
Compass: A Decentralized Scheduler for
Latency-Sensitive ML Workflows

Yuting Yang
Cornell University

USA
yy354@cornell.edu

Andrea Merlina
University of Oslo

Norway
andremer@ifi.uio.no

Weijia Song
Cornell University

USA
ws393@cornell.edu

Tiancheng Yuan
Cornell University

USA
ty373@cornell.edu

Ken Birman
Cornell University

USA
ken@cs.cornell.edu

Roman Vitenberg
University of Oslo

Norway
romanvi@ifi.uio.no

Abstract
We consider ML query processing in distributed systems

where GPU-enabled workers coordinate to execute complex
queries: a computing style often seen in applications that in-
teract with users in support of image processing and natural
language processing. In such systems, coscheduling of GPU
memory management and task placement represents a promis-
ing opportunity. We propose Compass, a novel framework
that unifies these functions to reduce job latency while using
resources efficiently, placing tasks where data dependencies
will be satisfied, collocating tasks from the same job (when
this will not overload the host or its GPU), and efficiently man-
aging GPU memory. Comparison with other state of the art
schedulers shows a significant reduction in completion times
while requiring the same amount or even fewer resources. In
one case, just half the servers were needed for processing the
same workload.

1 Introduction
The work described here is motivated by a recent trend: under
pressure to respond rapidly to incoming events, the cloud is
expanding to include edge clusters physically close to the
end-user. Our new scheduler, Compass, targets this setting,
managing resources in ways that improve job completion
delay with the same (or reduced) level of resources. Machine
intelligence is already popular in interactive applications, and
projected to gain importance for at least another decade, so
progress could be broadly valuable.

Intelligent interactive services are not real-time systems in
the classic sense. In fact, they more closely resemble cloud
microservice architectures: a single input event will often
trigger a pipelined computation in which multiple ML mod-
els play distinct roles. The end user wants quick responses

hence the hosting infrastructure must minimize avoidable
overheads: a goal shared with the first tiers of the cloud. Yet
intelligent edge applications differ from cloud microservices
in important ways, so we cannot just use the same techniques
employed in web frameworks. Whereas the outer tiers of
today’s cloud are dominated by lightweight, stateless, con-
tainerized applications that can be upscaled or downscaled
at low cost, ML depends on large objects (hyperparameters,
model parameters, and supporting databases) and often entails
hardware-accelerated computation using devices preconfig-
ured with the proper firmware. When shifting a task to a
device that has not previously run it, computation cannot be-
gin until all the prerequisites are in place. We can and do
launch new ML instances when additional capacity is needed,
but scheduling strategies must evolve to avoid thrashing.

Data dependencies also pose a challenge. Host memories
are large but GPU memories are smaller and expensive. ML
model parameters ("ML models" for short) can be hundreds of
megabytes in size [71]. Substantial delays arise if a required
model isn’t resident in GPU memory when an ML task is
launched. This leads us to treat GPU memory as a cache and
to view the cache hit rate as an important metric.

Our work represents edge ML applications as acyclic data-
flow graphs (DFGs). Each ML instance runs in its own ad-
dress space hence a single application could include ML
pipelines implemented using different tools (we currently
support PyTorch [34], TensorFlow [19], and MXNet [45]). A
triggering event launches one job, and each DFG step within
it runs as a task on a single server (we will relax these restric-
tions in future work). Compass plays two roles: platform-level
GPU cache management and job/task placement. Our algo-
rithm has the primary goal of minimizing job latency, with
secondary goals of achieving efficient hardware utilization

1

ar
X

iv
:2

40
2.

17
65

2v
2

 [
cs

.D
C

]
 2

8
Fe

b
20

24

and packing work into as few servers as feasible so that un-
used hardware can be put into a power-saving mode.

An important decision was to make Compass fully de-
centralized and symmetric: every worker node can sched-
ule tasks on every other worker. While many existing sched-
ulers [36, 47, 48, 50, 53, 64] are centralized, permitting fully
coordinated decision-making, centralization introduces over-
heads due to the need to consult the scheduler and to notify it
of changing conditions, creating possible bottlenecks. Early
in our effort, we realized that in edge systems task execution
times are not fully predictable, hence worker loads and GPU
memory contents can quickly evolve in unanticipated ways.
Decentralized tracking of system state was traditionally as-
sumed to be far more costly, but modern data replication is
inexpensive and scalable [37]. Our decentralized solution has
low overheads and outperforms centralized alternatives.

