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Abstract—Geo-replication is essential in reliable large-scale
cloud applications. We argue that existing replication solutions
are too rigid to support today’s diversity of data consistency and
performance requirements. Stabilizer is a flexible geo-replication
library, supporting user-defined consistency models. The library
achieves high performance using control-plane / data-plane
separation: control events do not disrupt data flow. Our API
offers simple control-plane operators that allow an application to
define its desired consistency model: a stability frontier predicate.
We build a wide-area K/V store with Stabilizer, a Dropbox-like
application, and a prototype pub/sub system to show its versatility
and evaluate its performance. When compared with a Paxos-
based consistency protocol in an emulated Amazon EC2 wide-
area network, experiments show that for a scenario requiring a
more accurate consistency model, Stabilizer achieves a 24.75%
latency performance improvement. Compared to Apache Pulsar
in a real WAN environment, Stabilizer’s dynamic reconfiguration
mechanism improves the pub/sub system performance signifi-
cantly according to our experiment results.

Index Terms—Data Synchronization, Geo-Replication, Stabil-
ity Frontier, Consistency

I. INTRODUCTION

Large scale cloud applications are often geographically
distributed, with data replicas hosted on multiple data centers
for reliability and performance. Data synchronization across
those replicas is challenging due to the limited bandwidth and
high latency of the wide-area network (WAN). Applications
may differ in their needs for consistency and performance.
For example, a banking system might tolerate higher latency
to achieve a stronger safety property. An online shopping
cart might prefer eventual consistency for responsiveness.
A data backup service could provide multiple service level
agreement (SLA) options with different reliability and cost.
However, existing geo-replication solutions are too inflexible
to support such diverse demands. For example, the RedBlue
consistency options in Gemini [1], a widely popular replication
tool, support only strong and eventual consistency semantics.
Although PNUTS [2], Pileus [3], and WheelFS [4] offer more
choices than Gemini, the options are still limited. Stabilizer,
a flexible geo-replication library supporting a very wide range

of user-defined consistency models with exceptional perfor-
mance, responds to this need.

Distributed consistency has two aspects: ordering and dura-
bility. In a mirrored data replication system, ordering can
be preserved by guaranteeing lossless FIFO data transport.
Durability, however, can be interpreted in many ways [3].
Stabilizer introduces a simple yet flexible model: the applica-
tion specifies a desired level of data stability. Options include
availability zone stability (data exists at its primary site and at
least one nearby data center), k-threshold WAN stability (there
are at least k independent data centers with copies), and full
WAN stability (all have a mirror copy). The concept of “having
a copy” is also flexible, and can include acknowledgment of
receipt, persistent logging, or application-supplied validation
of the incoming records. These closely match the real needs
of WAN replication applications seen in the cloud, distributed
banking, financial, and other WAN settings [5]. In the rest of
the paper, we mainly focuses on durability semantics.

Stabilizer assumes a primary-site approach where each data
item has a primary owner and only the primary can update the
data item. In Stabilizer, each site owns a pool of data that it
updates and possesses mirrored read-only copies of data from
other sites. The client can access data only after the desired
level of stability is assured. We argue this model, coupled
with a flexible notion of stability, yields a simple but powerful
tool. The primary-site approach is also used in Pileus [3] and
Azure [6] to avoid conflicts in concurrent writing.

Stabilizer streams control information continuously, but
separately from data, using an approach inspired by the shared
state table (SST) in the Derecho [7]. The basic idea is to send
both data messages and control messages aggressively as long
as data or receive buffering capacity is available. We treat each
message as a separately sequenced object and provide a basic
reliability mechanism that ensures lossless FIFO delivery. Con-
trol information is required to be monotonic: counters or other
monotonic data types in which a newer value can overwrite
a prior value. The incoming stream of control information
drives the re-evaluation of stability frontier predicates, with
each WAN site independently evaluating its predicates as they



evolve over time. The stability frontier predicate is one of
our main contributions, which is the domain-specific language
(DSL) of defining the consistency model.

For maximum flexibility, Stabilizer provides basic stability
data, and allows the user to define new types of control
data (from our perspective, as uninterpreted byte vectors).
We support some basic consistency properties, such as “every
WAN site has received all messages up to number 18”, but
the user can extend these with new ones coded in a simple
but expressive DSL. To illustrate the value of this approach,
we create a file backup service similar to DropBox [8], and a
prototype pub/sub system.

This paper makes the following main contributions:
• We design an expressive DSL with a compact operator set

to allow application users to define consistency models
for geo-replicated data. We accelerate the DSL with a
just-in-time compiler, making it extremely efficient.

• We design and implement the Stabilizer library for large
scale cloud applications requiring various consistency
models.

• We build a WAN K/V system, a DropBox-like service,
and a pub/sub system using Stabilizer, each offering
flexible consistency levels.

• We evaluate those systems both in real deployment
and in an emulated Amazon EC2 WAN environment.
Stabilizer’s stability frontier predicate model brings no
additional overhead and achieves both performance im-
provements in end-to-end latency (as high as 24.75%) and
faster stabilization when WAN reconfiguration occurs.

