domains created internally by a scope
performs recovery for some set of sessions, and
these sets are such that for each session in which
this scope has subscribers, there is a recovery
domain in this scope that performs recovery
for this session.

A recovery domain D of a data center
could have as its members recovery domains
created by the LANs in that data center (by the
SMs of these LANs). Note that in this case,
members of D would themselves be distributed
domains, that is, sets of nodes. A recovery
protocol running in D would specify how all
these different sets of nodes should exchange
state and forward lost messages to one another.
Note the similarity to a forwarding policy in a
data center, which would also specify how mes-
sages are forwarded among sets of nodes. As
explained in the section on “Recovery Agents”
and the section on “Implementing Recovery
Domains with Agents,” recovery protocols
are implemented through delegation, just like
forwarding. A concept of a recovery protocol is,
to some extent, dual, symmetric to the notion
of a forwarding policy.

Building the Hierarchy of
Recovery Domains
Before we show how the hierarchical recovery
scheme can be implemented, we need to explain
how domains created at different scopes are re-
lated to each other. As explained in the preceding
section, domains are organized by the relation
of membership: domains in superscopes can be
thought of as containing domains in subscopes
as members. Just as was the case for scopes,
a given domain can have many parents, and
there may be multiple global domains, but for
a given topic, all domains involved in recovery
for that topic always form a tree. Domains
know their members (subdomains) and own-
ers (superdomains), and through a mechanism
described below, also their peers (other domains
that have the same parent). This knowledge of
membership allows the scopes that create those

42 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

domains to establish distributed structures in
an efficient way.

A consistent view of membership is the
basis for many reliable protocols, and could
benefit many others that don’t assume it. Know-
ing the members of a topic helps to determine
which nodes have crashed or disconnected. In
existing group communication systems, this
is usually achieved by a Global Membership
Service (GMS) that monitors failures and
membership changes for all nodes, decides
when to “install” new membership views for
topics, and notifies the affected members of
these new views, including the lists of topic
members. Nodes then use those membership
views to determine, for example, what other
nodes should be their neighbors in a tree, who
should act as a leader, and so forth.

In our framework, the manager of the root
scope for a given topic is responsible for creat-
ing the top-level recovery domain, announcing
when sessions for that topic begin or end, and
so forth. However, if the root SM, which in case
of an Internet-wide scope would “manage” the
entire Internet, had to process all subscriptions,
and respond to every failure across the Internet,
it would lead to a non-scalable design: beyond
a certain point the system would be constantly
in the state of reconfiguration, trying to change
membership or install new sessions, and hence
unable to make useful progress. It would also
violate the principle of isolation: the higher-level
scopes would process information that should
be local, for example, a corporate network
would have to know which nodes in data cen-
ters are subscribers, whereas according to our
architectural principles, the administrator of a
corporate network, and the policies defined at
this level, should treat the entire data centers
as black boxes.

To avoid the problem just mentioned,
rather than collecting all information about
membership in a topic T and processing it
centrally, we distribute this information across
all scope managers in the hierarchy of scopes
for topic T (recall this hierarchy defined in the
section entitled “The Hierarchy of Scopes”).
Each SM thus has only a partial membership

view for each topic and session. This scheme
is outlined below.

In the reliability framework, if a scope X
subscribes to a topic T, it first selects or creates
a local recovery domain D that will handle the
recovery for topic T locally in X, and then sends
a request to one of its parent scopes, some Y,
asking to subscribe this specific domain, to topic
T. At this point, it is not significant which of its
parent scopes X directs the request to. X may
be manually setup by an administrator with the
list of parent scopes, and to send requests in all
topics that have names matching a certain pattern
to a given parent, or it could use an automated,
or a semi-automated scheme to discover the
parent scopes that it should subscribe with.
Exactly how such a discovery scheme can be
most efficiently constructed is beyond the scope
of this article, but we do hope to explore the
issue in a future work.

The superscope Y processes the X’s sub-
scription request jointly with requests from other
of its subscopes, for example, batching them
together for efficiency. It then either joins X and
other subscopes to an existing recovery domain
or creates a new one, some D’. When joining an
existing recovery domain, Y follows a special
protocol, some details of which are given in
the section entitled “Reconfiguration”. In any
case, scope Y informs all scopes of the new
membership of domain D’. So for each recovery
domain D’’ that is a member of D’, the subscope
of Y that owns this domain will be notified by
Y that domain D’ changed membership, and
will be given the list of all subdomains of D’
together with the names of the scopes that own
those subdomains. Finally, if domain D’ has just
been created, and scope Y is not the root scope
for the topic, Y itself sends a request to one of
its parent scopes, asking to subscribe domain
D’ to the topic. Topic subscriptions thus travel
all the way to the root scope for the topic, in a
cascading manner, creating a tree of recovery
domains in a bottom-up fashion.

In our example, when a student A sitting in
a library L enters a virtual room T, A’s laptop
creates a local recovery domain DA, and sends a
request to the library server. Suppose that there

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 43

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

are other students in the library that are already
subscribed to T, so the library server already has
a recovery domain DL that performs recovery
in topic T. In this case all that is left to do for
the library server is to update the membership
of DL, and to inform student A’s laptop, as well
as the laptops of the other students subscribed
to T, of the new membership of DL, so that the
laptops can update the distributed recovery
structure, and build a new distributed structure.
For example, if laptops used a spanning tree, or
a token ring, to compare the sets of messages
they have received and exchange messages
between neighbors, the spanning tree or the
ring may be updated to include the new laptop.
On the other hand, suppose that student A is
the first in the library to subscribe to T. In this
case, the library server creates a new recovery
domain DL, with DA as its only member, and
sends its own request, in a cascading manner,
to a campus server C, asking to subscribe DL
to topic T, and so on.

The above procedure effectively constructs
a hierarchy of subdomains, with the property
that for each topic T, the recovery domains

subscribed to T form a tree. At the same time,
a membership hierarchy is built in a distributed
manner. Specifically, for each domain µ in
some scope S, S will maintain a list of the form
{ X1:β1, X2:β2, …, XK:βK }, in which β1, β2,
…, βK are the members, that is, subdomains of
domain µ, and X1, X2, …, XK are the names of
the scopes that own those subdomains (i.e., that
created them). In the process of establishing
this structure, each of the scopes Xi receives
the list, along with any future updates to it.
This information is not “pushed” all the way
down to the leaf nodes. Instead, every scope
maintains the membership of the domains it
created (so, for example, scope S maintains
the list mentioned above), plus a copy of the
membership of all superdomains of the domains
it created (so, for example, each Xi has a copy
of the list above), but not the membership of
any domains created below it (so, for example,
S would not track the membership of any of the
domains β1, β2, …, βK), more than one level
above it (so, for example, while scope S would
know what are the peers of its own domain µ,
scopes X1, X2, …, XK would not know those

Figure 25. Node A subscribes to topic T with the library L. Library L subscribes with campus
C. Membership information and view numbers are passed one level down (never up) the hier-
archy.