The main contributions of this paper include:
1. A decentralized scheduler that reduces end-to-end la-

tency for ML applications on edge clusters by anticipat-
ing which ML models will be needed by each GPU.

2. GPU memory management that leverages DFGs to opti-
mize GPU cache hit rates.

3. A decentralized service for tracking server loads and
GPU cache contents that imposes negligible overheads
yet enables significant scheduling improvements.

4. Experiments and simulation showing that Compass can
reduce latency by 2x-6x. Compass never consumes more
resources than existing schedulers and requires as few
as half the servers to run an identical workload.

2 Deployment Scenarios and Environment

2.1 Dataflow Graphs
Compass’s DFG representation is similar to that used in prior
work [10, 16, 53, 74]. As noted earlier, these are directed
acyclic graphs G = (E,V), where vertex v ∈ V represents
an ML computation. Edge e ∈ E represents precedence con-
straints: output from the upstream ML will become input
to the downstream ML. We attach a diamond box to vertex
v to represent data dependencies: the ML model and other
objects that v requires to perform its computational task. As
seen in Figure 1, identical colors denote the same ML model,
while different ones denote different models. Our figures omit
details such as object sizes and estimated job/task execution
times, but the DFG also includes them. Our experimental
section used these workflows as its scheduling target.

The workflow in Figure 1a autocaptions for multilingual
online meetings [80], aggregating the translations as a single
output. It uses Meta’s opt-1.3b Open Pre-trained Transformer
(OPT) model to process input [73], Marian [31,32] for French
translation, and mt5 [39, 59] for both Chinese and Japanese
(mt5 plays two roles but uses a single model).

The second workflow (Figure 1b) arises in an application
that auto-captions images for children’s education [17]. The

DFG employs the ViT-GPT2 model [82, 83] for automated
captioning, ESPnet [28] for vocalization, and BART [42] to
ensure that only child-safe results are generated.

The third workflow (Figure 1c) might be used by a Virtual
Personal Assistant (VPA) [25]; it uses the same OPT model
but with prompts to "shape" the desired output, configuring
BART to target an adult rather than a child.

The fourth workflow (Figure 1d) is intended to assist a
vision-impaired user. Object detection is performed by the
DEtection TRansformer (DETR) [51] model and depth es-
timation using a hierarchical transformer encoder-decoder
model [77]. The final vertex combines these two estimates.

Entry Summarization

English->French
translation

English->Chinese
translation

English->Japanese
translation

ExitTranslation
aggregation

OPT

Marian

mt5

mt5

(a) language translation pipeline

Entry Image
captioning

Toxicity
detection

(NLI)
Exit

ViT-GPT2

BART

Text-to-speech
generation

Content
aggregation

VITS

(b) image reading pipeline

Entry Question
answering

Adversity
detection

(NLI)
Exit

OPT BART

(c) Q&A dialogue pipeline

Entry

Depth
estimation

Exit

GLPN

Object
detection

DETR

Info
aggregation

(d) 3D perception pipeline

Figure 1: Pipelines

2.2 Deployment Assumptions
Compass could be used in a cloud datacenter, but will often
be deployed in edge clusters located near data-capture de-
vices, an approach also adopted in prior work [69]. These
clusters would be more limited than full-fledged cloud servers
but still could host multiple DFGs to serve mixes of edge
requests. Using secure cloud links, edge applications would
handle time-sensitive tasks while drawing on the full cloud
for aspects off the low-latency critical path.

A single GPU memory would often be too small to hold
the full set of active ML models. The MLs (graph vertices)
in Figure 1 depend on objects that are each several GB in
size. The total memory aggregated over the full set of DFGs
is nearly 35GB, which already exceeds what a single standard

2

cloud GPU could hold1. Of course, one could find GPUs with
more memory, but one could also find mixes of workflows
that depend on more ML models (moreover, GPU memory is
costly and it is unlikely that edge systems would have the most
expensive GPU devices). In contrast, host memory is often
far larger. For example, Intel’s Xeon Gold 6242R Processor
can be configured with 1TB of DRAM [1], and the E5-2403
normally ships with 384GB DRAM [2]. Thus GPU memory
is the potential bottleneck.

The DFGs describing workflows that the system might en-
counter in a particular deployment are small and static, hence
we assume that these are available on all workers. To annotate
our DFGs with data about expected runtimes and model sizes,
we profiled representative test cases, then adopted parameters
covering 95% or more of the observed data.