II. BACKGROUND

A. Motivation

Many cloud applications replicate their data in geographi-
cally distributed locations. Reliable storage systems like Ama-
zon S3 replicate data in availability zones, then create sec-
ondary geo-replicas in data centers hundreds or thousands of
miles away, ensuring data survival even in the event of natural
disasters. Geo-replication can support quick responsiveness in
read-mostly applications such as Facebook and Twitter. How-
ever, these uses bring a variety of consistency needs. For some,
a best-effort model suffices. In social media applications, it is
important to preserve the “happens-before” property [9], [10].
A financial system may require a total global order in which
all replicas advance in lock-step order [11], [12].

Existing options for consistency often introduce significant
delays that may be sensitive to worst-case WAN latencies,
and may also be difficult to describe in any single model.
For example, a client might want confirmation as soon as
at least one server receives/persists its data in each of the
remote regions. It is hard to express this goal with popular
options such as WheelFS [4], Gemini [1], or Pileus [3], forcing
applications to use a stronger but perhaps a more costly model.

We argue that the geo-replication library should expose a
more expressive API, enabling applications to define a more
flexible consistency model that precisely matches the need and
by doing so, reduce excessive user-visible delays.

Users access this flexible infrastructure through dynamically
compiled modules coded in the Stabilizer DSL. The DSL
language allows users to specify new predicates that consist
of monotonic logical tests against a local repository of control
information received from other WAN nodes. Each WAN node
independently and concurrently evaluates its own predicates.
The DSL also has an API with which it can report its
own stability data, supplying a type name and an associated
value. Enabling the programmable ability to enhance the
functionality of systems like KV storage system is also used
in EventWave [13] and Malacology [14].

For efficiency, these DSL modules are compiled on first use,
then invoked at low overhead as needed. Stabilizer uses the
experimental just-in-time (JIT) compilation support in C/C++
called libgccjit [15], a compiler backend creating and linking
binary code at run-time. We implement the compiler front end
for our DSL and then build its corresponding binary using
libgccjit. Costs of the approach are evaluated in section VI.

B. Related Work

Consistency protocols and related systems: Our flexible
approach to consistency has some similarities to Brewer’s
argument that a system should consider relaxing consistency if
this can yield improved availability, performance, and partition
tolerance [16]. Existing studies mostly focus on the trade-off
between consistency and availability and propose consistency
guarantees for different scenarios, whereas our approach al-
lows individual designers to hand-craft desired consistency
predicates. Examples of prior work include solutions that
favor consistency and partition tolerance, but with rigid se-
mantics [11], [12]. Examples of platforms supporting eventual
consistency include [2], [17]. Causal consistency is offered
by [9], [10]. Readers interested in the tradeoffs are referred
to the survey in [18], which reviews common consistency
protocols from the weakest to the strongest consistency ,
looking at semantic and performance tradeoffs, but concluding
that different applications may need different solutions, an
option Stabilizer introduces.

Systems that provide more consistency options:
Pileus [3], WheelFS [4], and Wiera [19] provide more con-
sistency options, which are closer to Stabilizer. The main dif-
ference between Stabilizer and them lays in the usability and
flexibility of the system in providing user-defined consistency
models rather than the performance of these systems. Con-
sequently, the direct comparison with experiments between
Stabilizer and the related work is actually comparing the
mechanism of providing user-defined consistency behind them,
which will raise an apples-to-oranges concern. Moreover, as
illustrated in the later section, some consistency models can
only be expressed by Stabilizer.

In both the related work and Stabilizer, users choose the
desired consistency model and use it via the system’s interface:
Pileus defines the consistency model selected by the user
in the SLA. Wiera defines the consistency model in code
implementation. WheelFS defines it in the file path. Stabilizer
enables its users to define the consistency model with our
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Fig. 1. Stabilizer system overview: structure, workflow, data plane, and control plane

designed DSL in the configuration file at start and to change
or to register new consistency models with APIs at run-time.

In terms of the user-defined consistency, Pileus and
WheelFS cannot allow users to customize the consistency
model, while Wiera requires users to implement their own
consistency model in Java with their consistency model su-
perclass, which is limited in flexibility. As an example, the
user with a special region-based goal mentioned in the later
section IV would not be able to express that goal with either of
these approaches, whereas Stabilizer can easily and accurately
support that property.

To enable the selected consistency model: Pileus designs an
algorithm to choose the best matching sub-SLAs: consistency
and latency requirement pairs defined by users. In Wiera,
users can select four types of writing consistency in its policy
profile. WheelFS allows users to define information such as
consistency (whether to use the default consistency or the
eventual consistency) and replication level in the file path.
Stabilizer provides more consistency model options than them,
since users can use the DSL to flexibly create new consistency
models and register them with Stabilizer’s interfaces. More
details of the design and the usage of Stabilizer are introduced
in later sections.

III. Stabilizer DESIGN

A. System Overview

Modern storage systems such as Derecho’s object store [7],
etcd [20], and leveldb [21] have been shown to achieve high
levels of performance by leveraging data center technologies
such as RDMA and NVMe, but lack geo-replication support.
Accordingly, Stabilizer is designed as an add-on for existing
solutions that currently run purely in a single data center,
giving them the read-only mirroring capability. For example,
our WAN K/V store allows full read-write access to a pool of
locally owned keys, and then offers read-only access to K/V

pairs owned by other WAN nodes, updating them to track the
evolution of those remote K/V objects.