A
sm

sm
L

1

subscribe
A: to T

A
sm

sm
L

1

subscribe
L: to T

sm
C

sm

1
1 =

{A: }

A
sm

sm
L

1

sm

1

1 =
{L: }

C C
1

A
sm

sm
L

sm
C

1

1

1

B
sm 1

A
sm

sm
L

sm
C

1

1

1

B
sm 1

subscribe
B: to T

2

2=
{A: ,B: }

44 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

peers, because this information is, logically,
two levels “above”), or any internal details
of its peers (so, for example, while all of X1,
X2, …, XK would know the membership of µ,
that is, the entire list { X1:β1, X2:β2, …, XK:
βK }, they would not know the membership
of any of the domains β1, β2, …, βK besides
their own; they only know the names of their
peer domains).

Figure 25 shows an example of the structure
the system would construct in a scenario similar
to the one above. Laptop A creates a new domain
α, which may have a version number, like any
other domain, say α1. Then, A directs a request
subscribe A:α to T to the library L. Note that
the version number of α was not included in the
request to L. This is a detail internal to A that L
does not need to know about. Now, the library
creates a new domain μ, and gives it a version
number, say μ1, and directs subscribe L:μ to T
to the campus C (omitting the version number).
Concurrently, L notifies A that A:α is now a
member of μ1. This means that a domain μ has
been created at L, and version (view) number 1
of μ has just a single member A:α. Similarly,
C creates a new domain ε with initial version
ε1 that includes a single member L:μ and noti-
fies L. Later, another laptop B in the library L
also joins topic T. This time, no request is sent
to campus C. The library handles the request
internally. A new version (view) μ2 of domain μ
is created with two members A:α and B:β, and
both A and B are notified of this new view. A
and B undergo a special protocol to “transition”
from recovery domain μ1 to recovery domain μ2
in a reliable manner, and the protocol running
for μ1 eventually quiesces. The protocols that
run at higher levels are unaffected. Domain
ε1 still has only a single member L:μ, and the
view change that occurred internally in domain
μ is transparent to C, and to the protocols that
run at this level, and handled internally in the
library L, between nodes A and B.

By keeping the information about the hi-
erarchy of domains distributed, and by limiting
the way in which this information is propagated
to only one level below, we remain faithful to
the principles of isolation and local autonomy

laid out earlier. At the same time, this enables
significant scalability and performance ben-
efits. Because parent domains are oblivious
to the membership of their subdomains, and
reconfiguration can often be handled internally,
as in the example above, churn and failures in
lower layers of the hierarchy do not translate to
churn and failures in higher layers. A failure of
a node or a mobile user with a laptop joining or
leaving the system does not need to cause the
Internet-wide structure of recovery domains,
potentially spanning across tens of thousands
of nodes, to fluctuate and reconfigure.

As stated earlier, a single recovery domain
may perform recovery for multiple topics (ses-
sions), simultaneously. Additionally, recall that
the domain hierarchy, with multiple topics, may
not be a tree. We now present an example of how
and why this could be the case. Suppose that
nodes in a certain scope L are clustered based
on their interest. Nodes A and B would be in the
same cluster if A and B subscribed to the same
topics. Clusters are thus defined by sets of topic
names, for example, cluster RXY would include
nodes that have subscribed to topics X and Y,
and that have not subscribed to any other topics
besides these two. The set of nodes subscribed
to each topic would thus include nodes in a
certain set of clusters. We might even think of
as topics “including” clusters, and the clusters
including the individual nodes (Figure 26). Ac-
cordingly, a scope manager in L might create a
separate recovery domain for each cluster, and
then a separate recovery domain for each topic.
If node A subscribes to topic X, and nodes B
and C subscribe to topic Y, then L could cre-
ate a recovery domain RX for cluster RX and a
recovery domain RXY for cluster RXY. Domain
RX would have a single member A:α, while
RXY would have two members, B:β and C:φ.
Scope L would also create a local domain L:X
for topic X and L:Y for topic Y. Domain L:X
would have members L:RX and L:RXY while
domain L:Y would have a single member L:
RXY. Domains L:X and L:Y defined at scope L
could themselves be members of some higher-
level domains, defined at a higher-level scope
C, and so on. Now, the protocol running in

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 45

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

domain RXY at scope L, for example, would
perform recovery simultaneously for topics X
and Y. As said earlier, the protocol running in
RXY would also be used to calculate aggregate
information about domain RXY, to be used in
the higher-level protocols. In our example, the
information collected by the protocol running in
L:RXY would be used by two such protocols, a
protocol running in domain L:X and a protocol
running in L:Y.

While the structure just described may
seem complex, the ability to perform recovery
in multiple topics simultaneously is important
in systems like our virtual worlds, where the
number of topics (virtual rooms) may be very
large. QSM, mentioned previously, uses the
architecture just presented, and is able to scale
to thousands of publish-subscribe topics.

To complete the discussion of recovery
hierarchy, we now turn to sessions. As explained
earlier, in our architecture recovery is always
performed in the context of individual ses-
sions, not topics, because whenever a session
changes, so can the reliability properties of the
topic. The creation of the domain hierarchy,
outlined above, is mostly independent of the
creation of sessions. The only case when these
two processes are synchronized arises when the
last member, across the entire Internet, leaves
the topic, or when the first member rejoins the
topic after a period when no members existed,
for in such cases, it is impossible to handle the
event via a local reconfiguration between mem-
bers (such as transferring the state from some

existing member to the newly joining member,
or “flushing” any changes from the departing
member to some of the existing members).
Such an event will force an existing session to
be flushed or a new session to be created.