2.3 Scheduler Objectives
Many ML schedulers [54–56, 69] focus on long-running dis-
tributed training tasks, but edge systems are dominated by
event classification rather than training, and would not typi-
cally include this style of iterative computation. Distributed
patterns such as AllReduce still arise, but we treat these par-
allel tasks exactly like other kinds of parallel tasks.

Our four example ML workflows all require fast responses.
For example, when performing language translation and im-
age generation, end-to-end performance of the DFG deter-
mines the wait time the human user will perceive. Compass’s
primary role is to minimize end-to-end latency, defined as
the difference between the end time (when the processing
of the exit task is finished) and the start time (when the job
instance is generated). Minimizing latency in DFG structured
workflows is NP-complete, hence Compass will inevitably
depend on heuristics [7, 9, 11]. We do not explicitly optimize
for resource consumption or energy, but our algorithm turns
out to be parsimonious in both respects.

3 System Architecture
As shown in Figure 2, we assume that each worker consists of
a host supporting storage, host computation, and a GPU unit
for heavy lifting. All workers run Compass, which is a fully
decentralized and symmetric: every worker has visibility of
the system state and can assign tasks to any of its peers.

Job instances are scheduled and executed by workers at the
granularity of tasks. A client triggers a new job by sending
a request containing an input object to one of the workers,
which launches the ingress task. As its first step, this task
creates an Activated Dataflow Graph (ADFG) for the job
instance. ADFG is based on the DFG; it is a map containing
initial worker assignment for all tasks in the job instance.
However, the assignment can still be dynamically adjusted,

1We additionally assume that the GPUs have been preconfigured with all
required computational libraries, but these need to remain resident in GPU
memory and hence are not a target for optimization.

as we explain below. Once created, the ADFG is piggybacked
from task to task as the job executes.

The architecture of Compass is seen in Figure 2 and con-
sists of the following components: Workflow Profiling col-
lects profiled information about the vertices in a DFG such as
average execution times. The Decentralized Global State Mon-
itor collects and periodically exchanges information about all
the workers: their load, cache bitmap, etc. Compass’s Sched-
uler component creates a ADFG and later adjusts it. The task
dispatcher executes the decisions taken by the Scheduler, send-
ing task start requests to the correct worker as the prior task(s)
complete. The GPU Memory Manager fetches models on the
fly and manages a GPU cache. Task processing is managed by
the Execution Engine, which includes a plug-in customized
for each supported ML framework. We now describe each of
the components, while the details of Compass’s scheduling
algorithm are presented in Section 4.

3.1 Repository of Workflow Profiles
Compass’s Workflow Profiles Repository holds meta-
information about DFGs. In addition to static information
(expected runtime costs and input/output object sizes), each
task is annotated with the actual sizes of known inputs.

3.2 Scheduler and Task Dispatcher
The flow of job handling is illustrated in Figure 3. When a
worker w receives a job processing request from a client, the
request is appended to scheduling queue on w. The Scheduler
component loops, processing the first request on the schedul-
ing queue. For each request, it produces an ADFG which
includes the worker assignment for each task.

Once the ADFG has been created, Task Dispatcher on W
sends it to worker v on which the entry task in ADFG is sched-
uled for execution (v may happen to be w). Upon receiving
the ADFG, v appends the entry task to its execution queue.
The Task Dispatcher on v also loops, examining the first task
t on the execution queue, popping it from the queue if it can
be executed, and then repeating as soon as the worker has
adequate resources to process a new task.

The determination of readiness for execution entails ver-

GPU
Compute

GPU
Memory

Execution Queue

Scheduling Queue

ML
Models

Scheduler
(§4)

GPU
Memory
Manager

(§3.3)

Task

Compass

Host

GPU

Repository of
Workflow
Profiles

(§3.1)

Control flow

Metadata flow

ML Data flow

Execution
Engine

Task
Dispatcher

(§3.2)

Global State
Monitor

(§3.4)

Send to other
workers

Global State
Sync

Figure 2: Worker Components in Compass

3

ifying that all inputs to t produced by predecessor tasks in
the ADFG are available. If not, Task Dispatcher temporarily
leaves t in the queue and proceeds to the next task.

Once the prerequisites for executing t are satisfied, the next
step entails ensuring that the ML model is in GPU memory.
If the model is not in the GPU cache, it will be transferred
in from host memory. While the transfer is underway, Task
Dispatcher leaves t in the queue and proceeds to the next task.