Fig. 1 shows a typical workflow of the enhanced geo-
graphically distributed storage system, focusing on a sim-
ple case: monotonic acknowledgment messages (ACKs) that
confirm the arrival of mirrored data. Users directly interact
with some applications on the local WAN node. Each update
triggers Stabilizer thread, which sends the data to its remote
counterparts in sequenced messages, delivering data to the
remote application via upcall. The progress of data through
the pipeline corresponds to a series of levels of stability:
received, persisted within Stabilizer storage layer, delivered
to the application. Besides the received and persisted stability,
Stabilizer also supports users to define their desired stability.

The remote system might not receive upcalls for each value
that is sent. Suppose that WAN node A is streaming data
at high speed, including messages X and Y. On the remote
system, it is possible that a stability report for X is overwritten
by the report for Y. Here, our monotonicity requirement enters
the picture: the application is expected to understand that the
upcall for Y “implies” the stability of messages prior to Y. For
example, if X had message sequence 17, and Y has sequence
91, the “received” stability property for Y implies that X was
also received. Internally, Stabilizer is single-threaded, and this
feature permits the system thread to perform a batch of actions,
then report them via stability upcalls, rather than doing upcalls
message by message. Besides, since all write operations are
issued at the primary node, Stabilizer only needs to keep one
set of the sequence number from the primary node’s view.

Fig. 1 demonstrates the two key building components of
Stabilizer, namely data plane and control plane. The data
plane sends and receives data aggressively to saturate WAN
bandwidth (sending throughput can get close to the physical
bandwidth limit), while the control plane exploits stability
frontier predicate to track data synchronization. As shown
in Fig. 1, the control information is stored in a message



ACK recorder and get updated when receiving an ACK from
other nodes. Each WAN node detects stability independently
and asynchronously, but all WAN nodes reach the same
conclusions eventually. This asynchronous stability detection
design guarantees the data plane and control plane separation.

B. Data Plane

A property of our solution is that it can maximize utilization
of WAN bandwidth by sending data aggressively as soon as
it has been assigned a sequence number, but it can also buffer
data for later transmission if needed. When a message has
been delivered everywhere, the buffer space is reclaimed. The
performance of the WAN bandwidth utilization is evaluated
with experiments in section VI. The overall approach is in
contrast with classic WAN consistency mechanisms, such as
protocols based on Paxos [22] that block message sending
when all leaders are busy exchanging control information.

C. Control Plane

The monotonic stream of stability reports enables each
WAN node to track the global status of each message. For
completeness, we adopt the rule that all stability properties
hold for the WAN node that originated a message, including
user-defined properties. Thus, when Stabilizer first learns of
message k, it immediately assumes that k has locally been
delivered, verified, etc. With this in mind, we can now focus on
the DSL, stability frontier predicates. Before giving a formal
definition of the predicate, we first introduce its components.
Operators:

• The MAX / MIN operator returns the maximum/minimum
number in a set of integers.

• The KTH MAX / KTH MIN operator returns the k-th
largest/smallest number in a set of integers.

Operands: The operand in the predicate has the form of $#,
where the # is the WAN node index. For instance, the WAN
node 1 in Fig. 1 can be referred to as $1. Data centers have
unique names in most cloud settings, hence we map them to
numbers. Stabilizer configuration file includes a list of data
centers where the system has been deployed. Within this list,
a subset notation designates availability zones. Thus when
Stabilizer is launched it can look up its own data center name
and convert this to an index number, learning its own rank in
the overall list, its availability zone neighbors, etc. Besides,
the predicate also supports macros and variables to represent
the operand.
Macros and variables:

• Macros: $ALLWNODES expands to a list of all WAN
nodes, and $MYAZWNODES expands to list all WAN
nodes in the availability zone of the WAN node executing
the DSL. $MYWNODE expands to the local WAN node.

• Variables: $WNODE # refers to the WAN node with
name #. $AZ # is used to represent the WAN node
collection in availability zone #. The WAN node name
and availability zone name are from Stabilizer configu-
ration file. For example, if there is a node named Foo

in the availability zone Wisc, they can be referred to as
$WNODE Foo and $AZ Wisc.

Function tools:
• SIZEOF returns the number of WAN nodes in its param-

eter. Besides, the predicate also supports further calcula-
tion with the result of SIZEOF: SIZEOF($ALLWNODES)
/ 2 + 1 is the number of WAN nodes required to achieve a
majority. This function is only used in the KTH operators.

• The binary operator ‘-’ calculates the difference be-
tween two WAN node sets. In some situations, it is
useful to exclude the sender WAN node from a set;
for this purpose, we write $ALLWNODES-$MYWNODES.
$ALLWNODES-$MYAZWNODES is the set of WAN
nodes remote from the sender’s availability zone.

Suffixes: Within predicates, we use a $#.type notation where
# is the WAN node id (operand) to represent the highest
sequence number acknowledged by that WAN node for a given
type of ACK, where .type could be .received, .persisted or .xxx
(here, “xxx” would be some application-defined stability level
such as verified, countersigned, etc). If the .type is omitted, we
assume .received as the default. This notation also extends to
sets. For example, ($MYAZWNODES-$MYWNODE).verified
expands to a list of WAN node-ids for members of the sender’s
availability zone other than the sender itself, then selects the
“verified” property (an application-defined monotonic prop-
erty).

A predicate p has the following simple but variadic form:

p = O(x) (1)

O ∈ {MAX,MIN,KTH MIN,KTH MAX} (2)

The x is the parameter list, comprising operands, macros,
variables, functions, and other predicates if needed.