In any case, sessions for a topic T are
created by the scope that serves as the root for
T. The root maintains topic metadata and the
information about sessions in persistent stor-
age. It assigns new session number whenever
a new session is created, and then installs the
new session and flushes the existing session in
the top-level recovery domain that it created to
perform recovery in topic T. More on how the
installing and flushing of a session are realized
will be explained in the section “Implement-
ing Recovery Domains with Agents.” Now,
concurrently with installing of a new session
and flushing of the old session in the top-level
recovery domain, the scope manager passes the
session change event further, to the subdomains
that are members of this global recovery domain,
by communicating with the scope managers
that created those subdomains. This notifica-
tion travels down the hierarchy of recovery
domains in a cascading manner, until the ses-
sion change events are disseminated across the
entire structure.

Recovery Agents
The reader will have noticed by now that
the structure of recovery domains we’ve just
described “exists” only virtually, inside the
scope managers. These recovery domains are

Figure 26. A hierarchy of recovery domains in a system that clusters nodes based on interest

A
sm

sm
L

RX

B
sm

B

C
A

C
sm

RXY

X YX Y

RX RXY RY

46 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

“implemented” by physical protocols running
directly between physical nodes, the publishers
and subscribers, in a manner similar to how
we implemented channels between scopes, by
delegating the tasks that the recovery domains
are responsible for to physical nodes. Just as
channels between scopes are “implemented”
by physical connections between nodes that
can be constrained with filter chains and that
are “installed” in the physical nodes by their
superscopes, in the reliability framework re-
covery domains are “implemented” by agents.
Similarly to filters, these agents are also small,
“downloadable” components, which are in-
stalled on physical nodes by their superscopes.
Before going into details of how precisely this
is done, however, we first explain how exist-
ing recovery protocols can be modeled in a
hierarchical manner that is compatible with
our architecture.

Modeling Recovery Protocols
The reliability framework is based on an abstract
model of a scalable distributed protocol dealing
with loss recovery and other reliability proper-
ties. In this model, a protocol such as SRM,
RMTP, virtual synchrony, or atomic commit,
is defined in terms of a group of cooperating
peers that exchange control messages and can
forward lost packets to each other, and that may
perhaps interact with a distinguished node, such
as a sender or some node higher in a hierarchy,
which we will refer to as a controller (Figure
27). The controller does not have to be a separate
node; this function could be served by one of the
peers. The distinction between the peers and the
controller may be purely functional. The point

is that the group of peers, as a whole, may be
asked to perform a certain action, or calculate
a value, for some higher-level entity, such as a
sender, a higher-level protocol, or a layer in a
hierarchical structure. Examples of such actions
include retransmitting or requesting a retrans-
mission for all peers, reporting which messages
were successfully delivered to all peers, which
messages have been missed by all peers, and so
forth. Irrespectively of how exactly the interac-
tion with the controller is realized, it is present
in this form or another in almost every protocol
run by a set of receivers. We shall refer to the
possible interactions between the peers and the
controller as the upper interface. Notice that
some reliability protocols aren’t traditionally
thought of as hierarchical; we would view
them as supporting only a one-level hierarchy.
The benefit of doing so is that those protocols
can then be treated side by side with protocols
such as SRM and RMTP, in which hierarchy
plays a central role.

Each peer inspects and controls its local
state. Such state could include, for example, a
list of messages received, and perhaps copies
of those that are cached (for loss recovery),
the list and the order of messages delivered,
and so forth. Operations that a peer may issue
to change the local state could include retriev-
ing or purging messages from cache, marking
messages as deliverable, delivering some of the
previously missed message to the application,
and so forth. We refer to such operations, used
to view or control the local state of a peer, as a
bottom interface.

In protocols offering strong guarantees,
peers are typically given the membership of

Figure 27. A group of peers in a reliable protocol

peer peer

app app

peer

app

peer

app

group
of peers

local state

controller communication
with controller

communication
between peers

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 47

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

their group, received as a part of the initializa-
tion process, and subsequently updated via
membership change events. Peers send control
messages to each other to share state or to
request actions, such as forwarding messages.
Sometimes, as in SRM, a multicast channel to
the entire peer group exists.

To summarize, in most reliable protocols,
a peer could be modeled as a component that
runs in a simple environment that provides
the following interface: a membership view
of its peer group, channels to all other peers,
and sometimes to the entire group, a bottom
interface to inspect or control local state, and
an upper interface, to interact with the sender
or the higher levels in the hierarchy concerning
the aggregate state of the peer group (Figure 28).
In some protocols, certain parts of this interface
might be unavailable, for example, in SRM
peers might not know other peers. The bottom
and upper interfaces also would vary.

This model is flexible enough to capture
the key ideas and features of a wide class of
protocols, including virtual synchrony. How-
ever, because in our framework protocols must
be reusable in different scopes, they may need
to be expressed in a slightly different way, as
explained below.

In RMTP, the sender and the receivers
for a topic form a tree. Within this tree, every
subset of nodes consisting of a parent and its
child nodes represents a separate local recovery
group. The child nodes in every such group send
their local ACK/NAK information to the parent
node, which arranges for a local recovery within

the recovery group. The parent itself is either
a child node in another recovery group, or it is
a sender, at the root of the tree. Packet losses
in this scheme are recovered on a hop-by-hop
basis, either top-down or bottom-up, one level
at a time. This scheme distributes the burden of
processing the individual ACKs/NAKs, and of
retransmissions, which is normally the respon-
sibility of the sender. This improves scalability
and prevents ACK implosion.

There are two ways to express RMTP in our
model. One approach is to view each recovery
group consisting of a parent node and its child
nodes as a separate group of peers (Figure 29).
Since internal nodes in the RMTP tree simulta-
neously play two roles, a “parent” node in one
recovery group and a “child” node in another,
we could think of each node as running two
“agents,” each representing a different “half”
of the node, and serving as a peer in a separate
peer group. In this perspective it would be
not the nodes, but their “halves” that would
represent peers. Every group of peers, in this
perspective, would include the “bottom agent”
of the parent node, and the “upper agents” of its
child nodes. When a node sends messages to its
child nodes as a result of receiving a message
from its parent, of vice versa, we may think
of those two “agents” as interacting with each
other through a certain interface that one of
them views as upper, and the other as bottom.
These two types of agents play different roles
in the protocol, as explained below.