Once the model is in the GPU cache, the Execution Engine
starts processing t by doing an upcall to the task logic in
the relevant framework. When the execution is finished, if
necessary, the Scheduler adjusts the worker assignment for
successors of t in the ADFG using the algorithm presented
in Section 4. After the adjustment, Task Dispatcher sends the
ADFG along with the output data of t to workers assigned to
execute the successors of t.

Preliminary scheduling decisions enable Compass to col-
locate a series of tasks on the same worker. This saves time
by avoiding the need to move the output of one task to the
location where the next worker would run. Moreover some
aspects of task assignment can only occur at the outset: if a
set of tasks are followed by a join, they would have no way
to make a coordinated assignment for the join task. But the
unpredictability of actual runtimes and object sizes can create
situations in which rigidly adhering to initial scheduling de-
cisions could overload a worker. Accordingly, we adopted a
two-step scheduling approach in which the initial ADFG can
be adjusted during runtime. This turns out to be essential (see
Section 6.3.1).

Compass’s Task Dispatcher also keeps track of the tasks it
has accumulated on its local execution queue, and estimates
the wait time on this worker for a newly arriving task based
on its current queuing situation. Task Dispatcher disseminates
this information to all other workers through Global State
Monitor. Schedulers on other servers could use this informa-
tion to produce task assignments.

3.3 GPU Memory Manager
The purpose of this component is to manage ML models
on worker nodes: the Compass cache and the GPU model

Entry A B Exit

W1 W2 W3

Execute A

Execute B

Time

W2 W1

DFG

…..

Entry A B Exit

ADFG

User
request

Scheduler
produces ADFG

Wait on scheduling
queue

Wait on
execution queue

Reschedule and
dispatch for Task B

Finish
request

Dispatch to the
worker

Wait on
execution queue

Figure 3: Example of Job Instance Handling

execution memory. Compass cache holds reusable model
objects in compressed form, whereas the execution memory
is used to hold input objects for tasks and a decompressed
model for each currently-active task.

As mentioned in Sections 1 and 2.2, GPU memories will
often be too small to simply hold copies of every ML model
that might be needed, and yet it is costly to fetch large models
at the last instant when a task will be executed. Fortunately,
ML models are reusable across different instances of the same
pipeline and even across different pipelines, as we saw in Fig-
ure 1 where a single model was able to produce output in
multiple languages. Retention of models in GPU memory
can thus have a significant impact on job completion times.
Prior work has often employed a static model placement, des-
ignating some set of workers that will "serve" each model,
and managing GPU memory using a policy that the ML logic
itself ultimately controls. In contrast, we take the approach of
scheduler-triggered GPU memory management, in which the
scheduler decides which worker will run each task, at which
point the worker itself makes local decisions about model
placement (both fetching and eviction) based on its assigned
tasks. This design is especially beneficial for dynamic work-
loads with high variation or a sudden burst of requests for
the same pipeline, because the Compass scheduler can dy-
namically add additional workers to accommodate bursts of
demand for particular MLs.

In the experiments in Section 6, we can see that proper
task assignment depends upon careful management of model
placement, and that Compass is able to adjust to workloads
with variations. While Compass’s fetching and eviction poli-
cies are configurable, an important design element is to look
ahead in the execution queue and consider what policies will
be required for the currently queued tasks. We number active
ML models in a small id space (currently 0..63), enabling
the GPU Memory Manager to publish a bitmap encoding
the current contents of the Compass cache for each worker.
The effect is that all workers know the cache contents of all
their peers and can take this into consideration when making
task assignments, thereby opportunistically reusing models
already in GPU memory.

3.4 Global State Monitor
Compass’s Global State Monitor manages a distributed table
of system state. It runs on all workers and holds per-worker
queue processing time and GPU memory (cache) contents.
The queue processing time is the time to complete all tasks
currently on the worker’s execution queue. The Compass
cache information includes the bitmap specifying which mod-
els are in the cache, as well as the amount of free memory in
the cache.

To distribute updates, we take advantage of a modern mul-
ticast protocol optimized to leverage fast networking [37].
Each worker periodically multicasts updates about its local
worker’s state information to all other workers. However, we

4

limit the frequency of these updates to ensure that overhead
will be low. The staleness of the information a worker sees
about other workers has an upper bound that is equal to the
dissemination interval. In the experiments at Section 6, we
showed the scheduling mechanism has a high tolerance of
information staleness, and enabled us to configure the update
frequency to ensure that state information remains sufficiently
accurate for Compass’s task assignment decisions.