The macros and variables will be finally expanded to the
corresponding operands. For instance, in Fig. 1, the predicate
MAX($ALLWNODES-$MYWNODE) would be auto-expanded
at WAN node 1 to MAX($2, ..., $6) and returns the highest
sequence number acknowledged by any remote WAN node,
which is 28 in this case.

Have we written MAX($MYAZWNODES-$MYWNODE),
we would be looking at receipt acknowledgments within
the local availability zone. Although weak, this level of
consistency still could be adequate, as a confirmation of
availability-zone replication for backup purposes. In con-
trast, MIN($ALLWNODES) tells us that every message up
to the computed minimum is stable: a much stronger guar-
antee. The KTH MIN((SIZEOF($ALLWNODES)/2+1), $ALL-
WNODES) predicate reports a message to be stable if it
has been acknowledged by a majority of sites (the sender
included). By combining the operators and leveraging mul-
tiple types of ACKs, a stability frontier predicate becomes
surprisingly expressive as we show in Section IV.

D. Interfaces

Stabilizer provides many interfaces to utilize its functional-
ity.



• One-time stability frontier update trigger. The ap-
plication can wait for certain stability by calling
waitfor(sequence-number, predicate-key). The predicate-
key is the name of the predicate, and we use a map data
structure to store all the predicates in Stabilizer. This
method will block until the stability result of the desired
predicate with name predicate-key holds for the message
with the specified sequence number.

• Stability frontier update monitor. In Stabilizer,
monitor stability frontier(predicate-key, lambda) regis-
ters the function lambda to do the work specified by
the user each time the corresponding predicate returns
a new stability frontier. The lambda will be passed the
sequence number that is most recently generated from the
desired predicate, and the application-defined additional
data object if any (as an uninterpreted byte vector).

• Predicates registering and changing. Users define new
predicates using a simple yet expressive DSL, placing
the code either in Stabilizer’s configuration file before
launch, or changing them on the fly with Stabilizer’s API
register predicate(predicate-key, predicate-string) for a
new one and change predicate(predicate-key) to update
an existing one at runtime. The predicate-string is a
predicate sentence like MIN($ALLWNODES) that the user
can understand. Stabilizer handles new predicates with
a just-in-time checking and compilation sequence. First,
we employ Flex [23] and Bison [24] for lexical and
grammatical analysis, then use libgccjit to generate a
compiled binary to calculate the stability frontier. The
binary can then be called without significant overhead,
even on the critical path.

Since Stabilizer is a library, it needs to be integrated with
a local storage system to utilize its functionality. So the user
(the client of Stabilizer) is not the traditional end-user that
accesses the storage system but the developer/administrator
of the storage system. Consequently, those interfaces will
not be called arbitrarily or meaninglessly (like concurrent
invocations). They only can be called by the system designer
at the code level with proper logic.

E. Fault Tolerance

Recall that all write operations in Stabilizer are performed
at the primary node. We need to consider two types of
failures: 1) The primary node crashes. 2) Secondary nodes
crash. Starting from the simpler second situation: the crash of
the secondary node will only affect the advancement of the
stability predicate involving this crashed node. The crashed
secondary node can be observed by a predicate update timer
or the data transmission failure information. The primary can
adjust the predicate to eliminate the impact.

If a primary node crashes, it should rely on the integrated
system to restart. For instance, Stabilizer can make use of the
fault tolerance part of Derecho’s object store. When a Derecho
node restarts, it will invoke the Derecho’s view change logic. In
the view change process, the restarted node will rejoin the top-
level Derecho group and updates the corresponding Stabilizer’s

configuration file and initiates Stabilizer process. Moreover,
the Derecho object store can also persist the stability frontier
information, which can be used for Stabilizer recovery. Many
systems like Orbe [25], COPS [9], etc., also have fault toler-
ance functionality. When they are integrated with Stabilizer,
they can restart Stabilizer after their recovery logic. Related
work like Wiera [19] and Pileus [3] only provide the basic or
did not demonstrate the fault tolerance mechanism.

IV. Stability Frontier Predicate USE CASES

A. Using Stability Frontier Predicate in AWS Regions

As a first illustration of the approach, we consider the
problem of tracking the stability of data in AWS. Amazon’s
data centers are deployed globally, with small groups of three
nearby but fault-independent data centers forming an avail-
ability zone. Latency is low between data centers in the same
availability zone, and the user might wish to leverage this to
define a notion of “locally stable”. Larger-scale stability would
be more costly because long-haul WAN links enter the picture,
but offers a higher level of protection. For example, regional
disasters could somehow shut down all three availability zone
members. As shown in Fig. 2, we select four regions with eight
availability zones according to the introduction of AWS [26].
The region and availability zone topology is also used in
performance evaluation.

Traditional consistency mechanisms are indifferent to
topology, making it very hard to express constraints such
as that “the event is fully replicated within the avail-
ability zone of the sender, and is also geo-replicated to
at least one remote site”. With our DSL, this is eas-
ily expressed: MIN(MIN($MYAZWNODES - $MYWNODE),
MAX($ALLWNODES - $MYAZWNODES)). Here, the first part
of the predicate checks that the sender’s messages have been
receive-acknowledged by all WAN nodes other than the sender
in the sender’s availability zone, and the second part confirms
that it has been acknowledged by at least one remote WAN
node, not in the sender’s availability zone. Such a message
is geo-replicated and hence will not be lost, and is also
availability-zone replicated hence even if the sender data center
fails and rolls over to one of its availability-zone peers, the
service does have a copy.