The bottom agent of each node interacts
via its bottom interface with the local state of

Figure 28. A peer modeled as a component living in abstract environment (events, interfaces,
and so forth)

bottom
interface

membership
change

notifications

control
messages
from other

peers

upper
interface

(unicast)
channels to
other peers
in the group

peer

(multicast)
channel to the
group of peers

48 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the node. It also serves as a distinguished peer
in the peer group, composed of itself and the
upper agents of the child nodes. A protocol
running in this peer group is used to exchange
ACKs between child nodes and the parent node
and arrange for message forwarding between
peers, but also to calculate collective ACKs for
the peer group, that is, which messages were not
recoverable in the group. This is communicated
by the bottom agent, via its upper interface,
to the upper agent. The upper agent of every
node interacts via its bottom interface with the
bottom agent. What the upper agent considers
as its “local state” is not the local state of the
node. Instead, it is the state of the entire recovery
group, including the parent and child nodes, that
is collected for the upper agent by the bottom
agent though the protocol that the bottom agent
runs with the upper agents in child nodes. Such
interactions, between a component that is logi-
cally a part of a “higher layer” (“upper agent”)
with components that reside in a “lower layer”
(“bottom agent”), both components co-located
on the same physical node, and connected via
their upper and bottom interfaces, are the key
element in our architecture.

At the top of this hierarchy is the sender, the
root of the tree. The bottom agent of the sender
node collects for the upper agent the state of
the top-level recovery group, which subsumes
the state of the entire tree, and passes it to the
upper agent through its upper interface. The
upper agent of the sender can thus be thought
of as “controlling” through its bottom interface
the entire receiver tree.

The second way to model RMTP, which
builds on the concepts we just introduced,
captures the very essence of our approach to
combining protocols. It is similar to the first
model, but instead of the “upper” and “bot-
tom” agents, each node can now host multiple
agents, again connected to each other through
their “bottom” and “upper” interfaces. Each
of these agents works at a different level. We
may think of every node as hosting a “stack”
of interconnected agents (Figure 30). In this
structure, the sender would not be the root of the
hierarchy any more. Rather, it would be treated
in the very same way as any of the receivers. The
same structure could feature multiple senders,
and a single recovery protocol would run for
all of them simultaneously.

Figure 29. RMTP expressed in our model. A node hosts “agents” playing different roles

Figure 30. Another way to express RMTP. Each node hosts multiple “agents” that act as peers
at different levels of the RMTP hierarchy

child nodes

parent node group of peers upper agent
(one peer)

bottom agent
(another peer)

groups
of peers

a node with
three agents

peers (agents) working
at different levels

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 49

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Focusing for a moment on a concrete ex-
ample, assume that nodes reside in three LANs,
which are part of a single data center (Figure
30). Each of these administrative domains is a
scope. Each node hosts, in its “agent stack,” a
“node agent” (bottom level, green, Figure 30).
The “local state” of the node agent, accessed by
the node agent through its bottom interface, is
the state of the node, such as the messages that
the node received or missed, and so forth. Now,
in each LAN, the node agents of all nodes in
that LAN form a peer group and communicate
with each other to compare their local state, or
to arrange for forwarding messages between
them. One of these node agents in each LAN
serves as a leader (or “parent”), and the others
serve as subordinates (or “children”). The leader
collects the aggregate ACK/NAK information
about the LAN from the entire peer group.
The node that hosts the leader also runs anther,
higher-level component that we shall call a
“LAN agent” (middle level, orange, Figure 30).
The LAN agent accesses, through its bottom
interface, the aggregated state of the LAN that
the “leader” node agent, co-located with it on
the same “leader” node, calculated. The LAN
agent can therefore be thought of as controlling,
through its bottom interface, the entire LAN,
just like a node agent was controlling the lo-

cal node. Now, all the LAN agents in the data
center again form a peer group, compare their
state (which are aggregate states of their LANs),
arrange for forwarding (between the LANs),
and calculate aggregate ACK/NAK informa-
tion about the data center. Finally, one of the
nodes that host the LAN agents hosts an even
higher-level component, a “data center agent”
(top level, blue, Figure 30). The aggregate state
of the data center, collected by the peer group
of LAN agents, is communicated through the
upper interface of the “leader” LAN agent to the
data center agent; the latter can now be thought
as controlling, through its bottom interface, the
entire data center. In a larger system, the hier-
archy could be deeper, and the scheme could
continue recursively.

Note the symmetry between the different
categories of agents. In essence, for every entity,
be it a single node, a LAN, or a data center,
there exists exactly one agent that collects,
via lower-level agents, the state of the entity
it represents, and that acts on behalf of this
entity in a protocol that runs in its peer group.
The agent that represents a distributed scope is
always hosted together with one of the agents
that represent subscopes. By now, the reader
should appreciate that this structure corresponds
to the hierarchy of recovery domains we intro-

Figure 31. A node as a “container” for agents

LAN

node

agent
representing

the node

agent
representing

the LAN

agent representing
the data center

data
center

connection between
peer agents

50 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

duced in the section “Building the Hierarchy
of Recovery Domains.” In our design, every
recovery domain is represented, as a part of some
higher-level domain, by an agent that collects
the state of the domain, which it represents,
and acts on behalf of it in a protocol that runs
among the agents representing other recovery
domains that have the same parent (Figure 31).
In order to be able to do their job, these agents
are updated whenever a relevant event occurs.
For example, they receive a membership change
notification, with the list of their peer agents,
when a new recovery domain is created. To
this end, each agent maintains a bi-directional
channel from the scope that created the recovery
domain represented by this agent, down to the
node that hosts the agent, along what we call
an agent “delegation chain.”

Note also that as long as the interfaces used
by agents to communicate with one-another are
standardized, each group of agents could run
an entirely different protocol, because the only
way the different peer groups are connected
with each other is through the bottom and up-
per interfaces of their agents. For example, in
smaller peer groups with small interconnect
latency agents could use a token ring protocol,
whereas in very large groups over a wide area
network, with frequent joins and leaves and
frequent configuration changes agents might
use randomized gossip protocol. This flexibility
could be extremely useful in settings where local
administrators control policies governing, for

example, use of IP multicast, and hence where
different groups may need to adhere to differ-
ent rules. It also allows for local optimizations.
Protocols used in different parts of the network
could be adjusted so as to match the local net-
work topology, node capacities, throughput or
latency, the present of firewalls, security poli-
cies, and so forth. Indeed, we believe that the
best approach to building high-performance
systems on the Internet scale is not through
a uniform approach that forces the use of the
same protocol in every part of the network,
but by the sorts of modularity our architecture
enables, because it can leverage the creativity
and specific domain expertise of a very large
class of users, who can tune their local protocols
to match their very specific needs.