4 Compass Scheduler Design
Compass employs a heuristic scheduling mechanism with
dynamic coordination between workers. The mechanism ex-
hibits an important difference from schedulers in prior liter-
ature in that Compass manages GPU memory and balances
task assignment using a metric that reflects ML model object
placements. The experiments reported in Section 6 confirm
that this balance significantly improves end-to-end latency for
job instances.

As explained in Section 3.2, scheduling consists of two
phases. The job instance planning phase produces the initial
ADFG, and is described in Section 4.2. The dynamic adjust-
ment phase is presented in Section 4.3.

4.1 Parameters
The Compass algorithm uses static information from the job
DFG, the ADFG data produced by the initial scheduler, infor-
mation from the repository of workflow profiles, and real-time
information about worker states provided by Global State
Monitor.
Task parameters The expected runtime of task t on worker
w, R(t,w), as well as the expected task input size |inputt |
and output size |outputt | are obtained from the repository
of workflow profiles. The transfer duration TDinput(t) for a
task input is estimated via object size and network transmis-
sion capacity. The duration of transfer between two differ-
ent workers is estimated by a commonly accepted heuris-
tic as TDinput(t) = |inputt |/network transmision capacity +
δnetwork, where δnetwork is a constant factor contributing to the
latency [61]. This estimate is used when determining whether
it would be more advantageous to schedule a successor to
task t on the same node, or to schedule it on a different node
where the needed ML models will be local. Tasks may also
be executed on different nodes if scheduling a successor on
the same node would force the latter task to wait because of
resource oversubscription.
ML model parameters For ML model m, the model size
|m| is also stored in the repository of profiles. This infor-
mation is used to estimate the time to fetch the model from
host machine to GPU memory as follows: TDmodel(m,w) =
|m|/PCIe transmission capacityw +δPCIe(w). It is also used
to estimate the available memory that will remain in Compass
cache on the GPU after fetching the model.
Worker parameters The Global State Monitor collects and
disseminates information about worker load and backlogs.

Each worker w estimates the time (FT(w)) that would be
required to fully execute all the tasks on its current exe-
cution queue. This is computed as FT(w) = current time+
∑t∈execution queue R(t,w). We similarly define FT(t,w) as the
estimated finish time of task t ∈ execution queue on worker
w. The available memory in the Compass cache of worker
w is denoted AVC(w). It is derived from the cache size and
the cumulative size of the models currently in the cache:
AVC(w) = gpu capacityw−∑m∈the cache of w |m|.

4.2 Planning Phase
The task assignment algorithm used during Compass’s job
planning phase maps tasks in a job instance to workers. This
algorithm is inspired by a well-researched process scheduling
algorithm, Heterogeneous Earliest Finish Time (HEFT) [8].
Like HEFT, Compass uses an upward ranking to prioritize
the task scheduling order and selects the workers with the ear-
liest start time. However, Compass extends the classic HEFT
in several respects. HEFT does not consider the load of a
machine when performing the scheduling, which in our set-
ting could result in inefficient task assignment. Additionally,
HEFT lacks mechanisms to factor in the potential benefits of
co-location of the task with cached model objects on which
it depends, or with input data. A third issue arises because
HEFT locks down a plan for the entire job at the outset, pre-
venting adjustments in the event that worker state changes in
a significant way as the job instance proceeds. We address the
first two limitations in the Compass’s job planning algorithm
and the third in its dynamic adjustment phase.

4.2.1 Vertex Ranking

Like HEFT, Compass starts by assigning a rank to each task t.
We use t ≺ t ′ to denote that task t is a direct predecessor of t ′

in the DFG. Since the target worker w is unknown at the time
of ranking, R(t) is the average of R(t,w) over the worker set.
The rank is defined recursively as

rank(t) = R(t)+maxt≺t ′(TDoutput(t)+ rank(t ′)) (1)

Using this ranking, tasks in the same job instance will
be prioritized based on their dependencies and impact on
the end-to-end latency. A task has a higher priority than a
successor that depends on its input. Priorities of tasks with
the same level of dependencies will be determined by their
execution time and the size of any intermediate data objects
that the task requires but are not locally available, because
data transmission cost affects the end-to-end latency. In our
setting, we see heavy reuse of DFGs, resulting in job instances
containing identically ranked tasks. In these cases, time of
arrival determines the ranking.