B. Implementing the Quorum protocol with Stabilizer

Similar to the stability frontier predicate in section III-C,
which is used to perceive the write progress, we also extend
the predicate for the read operations. In this section, we
demonstrate how to implement the Quorum protocol [27] with
the read and write predicates.

The Quorum protocol is a classical distributed algorithm
with a serial consistency guarantee for accessing replicated
data. It makes sure that a reader always sees the data commit-
ted by a previous non-concurrent write. The quorum refers to
a set of replicas that any two of them overlap. A successful
read operation returns the latest version of the responses from
at least Nr replicas, referred to as a read quorum; and a
successful write operation must write to at least Nw replicas,



referred to as a write quorum. The quorum protocol enforces
that Nw +Nr > N , where N is the total number of replicas.
Therefore, at least one replica in the read quorum falls in any
write quorum and hence has the latest data.

It is easy to express the quorum protocol using Stabilizer
predicates. Suppose that we want the write quorum to be a
majority of WAN nodes in our system, and a read quorum
to be any set overlapping the write quorum. The write pred-
icate is written as KTH MIN(SIZEOF($ALLWNODES)/2+1,
$ALLWNODES), meaning that a write has been completed
once ACKs from a majority of the WAN node set (including
the sender) are received. Similarly, a read predicate can be
written as KTH MIN(SIZEOF($ALLWNODES)/2, $ALLWN-
ODES). This can easily be varied, for example, to express that
a write quorum includes all WAN nodes and that any single
WAN node can be used for reads, etc.

V. Stabilizer APPLICATIONS

A. K/V Store

Next, we integrate Stabilizer with Derecho object store [7]
to show how this library empowers a storage system that oth-
erwise lacks the ability to synchronize data across geographic
regions. The modified version can track data synchronization
progress based on the user-defined consistency model.

The Derecho object store is an existing system that effi-
ciently leverages modern data center hardware to deliver high-
throughput, low-latency, and fault-tolerant distributed key-
value storage services. The object store is typically deployed
on multiple servers but within a single data center [7]. Our
enhanced version offers each WAN node (each data center)
the ability to originate K/V updates to local data, but to read
K/V data from any WAN node.

The enhanced K/V maintains the original APIs, such as
put, get, get by time, etc. (see [7] for details). When a
client calls put, the Derecho stores data locally, then Sta-
bilizer buffers the new records and starts an asynchronous
transfer to mirror the data remotely. Thus, the semantic of
put is that upon completion the action is locally stable. A
client seeking a stronger guarantee would request a stability
frontier matched to the consistency model. To this end, we
add an API get stability frontier. We also extend the K/V
store API with two functions called register predicate and
change predicate. A user application call register predicate
to register new predicates defined with the DSL in Sec-
tion III-C. The change predicate function allows the appli-
cation to switch among pre-registered predicates.

A K/V store is a form of middleware. To evaluate a use
case, we implemented a file backup service over our WAN
K/V system, designed to offer geo-replication in a manner
like Dropbox [8]. This application supports several stability
frontier predicates: OneWNode, OneRegion, MajorityWNodes,
MajorityRegions, AllWNodes, AllRegions. For example, a new
file can be dropped into the system and then the application
can wait until the data has reached a majority of WAN
data centers before allowing access to the contents. With a

traditional Dropbox, the actual semantics of uploading a file
are unspecified, and fine-grained control is not possible.

B. A Pub/Sub Service

The pub/sub service is a message bus connecting the
distributed components of a scalable application. It supports
publishers that produce messages, subscribers that consume
messages, and brokers that pass messages from the publishers
to the subscribers [28]. To isolate unrelated traffic the publisher
and subscriber specify one or more topics that name messages
they care about. In a typical pub/sub implementation, when de-
ployed across WAN, each data center has one broker managing
local publishers, subscribers, as well as their subscribing state.
The brokers synchronize messages with each other to get their
local subscribers messages of a topic whose publisher is far
away, and send messages of a topic to remote subscribers.

We build a pub/sub service prototype in WAN based on
Stabilizer. For simplicity, we omit topic management and
focus on the performance for a single topic. The solution
wraps the Stabilizer library with a thin layer to provide broker
service interfaces such as publish and subscribe. The publish
API merely multicasts the data to remote peer brokers through
the asynchronous data plane. The subscribe API allows a client
to register a callback function to handle incoming messages on
the unified topic. After receiving a first subscription request,
the broker becomes active as a member of the active broker
list. Thanks to Stabilizer, the publisher can keep track of
the progress of messages transfer using the stability frontier
predicate dynamically managed by the broker.

Some pub/sub solutions offer persistence, but our prototype
currently lacks this feature (like support for multiple topics,
persistence would be easy to introduce, but beyond the needs
of our experimental evaluation). Accordingly, in section 6.3,
we compare the performance of our pub/sub service prototype
with Apache Pulsar [29] using non-persistent topics.

VI. EVALUATION

We emulate a WAN environment using eight servers with
24GB memory, 16 cores Xeon E5620 CPU in a local cluster.
Each server has a Gigabit network card (NIC) connecting to
a Gigabit rack top switch. We use those servers to emulate
eight WAN nodes in four AWS regions in Amazon EC2, as
shown in Fig. 2. Server 1 is the sender and the rest are the
receivers. We use TC [30] to inject the latency and control the
bandwidth between the servers to match Amazon EC2 network
performance observations in Table I. To prevent the Gigabit
NIC and switch from becoming a bottleneck, we throttle the
emulated bandwidth to halves of the observed values.