The flexibility enabled by our architecture
also brings a new perspective on a node in a
publish-subscribe system. A node subscrib-
ing to the same topics in different portions
of the Internet, joining an already established
infrastructure (existing recovery domains and
agents implementing them running among
existing subscribers) may be forced to follow
a different protocol, potentially not known in
advance. Indeed, if we exploit the full power
of modern runtime platforms, a node might be
asked to use a protocol that must first be down-
loaded and installed, in plug-and-play fashion.
Because in our architecture, elements “installed”
in nodes by the forwarding framework (filters
and channels) and by the recovery framework
(agents) are very simple, and communicate
with the node via a small, standardized API
(recall the abstract model of a peer in Figure
28, which can also be interpreted as the abstract
model of an agent in the recovery framework),
these elements can be viewed as downloadable
software components.

Thus, a filter or a recovery agent can be a
piece of code, written in any popular language,
such as Java or one of the family of .NET lan-
guages, that exposes (to the node hosting it, or to
agents above and below in the agent stack) and
consumes a standardized interface, for example,
described in WSDL. Such components could be
stored in online repositories, and downloaded

Figure 32. A hierarchy of recovery domains
and agents implementing them

APPLIcAtIon

node

agent

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 51

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

as needed, much as a Windows XP user who
tries to open a file in the new Vista XPS format
will be prompted to download and install an
XPS driver, or a visitor to a Web page that uses
some special Active-X control will be given an
opportunity to download and install that control.
In this perspective, the subscribers and publish-
ers that join a publish-subscribe infrastructure,
rather than being applications compiled and
linked with a specific library that implements a
specific protocol, and thus very tightly coupled
with the specific publish-subscribe engine, can
now be thought of as “empty containers” that
provide a standard set of hookups to host dif-
ferent sorts of agents. Nodes using a publish-
subscribe system are thus runtime platforms,
programmable “devices,” elements of a large,
flexible, programmable, dynamically reconfigu-
rable runtime environment, offering the sort of
flexibility and expressive power unseen in prior
architectures.

We believe that in light of the huge success
of extensible, component-oriented program-
ming environments, standards for distributed
eventing must incorporate the analogous forms
of flexibility. To do otherwise is to resist the
commercial, off-the-shelf (COTS) trends, and
history teaches that COTS solutions almost
always dominate in the end. It is curious to
realize that although Web services standards
were formulated by some of the same companies
that are leaders in this componentized style of
programming, they arrived at standards propos-
als that turn out to be both rigid and limited in
this respect.

One part of our architecture, for which API
standardization options may not be obvious,
includes the upper and bottom interfaces. As the
reader may have realized, the exact form of these
interfaces would depend on the protocol. For
example, while a simple protocol implementing
the “last copy recall” semantics of the sort we
used in some of our examples require agents
to be able to exchange a simple ACK/NAK
information, more complex protocols may need
to determine if messages have been persisted to
stable storage, to be able to temporarily suppress
the delivery of messages to the application,

control purging messages from cache, decide
on whether to commit a message (or an opera-
tion represented by it) or abort it, and so forth.
The “state” of recovery domain and the set of
actions that can be “requested” from a recovery
domain may vary significantly.

As it turns out, however, defining the up-
per and bottom interfaces in a standard way is
possible for a wide range of protocols. In our
technical report (Ostrowski et al., 2006), we
have outlined elements of a novel architecture
being developed by the three authors of this
article, called the “QuickSilver Properties
Framework,” and based on the very architecture
presented here, that achieves precisely this form
of standardization. Moreover, the properties
framework allows a large class of protocols,
including such protocols as virtually synchro-
nous multicast and multicast with transaction
semantics, and so forth, to be implemented in
a declarative manner, using a special, domain-
specific rule-based language, without requiring
that the developer worry about performance and
scalability aspects.

The key idea behind this approach is based
on the observation that the state of most distrib-
uted protocols can be accurately described by
a set of “properties.” Properties are essentially
variables that can be associated with various
distributed entities (the reader might think of
these entities as recovery domains, which they
would indeed be, were the system described
there to be implemented within the architecture
described here). An example of a property is
Received(x), parameterized by an entity name
x. The value of this variable would be the set
of identifiers of all messages that have been
received by at least one node that is still in x.
Other examples, values of all of which would
again be sets of message identifiers, include
Cached(x) – the messages cached at some nodes
in x, Cleaned(x) – the messages received, but
no longer cached in x, Stable(x) – messages
received by all nodes in x, and so on.

In Ostrowski et al. (2006), we argue that
the logic of most protocols could be modeled
as a set of rules that determine how the values
of such properties are created and propagated.

52 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

For example, some properties are aggregated.
For a distributed entity x, Received(x) can be
defined as the set sum of Received(y) for all
y that are members of x. If this rule is applied
recursively to a distributed entity, it will yield
the set of messages that are received by any
node in the span of that entity, as requested.
Similarly, Stable(x) can be defined as the
set intersection of Stable(y) for all y that are
members of x. A rule that implements message
cleanup could be modeled as CanClean(root)
← Stable(root), where root is the top-level
entity (the top-level recovery domain), and
CanClean(x) is a property, the value of which
is disseminated rather than aggregated, that is,
passed in a top-down fashion, from the root
down to the individual nodes. As it turns out,
such rules can be implemented on top of the
architecture outlined in this article, using a
special version of an agent that supports a few
simple mechanisms, such as different flavors of
property aggregation or dissemination, and the
ability to produce a property based on a value
of a certain expression, either periodically, or
in response to events, such as receiving a mes-
sage, and so forth.

We believe that even without using the
properties framework, a set of properties, ex-
pressed in a standard manner, including their
“types,” is a good candidate for the upper or
bottom interface. Agents could still be imple-
mented in an imperative manner, explicitly
use the messaging API and the membership
notifications from the scopes controlling them,
but using the “properties” API to interact with
other agents in the agent stack. The details of
how exactly such interface could be defined
is, however, beyond the scope of this article.
Moreover, other similarly expressive schemes
may exist. Indeed, it is conceivable that agents
co-located on the stack could be able to “nego-
tiate” the manner in which they interact, and
download appropriate “converter” components
if necessary to ensure that their upper and bottom
interfaces match against each other.

To conclude this section, we now turn to
recovery in many topics at once. Throughout
this section, the discussion focused on a single

topic, or a single session, but as mentioned
before, the recovery domains created by the
reliability framework, and hence the sets of
agents that are instantiated to “implement” those
recovery domains, may be requested to perform
recovery in multiple sessions at once, for rea-
sons of scalability. As mentioned earlier, after
recovery domains are established, and agents
instantiated, the root scope may issue requests
to install or flush a session, passed along the
hierarchy of domains, in a top-down fashion.
These notifications are a part of the standard
agent API. Agents respond to the notifications by
introducing or eliminating information related
to a particular session in the state they maintain
or control messages they exchange.