Notice that many aspects of task ranking can be performed
statically. Compass carries out these computations just once,
when the DFG is initially loaded, then saves the results into its
repository. Later, when dynamic inputs become available, the

5

statically-computed rankings will merely need to be updated,
not recomputed from scratch.

4.2.2 Task Assignments

The role of Compass’s job instance planning phase is to pro-
duce an ADFG, which is a map from task ID to worker ID.
The algorithm starts by considering the vertex rankings asso-
ciated with the DFG. Compass’s Scheduler module iterates
through the tasks in descending order of priority, carrying out
per-task scheduling decisions.

For a task t, this is done by looping through all worker
nodes and selecting the worker with the earliest start time.
For a given worker w, there are three main constituents, the
transfer duration TDmodel(t,w), the finish time for all queued
tasks FT(w), and the finish time for transferring all inputs of
t, FTallInputs(t,w).

TDmodel(t,w) is the time for worker w to load ML model
m for use by task t. Leveraging the data managed by the
Global State Monitor, the scheduler can determine which
GPUs currently hold decompressed instances of each of the
models in the Compass cache for all workers in the system.
If a task is assigned to a worker that will need to fetch an ML
model, the required time is computed as

TDmodel(t,w) =
0, if mt ∈ Compass cache on w
TDmodel(m,w), if mt ̸∈ cache∧|mt | ≤ AVC(w)
TDmodel(m,w)+ eviction penalty, otherwise

(2)

Eviction penalty. Consider some task t that needs to be
scheduled. Compass could schedule t on a worker w that
already holds needed model m, or could also expand the pool
of workers by assigning to some other worker w′ where m is
not currently in cache. Naively, we should prioritize w over w′

if the expected delay at w is longer than the transfer delay for
loading m at w′ - but this overlooks the likelihood that some
other model m′ will be evicted from cache by w′ to make
room for m. The penalty is intended to capture this effect.

FT(w) is the estimated time for worker w to finish all tasks
on its execution queue. At each run of job instance planning,
the scheduler creates a map of finish times for all workers,
worker_FT_map by fetching the information from Global
State Monitor, as shown on line 2 of Algorithm 1. Scheduler
also updates the map as it assigns tasks to workers (see Al-
gorithm 1, line 12), since the assignments would affect later
tasks in this job instance if scheduled onto the same worker.
The planning algorithm incorporates FT(w) to account for the
wait time on the workers’ queue.

ATallInput(t,w) is the arrival time for all inputs of task t to be
received by worker w. It is calculated as the maximum among
the arrival times on worker w, for the outputs produced by
the predecessors of t. Because the scheduler processes the
tasks according to their rankings, when task t is examined its
prerequisite tasks will have already been assigned. During job

instance planning, Scheduler keeps track of its task assign-
ments, and the estimated finish time of task t on a scheduled
worker w. Thus, the time when the output of task t ′ arrives
from worker ADFG[t ′] at worker w is computed as

ATinput(t ′, t,w)=

{
FT(t ′,ADFG[t ′]), if w = ADFG[t ′]
FT(t ′,ADFG[t ′])+TDoutput(t ′),otherwise

(3)
ATallInputs(t,w) = maxt ′≺tATinput(t ′, t,w) (4)

Algorithm 1 shows the computation steps of the planning al-
gorithm. The complexity of the algorithm is O(E ∗W), where
E is the total number of edges in the DFG and W is the total
number of worker nodes.

Algorithm 1 Job Planning Algorithm
Input: DFG
Output: ADFG

1: compute the ranks for all tasks in the DFG using Equation 1
2: populate worker_FT_map from Global State Monitor

// worker_FT_map is a map containing FT(w) ∀w ∈ workers
3: TaskSet← all tasks ∈ DFG
4: while TaskSet ̸= /0 do
5: t← a task in TaskSet with the biggest rank
6: TaskSet← TaskSet \t
7: for w ∈ workers do
8: x← max(worker_FT_map[w],ATallInputs(t,w))
9: FT(t,w)← x+TDmodel(mt)+R(t,w)

10: wmin← argminw∈workers FT(t,w)
11: ADFG[t]← wmin
12: worker_FT_map[wmin]← FT(t,wmin)

13: return ADFG

4.3 Dynamic Adjustment Phase
Whereas job planning occurs when a new job instance is
created, dynamic adjustment enables the system to adapt if
predicted runtimes, object sizes, or transfer times were esti-
mated inaccurately. Each time the Execution Engine finishes
executing some task t, Scheduler will run Algorithm 2. It first
checks that t is not a join task: such a task cannot be moved
to a different worker without coordination across the prede-
cessor tasks. For a non-join, it reschedules if the wait time on
the planned worker exceeds a preconfigured threshold.