In addition to the emulated environment, we also use five
physical servers in CloudLab [31] as a real-world WAN
experiment setup. We use three servers, one in each of the
Clemson (CLEM), Wisconsin (WI), and Massachusetts (MA)
clusters. We then pick two servers referred to as Utah1 (UT1)
and Utah2 (UT2) from the Utah cluster. Because Utah1 is the
sender in the following experiments, we list the bandwidth and
latency between Utah1 and the rest of the servers in Table II.



TABLE I
NETWORK STATUS BETWEEN NORTH CALIFORNIA AND OTHER REGIONS

Lat (ms) Thp (Mbit/s) Half Thp (Mbit/s)
North California∗ 3.7 667 333.5

Ohio 53.87 89 44.5
Oregon 23.29 113 56.5

North Virginia 64.12 74 37
∗The network status between availability zones in North California region

We use six predicates in Table III for evaluation and to
demonstrate how to define consistency models with the (de-
fault) .received type. The first three predicates define consis-
tency models at regional granularity. The OneRegion predicate
returns the maximum acknowledged sequence number from
any WAN node in any remote region. In other words, OneRe-
gion predicate claims a message is stable if any WAN node
in a remote region acknowledges it and all prior messages.
The MajorityRegions predicate returns the maximum sequence
number acknowledged by a majority of the remote regions,
while the AllRegions predicate returns the minimum out of
all the maximum sequence numbers acknowledged by each
remote region. Please note that if an ACK from any WAN node
in a region is received, we say the message is acknowledged
by that region. Similarly, the other three predicates define
consistency models at WAN node granularity.

TABLE II
NETWORK PERFORMANCE BETWEEN UTAH1 AND OTHER SERVERS

Utah2 Wisconsin Clemson Massachusetts
Thp(Mbit/s) 9246.99 361.82 416.27 437.11

Lat(ms) 0.124 35.612 50.918 48.083

TABLE III
PREDICATES USED IN OUR EXPERIMENT

Name Predicate
OneRegion MAX(MAX($AZ North Virginia),MAX($AZ Oregon),MAX($AZ Ohio))

MajorityRegions KTH MAX(2,MAX($AZ North Virginia),MAX($AZ Oregon),MAX($AZ Ohio))
AllRegions MIN(MAX($AZ North Virginia),MAX($AZ Oregon),MAX($AZ Ohio))
OneWNode MAX($ALLWNODES-$MYWNODE)

MajorityWNodes KTH MAX(SIZEOF($ALLWNODES)/2+1, ($ALLWNODES-$MYWNODE))
AllWNodes MIN($ALLWNODES-$MYWNODE)

In this section, we evaluate Stabilizer to answer four ques-
tions with experiments:

1) How does Stabilizer behave in the microbenchmarks like
the reading latency and the DSL compilation cost?

2) How effective is Stabilizer in reducing the end-to-end
latency when a more precise or flexible consistency
granularity is needed?

3) When a pub/sub system is implemented with Stabilizer
as the module for sending data, how does Stabilizer
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Fig. 2. Experimental topology of the servers in four regions

perform compared to a popular pub/sub system in
throughput and latency?

4) What benefits in user-perceived latency does the flexibly
changing consistency level mechanism bring?

A. Microbenchmarks

Quorum read experiment: We measure the latency of
the Quorum read operation using four servers in CloudLab.
The three quorum server processes run on Utah1, Wisconsin,
and Clemson servers, respectively. We set both the read and
the write quorums to two. We then run a writer in Utah2
and a reader process in Utah1. We evaluate the read latency,
measured from the time a message is sent from the sender to
the time it is received by the reader. In Fig. 3, the black dashed
line represents the Round-trip time (RTT) latency measured
from Utah1 to each site using the ping command. The quorum
read latency is comparable to the RTT of Wisconsin. This
is because the Wisconsin server is the second-fastest server
among the three quorum members when reading or writing
from the Utah cluster. Therefore, it is usually the response
from the Wisconsin server that satisfies a quorum read request.
As the messages become larger, the time required to transfer
the data increases, resulting in a slight increase in latency.
The result of the Quorum read experiment proves that we
implement the Quorum semantics correctly with Stabilizer.

The performance overhead of the user-defined consis-
tency mechanism: We evaluate the overhead of compiling
and computing predicates with 1 to 5 operators and 5 to
20 operands. The operand is the WAN node’s index number
illustrated in section III. Since each operand can represent
one WAN node, this experiment setup can reflect the geo-
replication factors for small to large cloud applications. The
maximal computing and compilation time comes with five
KTH MIN operators and 20 operands, which are about 0.2
ms and 30 ms, respectively. We argue that such a one-time
compilation overhead is acceptable.

B. Dropbox-like Application Experiment

Next, we evaluate our Dropbox-like file geo-replication
backup application, which starts by extending the Derecho
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object store into a geo-replicated K/V store, and then layers
simple file storage and retrieval API over the K/V API, with
user-customizable WAN consistency. The predicates we use
are shown in Table III. To establish a baseline, we also com-
pare Stabilizer with a state-of-the-art industrial implementation
of the Paxos protocol, the PhxPaxos [32]. The topological
structure of the servers on which the Dropbox-like file backup
application is deployed is shown in Fig. 2. We assume that
all user write requests will be sent to server No. 1 which will
synchronize data to other WAN nodes.