For example, agents in a peer group could
use a token ring protocol and tokens circulating
around that ring could carry a separate recovery
record for each session. After a new session
would get installed, the token would start to
include the recovery record for that session.
When a flushing request would arrive for a
session, the session would eventually quiesce,
and the recovery record related to that session
would be eliminated from the tokens, and from
the state kept by the agents. The exact manner
in which introducing a new session and flushing
are expressed would depend on how the agent
implements it. The available agent implementa-
tion might not support parallel recovery in many
sessions at once; in this case, the scope manager
could simply create a separate recovery domain
for each topic, or even for each session, so that
separate agents are used for each.

If an agent performs recovery for many
sessions simultaneously, its “upper” and “bot-
tom” interfaces would be essentially arrays
of interfaces, one for each session. Likewise,
agent stacks might no longer be vertical. The
stacks for a scenario of Figure 26 are shown
on Figure 33. Here, agents on node B form a
tree. Two parts of the upper interface of one
agent that correspond to two different sessions
that the agent is performing recovery for, are
connected with two bottom interfaces of two
independent higher-level agents. At this point,
the structure depicted in this example may seem

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 53

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

confusing. In the section entitled “Implement-
ing Recovery Domains with Agents,” we come
back to this scenario, and we explain how such
structures are built.

Implementing Recovery Domains
with Agents
In the section entitled “Building the Hierarchy
of Recovery Domains,” we’ve explained how
a hierarchy of recovery domains is built, such
that for each session, there is a tree of domains
performing recovery for that session. In the sec-
tion on “Recovery Agents,” we indicated that
the recovery domains are “implemented” with
agents, and in the section entitled “Modeling
Recovery Protocols,” we explained how recov-
ery protocols can be expressed in a hierarchical
manner, by a hierarchy of agents that represent
recovery domains. We now explain how agents
are created.

A distributed recovery domain D in our
framework (i.e., a domain different than a
node, not a leaf in the domain hierarchy) will
correspond to a peer group. When D is created
at some scope X, the latter selects a protocol

to run in D, and then every subdomain Yk:Dk
of D is requested to create an agent that acts
as a “peer Yk:Dk within peer group X:D”. We
will refer to an agent defined in this manner as
“Yk:Dk in X:D.” Note how the membership
algorithm provides membership view at one
level “above,” that is, the scope that owns a
particular domain would learn about domains in
all the sibling scopes. This is precisely what is
required for each peer Yk:Dk in a peer group X:
D to learn the membership of its group. Hence,
the scopes Yk that own the different domains
Dk will learn of the existence of domain X:
D, each of them will realize that they need to
create an agent “Yk:Dk in X:D,” and each of
them will receive from X all the membership
change events it needs to keep its agent with
an up to date list of its peers.

For example, on Figure 26, domains B:
β and C:φ are shown as members of L:RXY,
so according to our rules, agents “B:β in L:
RXY” and “C:φ in L:RXY” should be created
to implement L:RXY. Indeed, the reader will
find those agents on Figure 33, in the protocol
stacks on nodes B and C.

Figure 33. Agents stacks that are not simply vertical that may be created on nodes in the scenario
from Figure 26. Agents are shown as gray boxes, with the parts of their upper or bottom interfaces
corresponding to particular sessions as small yellow boxes. On node B, the bottom-level agent
connects the two parts of its upper interface to two different higher-level agents, one to each of
them. The peer groups are circled with thick dotted red lines

X1 Y1

B: in L:RXY

X1 Y1

App on B

X1 Y1

L:RXY in L:X
X1

X1

L:RXY in L:Y
Y1

Y1

L:Y in C:Y
Y1

Y1

X1 Y1

C: in L:RXY

X1 Y1

App on C

X1 Y1

X1

A: in L:RX

X1

App on A

X1

L:RX in L:X
X1

X1

L:X in C:X
X1

X1

Node A Node CNode B

54 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

When the manager of a scope Y discov-
ers that an agent should be created for one of
its recovery domains Dk that is a member of
some X:D, two things may happen. If X man-
ages a single node, the agent is created locally.
Otherwise, Y delegates the task to one of its
subscopes. As a result, the agents that serve
as peers at the various levels of the hierarchy
are eventually delegated to individual nodes,
their definitions downloaded from an online
repository if needed, placed on the agent stack
and connected to other agents or to the applica-
tions. We thus arrive at a structure just like in
Figure 30, Figure 31, Figure 32, and Figure 33,
where every node has a stack of agents, linked
to one another, with each of them operating at
a different level.

While agents are delegated, the records
of it are kept by the scopes that recursively
delegated the agent, thus forming a delegation
chain. This chain serves as a means of com-
munication between the agent and the scope
that originally requested it to be created. The
scope and the agent can thus send messages
to one another. This is the way membership
changes or requests to install or flush sessions
can be delivered to agents.

When the node hosting a delegated agent
crashes, the node to which that agent is del-
egated changes. That is, some other node is
assigned the role of running this agent, and will
instantiate a new version of it to take over the
failed agents responsibilities. Here, we again
rely on the delegation chain. When the manager
of the superscope of the crashed node (e.g., a
LAN scope manager) detects the crash, it can
determine that an agent was delegated to the
crashed node, and it can request the agent to
be redelegated elsewhere. Since our frame-
work would transparently recreate channels
between agents, it would look to other peers
agents as if the agent lost its cached state (not
permanently, for it can still query its bottom
interface and talk to its peers). On the one part,
this frees the agent developer from worrying
about fault-tolerance. On the other part, this
requires that agent protocols be defined in a
way that allows peers to crash and “resume”

with some of their state “erased.” Based on our
experience, for a wide class of protocols this is
not hard to achieve.

Reconfiguration
Many large systems struggle with costs triggered
when nodes join and leave. As a configura-
tion scales up, the frequency of join and leave
events increases, resulting in a phenomenon
researchers refer to as “churn.” A goal in our
architecture was to support protocols that handle
such events completely close to where they
occur, but without precluding global reactions
to a failure or join if the semantics of the pro-
tocol demand it. Accordingly, the architecture
is designed so that management decisions and
the responsibility for handling events can be
isolated in the scope where they occurred.
For example, in the section on “Building the
Hierarchy of Recovery Domains,” we saw a
case in which membership changes resulting
from failures or nodes joining or leaving were
isolated in this manner. The broad principle is to
enable solutions where the global infrastructure
is able to ignore these kinds of events, leaving
the local infrastructure to handle them, without
precluding protocols in which certain events do
trigger a global reconfiguration.