If rescheduling is needed, the new worker assignment is
performed by ranking workers and selecting the one that
would start the task first. The start time is calculated based
on the wait time on the worker’s execution queue, required
model fetching time, and the input transfer duration.

5 Implementation
Compass runs as a component of an open-source platform
called Cascade [37, 68], which was created to reduce over-
heads for ML jobs. Prior to our work, Cascade held data (like
a key-value store, file system, or message queuing middleware

6

Algorithm 2 Task Dynamic Adjustment Algorithm
Input: ADFG, t
Output: opt_worker

1: wplanned← ADFG[t]
2: above_threshold← FT (w)> R(t,w)∗ threshold
3: require_reschedule← (t is not a join task)∧above_threshold
4: if ¬require_reschedule then
5: return wplanned

6: populate worker_FT_map from Global State Monitor
7: for w ∈ workers do
8: x← worker_FT_map[w]
9: FT(t,w)← x+TDmodel(t,w)+R(t,w)

10: if w is not this scheduler’s worker then
11: FT(t,w)← FT(t,w)+TDinput(t)

12: opt_worker← argminw∈workers FT(t,w)
13: return opt_worker

system). It also offered a hosting environment for low-latency
ML tasks. Compass enriches this with ML scheduling.

Cascade objects are simply variable-length byte vectors
named by file-system pathnames. Each has a small set of
home servers selected using a randomized hash-based object
placement within "shards" of size 2 or 3. Access is free on a
home server, but a network transfer would occur for an access
initiated from some other server. ML models and other inputs
to ML tasks would all be Cascade objects.

Cascade additionally includes a storage/retrieval layer for
in-memory replication of small data objects. This layer is
called the shared state table (SST), and is used by Compass
to disseminate scheduler metadata (see Section 5.2).

Lacking Compass, Cascade offered an automated hash-
based load-balancer that was used in situations where a pool
of servers all could handle a given request. Integration of
Compass with Cascade centered on replacing this mecha-
nism with the decentralized Compass scheduler and extend-
ing Cascade’s preexisting support for GPU accelerators with
Compass’s GPU memory management functionality.

5.1 Data communication layer
5.1.1 Remote Direct Access Communication and the

Data Plane Developers Kit

Cascade communication is optimized for modern networking,
with a focus on two technologies receiving substantial indus-
try attention: RDMA and DPDK. Cascade supports a mix of
communication modalities: point-to-point messaging, atomic
multicast, and durable updates using a Paxos-based replica-
tion model. For example, object replication within a shard
uses atomic multicast or Paxos (the former for in-memory
performance; the latter for persistence). The SST data struc-
ture maps to point-to-point messaging. Each of these, in turn,
would be carried out using RDMA or DPDK, depending on
which option Cascade is configured to select.

Remote Direct Memory Access (RDMA) [3] is a tech-

nology originally created for high-speed computing on bare-
metal HPC clusters equipped with Infiniband networks. Dur-
ing the past decade, RDMA has migrated to conventional data
centers [58]. The technology is fast, reliable, and offers TCP-
like guarantees. By moving the protocol stack into hardware,
RDMA frees the host computer to focus on other tasks. How-
ever, fully leveraging RDMA requires a substantial rethinking
of end-to-end protocols and systems: its speed is closer to that
of a computer backplane than a network.

The Data Plane Developers Kit (DPDK) is a pure software
solution, and runs over TCP. DPDK moves the TCP stack
to user space, bypassing the operating system kernel and by
so doing, gaining a significant speedup. In Cascade experi-
ments, DPDK is about twice as fast as TCP and has much
lower latencies, but RDMA offers a further factor of two in
throughput and a further reduction in latency, particularly for
data transfers larger than about 10KB.

5.1.2 Data Transfer between Task Dispatchers

Although Compass’s algorithms anticipate object transfers
and include cost estimates, Compass itself does not currently
initiate such actions. Instead, the MLs themselves access ob-
jects by performing application-layer actions such as opening
a file that is in fact hosted by Cascade, reading a key-value
object hosted by Cascade, or receiving a pub-sub object that
actually is a Cascade object. In all of these cases, Cascade
itself will then transparently fetch the object either from a
local host cache, from local storage if the server making the
access is a home node for the object, or from one of the home
nodes if the object is hosted on other servers. Compass does
not currently try to "peek" into the Cascade host cache, but in-
stead adopts the view that every object accessed during an ML
job will be in memory "somewhere" in the system, and also
that if the object in question is a large ML model - the case
that can become costly - that DMA transfer from the local
cache into GPU memory is comparable in speed to RDMA or
DPDK transfer from a remote server’s memory to the local
GPU memory.