Trace used in the experiment: To drive our experiment,
we obtain a file storage trace from six cloud storage services
in the real world [33]. It records the users’ sync request
activities in different countries. This trace includes several files
classified by cloud storage service type and service users. A
characteristic of this trace is that most of the sync requests in
each day are concentrated within one hour or several minutes.
Therefore, we selected a Dropbox [8] trace with a relatively
high rate of sync requests. This period describes the users’
sync activity from 16:40:45 to 16:57:08 in 2012-09-20 and
includes a total of 3.87GB of data. Fig. 4 shows the time
statistics of the trace we use in the experiment.

16:40:45 16:44:45 16:48:45 16:52:45 16:57:08
time of the trace from 16:40:45 to 16:57:08 in 2012-09-20
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Fig. 4. Dropbox file size distribution in 17 minutes

Trace-driven experiment: We use the records in the
Dropbox trace as input to evaluate the Dropbox-like file
backup application. In the trace, each record specifies when
a file sync request is submitted and the size of the file;

our emulation issues the same request to the file backup
application using files filled with random bytes. Stabilizer
splits big writes into smaller packets whose upper bound
is 8KB, so we get 517,294 messages in total to be sent.
Each time an ACK arrives, Stabilizer recalculates the stability
frontier in a predicate-specific manner and records the time
when each message’s synchronization progress satisfies the
consistency model specified by each predicate. For example,
when the WAN node sees ACKs from all other WAN nodes
for message No.10, Stabilizer records this timestamp for the
predicate AllWNodes. Fig. 5 shows the first timestamp when a
message’s synchronization progress meets each predicate since
the message is sent out in the trace-driven experiment.
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As shown in Fig. 5, we can notice three spikes for each
stability frontier predicate. To understand this, we need to refer
to Fig. 4. Recall that we split files into packets up to 8KB each,
so that the arrival of a huge file or dense arrival of small files
both bring a lot of messages to send, resulting in a tremendous
burden for WAN. It turns out that the three spikes observed in
Fig. 5 correspond to the transmission of records associated
with huge files. The weaker levels of consistency are less
impacted, while the stronger ones, which depend on ACKs
from more WAN nodes, are more sensitive to delays. Thus
in the figure, we see that MajorityWNodes is more vulnerable
to load spikes than MajorityRegions. A user who needs geo-
replication but does not need to wait for every WAN node to
receive the file would benefit from lower delay, while a user
who really does want every WAN node to have the file can
configure the system to match that specific need.

File-based experiment: Next, we construct an experiment
that compares our performance to that of a widely-used
industrial Paxos product. The interesting case here involves
situations the user has a topological basis for customizing
the consistency predicate. The Paxos is typically indifferent
to topology and has a fixed obligation to respect the quorum-
based log update rule built into the protocol. In the topology
showed in Fig. 2, the Paxos protocol needs to ensure the data
synchronization is done on at least four servers: server No.7,
No.8, and any two of No.3-No.6. In contrast, a user content



with the MajorityRegions predicate should have an advantage:
for this predicate, we only need to await data synchronization
with respect to two of the three servers: No.7, No.8, and
any single server in the region of North Virginia. The Paxos
product we select, PhxPaxos [32], is considered to be a state-
of-the-art technology for such uses.
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Fig. 6. File synchronization time

Our experiment records the time to synchronize each file
from the trace under different predicates semantics. The
recorded time includes the time for all messages divided from
each file to be synchronized. Simultaneously, to avoid the
possible queuing caused by multiple files arriving in a short
period, we only test the time required for one file to complete
synchronization at a time. Results in Fig. 6 show that when
the PhxPaxos is used as the consistency model, the time
required to complete the synchronization of files is similar to
the performance of using MajorityWNodes predicate (the two
curves mostly overlap). Moreover, it is longer than the time
required to use MajorityRegions predicate, and this difference
becomes larger as the file becomes larger. According to
our analysis, using MajorityRegions predicate to describe the
majority of regions’ data synchronization progress can bring
an average of 24.75% end-to-end latency improvement over
using PhxPaxos. Furthermore, if the difference in the number
of WAN nodes and bandwidth between regions becomes more
extensive, the difference between MajorityRegions predicate
and PhxPaxos will be more significant. Clearly, the selection
of the consistency model best matched to the needs of the
application can avoid unnecessary waiting.

The experimental results of trace-driven and file-based show
that it is feasible to use our DSL to construct different
consistency models. Moreover, the difference between the
different stability frontiers reflected in the trace-driven and file-
based experiments shows that if the application does not select
the most suitable consistency model, end users may waste time
unnecessarily. The flexibility of the DSL predicate model we
employ allows applications to craft elaborate stability frontier
predicates that closely match needs, a possibility that opens
new options relative to today’s very limited choices.

C. Pub/Sub Service Experiment

In the pub/sub service experiment, we compare our pub/sub
service prototype based on Stabilizer with Pulsar. Pulsar [29]
is a Java distributed pub/sub messaging system that supports
geo-replication, non-persistent messaging, and that uses non-
blocking IO to transmit data on WAN links. We compare
Pulsar with our pub/sub application of Stabilizer, for cases
with identical workloads and requested consistency semantics.

In the design of the pub/sub comparison experiment, a client
can publish messages at a range of frequencies. Queues in
Pulsar have a fixed size limit, and the experiment would not
exceed this limit. Accordingly, our experiments send 10,000
8KB messages each, a volume of data that will not cause the
Pulsar queue to overflow. We deploy the resulting performance
test on the real environment described in Table II.