An example will illustrate some of the
tradeoffs that arise. Consider a group of agents
implementing some recovery domain D that has
determined that a certain message m is locally
cached, and reported it as such to a higher-
level protocol. But now suppose that a node
crashed and that it happens to have been the
(only) one on which m was cached. To some
extent, we can hide the consequences of the
crash: D can reconfigure its peer group to drop
the dead node and reconstruct associated data
structures. Yet m is no longer cached in D and
this may have consequences outside of D: so
long as D cached m, higher level scopes could
assume that m would eventually be delivered
reliably in D; clearly, this is no longer the case.
Thinking back to the properties framework, the
example illustrates the risk that a property such
as Cached(x), defined earlier, might not grow

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 55

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

monotonically: here, Cached(x) has lost an
item as a consequence of the crash

This is not the setting for an extended
discussion of the ways that protocols handle
failures. Instead, we limit ourselves to the
observations already made: a typical protocol
will want to conceal some aspects of failure
handling and reconfiguration, by handling
them locally. Other aspects (here, the fact that
m is no longer available in scope D) may have
global consequences and hence some failure
events need to be visible in some ways outside
the scope. Our architecture offers the developer
precisely this flexibility: events that he wishes
to hide are hidden, and aspects of events that
he wishes to propagate to higher-level scopes
can do so.

Joining presents a different set of chal-
lenges. In some protocols, there is little notion
of state and a node can join without much fuss.
But there are many protocols in which a joining
node must be brought up to date and the associ-
ated synchronization is a traditional source of
complexity. In our own experience, protocols
implementing reconfiguration (especially joins)
can be greatly facilitated if members of the re-
covery domains can be assigned certain “roles”.
In particular, we found it useful to distinguish
between “regular” members, which are already
“up to date” and are part of an ongoing run of
a protocol, and “light” members, which have
just been added, but are still being brought up
to date.

When a new member joins a domain,
its status is initially “light” (unless this is the
first membership view ever created for this
domain). The job of the “light” members, and
their corresponding agents, is to get up-to-date
with the rest of their peer group. At some point,
presumably when the light members are more
or less synchronized with the active ones, the
“regular” agents may agree to briefly suspend
the protocol and request some of these “light”
peers to be promoted to the “regular” status.

The ability to mark members as “light” or
“regular” is a fairly powerful tool. It provides
agents with the ability to implement certain
forms of agreement, or consensus protocols

that would otherwise be hard to support. In
particular, this feature turns out to be sufficient
to allow our architecture to support virtually
synchronous, consensus-like, or transactional
semantics.

Ordering
As mentioned in the section on “Incorporating
Reliability, Ordering, and Security,” ordering is
implemented independently of dissemination.
When a publisher submits a message to the
dissemination framework, it simultaneously
submits an ordering request into the ordering
framework. An ordering request is a small
object that lists the sender identifier, message
topic and a sequence number. In response to
the ordering requests, the ordering framework
produces orderings. Orderings are small objects
assigning indexes to batches of messages, per-
haps coming from different publishers. These
orderings are then delivered to the interested
subscribers (Figure 34).

Because the ordering framework is de-
signed to process requests from different pub-
lishers together, it is possible to, for example,
totally order messages in each topic, or even
totally order messages across different topics.

Messages transmitted by publishers may
be marked as ordered, as a hint for subscribers
that these messages should not be delivered until

Figure 34. For all messages for which ordering
across multiple senders is required, publishers
create ordering requests and submit these in
batches to the ordering framework. The latter
produces orderings in response to the ordering
requests, and delivers these orderings to the
subscribers

publisher subscriber

ordering
framework

dissemination
framework

ordering
request ordering

message message

ordering request

56 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

an ordering for these messages arrives through
the ordering framework. The subscribers that
do not care about ordering will simply not
subscribe to the ordering framework, and will
ignore such markings.

The ordering framework consists of two
components: a component that collects ordering
requests from multiple sources and produces
orderings in response to these requests, and
a component that delivers these orderings to
subscribers. The first of these components is
essentially an aggregation mechanism, and
the second is similar to the dissemination
framework.

Like every other element of our architec-
ture, ordering is performed in a hierarchical
manner that respects isolation and local au-
tonomy of administrative domains. Thus, the
ordering framework also relies on the concept
of management scopes, in this case the ordering
scopes, which may or may not overlap with the
other flavors of scopes. Each scope can define
its own policies that govern the way ordering is
performed: how ordering requests are collected,
which member of the scope should serve as the
orderer (collect these requests and produce
orderings), and how these orderings should
be disseminated to subscribers. The resulting
architecture is a product of policies defined at
various levels, just as it was the case for dis-
semination and reliability.

To prevent the article from becoming
excessively long, we shall omit the details of
the ordering framework. The design shares
common elements and ideas with the dissemi-
nation and reliability frameworks, and will be
covered comprehensively in the first author’s
Ph.D. thesis.

Other Possible Frameworks
Up until now, we’ve focused on the dissemina-
tion, recovery, and ordering frameworks within
our overall architecture. However, the same
structure can also support additional frame-
works, which exist as logical “siblings” to the
ones already presented. These include:

•	 Flow and rate control. Architectural mecha-
nisms in support of flow and congestion
control handling, negotiating rates, manag-
ing leases on bandwidth, and so forth.

•	 Security. Architectural support for integrat-
ing security (managing keys, granting or
revoking access, managing certificates,
etc.) into scalable eventing systems.

•	 Auditing. Self-verification, detection of
inconsistencies (e.g., partitions, invalid
routing, and so forth).

•	 Failure detection and health monitoring.
Scalable detection of faulty or underper-
forming machines.

Conclusion
We have argued that new and more flexible event
notification standards are going to be needed
if the Web services community is to gain the
benefits of architectural standardization while
also exploiting the full power of component
architectures and integration platforms. The
proposal presented here draws heavily from
our experience building Quicksilver, a new and
extremely scalable eventing infrastructure that
scales in multiple dimensions, integrates seam-
lessly with modern component-style platforms,
and has the flexibility to support a wide range of
reliability models including best-effort, virtual
synchrony, consensus, and transactional ones.
In contrast, our experience trying to express
Quicksilver within the existing Web services
options was discouraging; we found them to be
narrowly conceived and incapable of offering
needed flexibility and scalability.

Acknowledgment
Our research was supported by AFRL/Cornell
Information Assurance Institute. We acknowl-
edge Mahesh Balakrishnan, Lars Brenna, Yejin
Choi, Maya Haridasan, Tudor Marian, Ingrid
Jansch-Porto, Robert van Renesse, Yee Jiun
Song, Einar Vollset, and Hakim Weatherspoon
for their feedback.

 International Journal of Web Services Research, 4(4), 18-58, October-December 2007 57

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

References
Banavar, G., Chandra, T., Mukherjee, B., Nagara-

jarao, J., Strom, R., & Sturman, D. (1999, May
31-June 4). An efficient multicast protocol for
content-based publish-subscribe systems. In
Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems
(ICDCS) (IEEE Computer Society), Washing-
ton, D.C. (p. 262).

Box, D., Cabrera, L.F., Critchley, C., Curbera, D.,
Ferguson, D., Geller, A., et al. (2004). Web
services eventing (WS-eventing). Retrieved
August 30, 2007, from http://www.ibm.com/
developerworks/Webservices/library/specifica-
tion/ws-eventing/

Floyd, S., Jacobson, V., Liu, C., McCanne, S., &
Zhang, L. (1996). A reliable multicast frame-
work for light-weight sessions and application
level framing. IEEE/ACM Transactions on
Networking, 5(6), 784-803.

Graham, S., Niblett, P., Chappell, D., Lewis, A.,
Nagaratnam, N., Parikh, J., et al. (2004). Web
services brokered notification (WS-brokered-
notification). Retrieved August 30, 2007, from
http://www.ibm.com/developerworks/library/
specification/ws-notification/

Keidar, I., & Dolev, D. (1995, May 22-25). Increasing
the resilience of atomic commit, at no additional
cost. In Proceedings of the Fourteenth ACM
SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS ’95),
San Jose, CA (pp. 245-254). New York, NY:
ACM Press.

Keidar, I., Sussman, J., Marzullo, K., & Dolev, D.
(2002). Moshe: A group membership service
for WANs. ACM Transcations on Computer
Systems, 20(3), 191-238.

Ostrowski, K., & Birman, K.P. (2006a, September
18-22). Extensible Web services architecture for
notification in large-scale systems. In Proceed-
ings of the IEEE International Conference on
Web Services (ICWS’06) (Vol. 00, pp. 383-392).
Washington, D.C.: IEEE Computer Society.

Ostrowski, K., & Birman, K.P. (2006b, November
3). Scalable group communication system for
scalable trust. In Proceedings of the First ACM
Workshop on Scalable Trusted Computing (STC
‘06) Alexandria, VA (pp. 3-6). New York, NY:
ACM Press.

Ostrowski, K., & Birman, K.P. (2006c). Scalable
publish-subscribe in a managed framework
(Tech. Rep.). Cornell University.

Ostrowski, K., Birman K.P., & Dolev, D. (2006).
Properties framework and typed endpoints for
scalable group communication (Tech. Rep).
Cornell University.

Paul, S., Sabnani, K.K., Lin, J. C.-H., & Bhattacha-
ryya, S. (1997). Reliable multicast transport
protocol. IEEE Journal of Selected Areas in
Communications, 15(3), 407-421.

Weinsberg, Y., Dolev, D., Anker, T., & Wyckoff,
P. (2006, November). Hydra: A novel frame-
work for making high-performance computing
offload capable. In Proceedings of the 31st IEEE
Conference on Local Computer Networks (LCN
2006). Tampa, FL.

Krzysztof Ostrowski is a PhD student in the Department of Computer Science at Cornell University. He is
currently building QuickSilver, a new type of a development platform with an extremely fast and scalable
group communication engine at the core, offering a range of strong reliability properties and a smooth
integration with Windows, Visual Studio, and the web service technologies. This new platform is aimed at
enabling a new style of programming, characterized by casual use of publish-subscribe topics to represent
distributed, interactive content. Before joining Cornell, Ostrowski spent four years in the industry.

Ken Birman is a professor of computer science at Cornell University. He currently heads the QuickSilver
project, which is developing the world’s fastest and most scalable publish-subscribe system and a new,
highly automated, platform aimed at making it dramatically easier to build scalable clustered applications.
Previously he worked on fault-tolerance, security, and reliable multicast. In 1987 he founded a company,

58 International Journal of Web Services Research, 4(4), 18-58, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Isis Distributed Systems, which developed robust software solutions for stock exchanges, air traffic control,
and factory automation. For example, Isis currently operates the New York and Swiss Stock Exchanges, the
French air traffic control system, and the US Navy AEGIS warship. The technology permits these and other
systems to automatically adapt themselves when failures or other disruptions occur, and to replicate critical
services so that availability can be maintained even while some system components are down. In contrast
to his past work, Birman’s recent work has focused on issues of scale, self-management and self-repair
mechanisms for complex distributed systems, such as large data centers and wide-area publish-subscribe.
The very large scale of these kinds of applications poses completely new challenges. For example, while
protocols for data replication on a small scale are closely tied to dahabase concepts such as two-phase
commit, these large scale applications are best viewed as probabilistic systems, and the most appropriate
technologies are similar to techniques seen in peer-to-peer file sharing applications. Birman is the author
of several books. His most recent textbook, Reliable Distributed Computing: Technologies, Web Services,
and Applications, was published by Springer-Verlag in May of 2005. Previously he wrote two other books
and more than 200 journal and conference papers, including one that appeared in Scientific American in
May, 1996. Dr. Birman was also editor in chief of ACM Transactions on Computer Systems from 1993-
1998 and is a fellow of the ACM.

Danny Dolev received his BSc degree in mathematics and physics from the Hebrew University, Jerusalem in
1971. His MSc thesis in applied mathematics was completed in 1973, at the Weizmann Institute of Science,
Israel. His PhD thesis was on Synchronization of Parallel Processors (1979). He was a post-doctoral fellow
at Stanford University, 1979-1981, and IBM Research Fellow 1981-1982. He joined the Hebrew University
in 1982. From 1987 to 1993 he held a joint appointment as a professor at the Hebrew University and as
a research staff member at the IBM Almaden Research Center. He is currently a professor at the Hebrew
University of Jerusalem. His research interests are all aspects of distributed computing, fault tolerance,
security and networking—theory and practice.