Recall our prototype omits persistence, and that we also
configure Pulsar to run in its volatile mode as well. Here, a
very small change to Pulsar is necessary, to prevent the broker
from discarding messages if a WAN link is transiently slow.
In the original non-persistent topic geo-replication of Pulsar,
if the local broker finds that the link to the remote broker is
temporarily inaccessible it turns out that the local broker will
silently abandon sending the message. Our change introduces
buffering and ensures that Pulsar continues to try, eventually
sending all messages and preserving sender order.

To measure the end-to-end latency, we focus on publisher
streaming data, and on the ACKs that stream back as data
arrives and can be delivered to remote subscribers. Using a
suitable predicate, the publisher can calculate the end-to-end
latency by tracking ACK arrival times and subtracting the
corresponding message send times. Our experiment measures
throughput at all WAN nodes: we are curious to see whether
certain sources experience unusual behavior. Bandwidth is
computed as the total size of the messages divided by the
time from the beginning to the arrival of the last message.
Please note that latency and throughput are for each pair of
publishers and subscribers.

Fig.7 shows the measured throughput and latency with
varying message rates from 250 to 16000 messages per second.
Note that when the sending rate exceeds the bandwidth, queu-
ing delay is incurred and the latency rises sharply. All lines
except red ones in Fig.7 reveal that both systems bottleneck
at the same throughput, with comparable latency. This shows
that when there is enough sending data, Stabilizer can send
data on WAN “at full speed” (close to the physical bandwidth
bottleneck). The red lines, on the other hand, represent the
performance on LAN, between Utah1 and Utah2. Here, band-
width is so high (10Gb) that at the transmission rates we use, it
is not possible to create a backlog. Nonetheless, Pulsar shows
growth in latency. We believe this is associated with garbage
collection within its JVM. As seen in the figures, our prototype
is as fast or faster than Pulsar in all scenarios we explore.

D. Dynamic reconfiguration experiment

We make a reliable broadcast application based on the
pub/sub prototype system in this experiment. The reliable
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Fig. 7. libgccjit Latency and throughput performance in pub/sub experiment

property requires that the broker at the publisher has to ensure
that every broker with any subscriber will receive the message.
However, a subscriber in this application can subscribe or
unsubscribe at any time. Sometimes, a remote data center
might not have any subscribers for a topic, say T . In such
a case, a publisher does not care whether the messages in
T reach that data center or not. Stabilizer allows dynamic
predicate reconfiguration so that the application will not wait
unnecessarily. We show Stabilizer’s dynamic reconfiguration
in the environment shown in Table II.

We assume a subscriber on the slowest site who subscribes
and unsubscribes on the local broker from time to time.
Accordingly, Stabilizer will add/remove the slowest site from
the observation list for data synchronization via changing pred-
icate. In this experiment, we send 1600 8KB messages at 80
messages per second and count the end-to-end latency of each
message under the particular predicate. The simulated client
subscribes/unsubscribes every five seconds, and accordingly,
Stabilizer adjusts its current predicate every five seconds. We
run the experiment with two predicates: the all sites predicate
report the sequence number acknowledged by all remote sites,
and the three sites predicate reports that are acknowledged by
at least three remote sites. As the two predicates report on
different stability frontiers, there might be a gap when the

predicate shifts. For example, when the stability frontier is
1000 with three sites, the stability frontier with all sites is
still 900. We argue that the user should be responsible for
handling such a gap.
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Fig. 8 shows that Stabilizer can reduce the end-to-end
latency from message sending to achieving the requirement
of the stability frontier by dynamically shifting the predicate.
After the slowest site is moved out of the data synchronization
observation list, the latency drops significantly. The latency
difference between all sites and three sites is only three mil-
liseconds because the second slowest site (Massachusetts) is
only three milliseconds faster than the slowest site (Clemson).
It is possible that some stragglers holding a large system
slow, where such a benefit could be more obvious. This
experiment is just an example of how Stabilizer dynamically
adjusts the predicate. But Stabilizer is not limited by pre-
defined predicates. It can create new predicates according to
the application requirements to optimize system performance.

VII. CONCLUSION

Large scale cloud computing applications depend on geo-
replication for safety, reliability, and read-only query perfor-
mance enhancement. To satisfy various geo-replication consis-
tency requirements, we propose Stabilizer, a cloud application
library allowing the user-defined consistency model. In Stabi-
lizer, we design a new mechanism to let users customize their
consistency models with our DSL. We introduce the concept
of a user-specified stability frontier, enabling applications to
describe their consistency requirements accurately. Because
consistency must be detected on a high-rate critical path,
we introduce a simple yet expressive DSL to describe new
predicates. In the DSL, we support macros, variables, functions
and suffixes, making this mechanism flexible and easy to use.

With Stabilizer, we extend an existing K/V object store,
and then implement a variety of applications over the geo-
replicated object store. Besides, a pub/sub service prototype is
built to compare with the well-known pub/sub system. In the
K/V store experiments, comparisons establish that Stabilizer
outperforms Paxos-based solutions and that our asynchronous



streaming of control data reduces latency. Moreover, in the
pub/sub service prototype experiment, results show that Stabi-
lizer can make good use of the bandwidth on WAN and that
dynamic reconfiguration can be supported efficiently.
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