Compass treats one kind of object differently: results of a
task that become inputs to a successor task. Here, the distinc-
tion is that whereas the outputs of some programs need to be
saved and will be reused later, when we consider a DFG there
may also be transient outputs produced by one stage and then
consumed and discarded by its successor stages. Here, the
cost depends on where the producer stage runs, and where
the consumers run. If an object is small, or if it is large but
resides in the GPU cache on a node where the consumer will
run, this cost is 0. This form of co-location is clearly very
beneficial. Otherwise, Compass simply assumes that a DMA
or RDMA transfer will occur, and models the cost accordingly.
The resulting model is presented in Figure 4.

7

System RAM

GPU
memory

GPU
memory

RDMA
PCIe PCIe

Node 1 Node 2

System RAM

Figure 4: Network Transfer between Nodes

0 561 [1] 12000

1 1000 [3] 8000

2 0 [3] 8000

3 3000 [4, 5] 1000

4 561 [1] 12000

5 1174 [3] 8000

0 0 [] 15000

1 2000 [4] 9000

2 0 [3] 8000

3 3000 [4, 5] 1000

4 561 [1] 12000

5 1174 [3] 8000

RDMA

Figure 5: Compass Shared State Table (SST)

5.2 Shared State Table Considerations
While most objects stored in Cascade are simply key-value
tuples with home nodes, but accessible from anywhere, the
SST is a very different kind of storage structure. As summa-
rized above, the SST is an extensible table replicated over all
servers. Compass’s "instance" of the SST has one row per
server, and a fixed row format. The resulting replicated object
is an inherently O(n2) data structure: every node has a copy
of the data structure, and when a node updates its row and
pushes that update, one RDMA write per peer will be issued,
to update the corresponding row in that peer. Fortunately, n
in our target settings would generally be fairly small: most
edge compute clusters have just a few (2 to perhaps 64) blade-
style computers in a rack. Even so, we limit the update rate to
ensure that overhead is not excessive.

The nature of RDMA hardware makes SST updates cache-
line atomic, meaning that data fitting with a 64-byte cache-line
can be changed and the updates will become visible "instan-
taneously" when the push occurs. However, data straddling
cache lines would only be updated atomically on a per-cache-
line basis. This concern led us to squeeze the required data
into a single cache-line per process, resulting in the SST lay-
out seen in Figure 5, for six nodes. Our encoding uses a 64-bit
integer to represent GPU cache contents, and hence is cur-
rently limited to 64 active models (we number them 0-63,
and set that bit if the model is current resident in the GPU),
but our design could easily be modified to allow 512 active
models by expanding the encoding to use 2 cache lines rather
than just one.

Compass’s decentralized algorithm requires that a node
making a scheduling choice be able to estimate the states of
other nodes, but does not require perfect accuracy or lock-step
coordination. Accordingly, we decided to limit the frequency
of SST updates using a parameter in the Compass configu-
ration file, and then to experimentally determine the lowest
acceptable update rate, thereby ensuring that SST overheads

will be minimized. In Section 6.2 we report on these exper-
iments, confirming that Compass performs well even with
somewhat stale metadata, and justifying an update frequency
of 5 pushes per second: negligible given that RDMA can send
75M small messages per second on each network link.

5.3 GPU Memory Management
Compass’s GPU Memory Manager controls caching for re-
cently used ML models in GPU memory. It performs model
fetching and eviction as new tasks are assigned to the asso-
ciated worker. Its fetching and eviction policy can be config-
ured by users, depending on the application. We implemented
and experimented with two management policies: FIFO and
queue-lookahead.

5.3.1 FIFO

Under FIFO GPU memory management policy, GPU Memory
Manager keeps a list of the models in GPU memory, sorted
by the time when the model was added to the cache. When
eviction is required to host a new model, cached models that
are not actively in use get evicted starting from the earliest
model on the list and until enough cache space is freed to hold
the new model. Global State Monitor disseminates a bitmap
for the cache to other workers in the system.

5.3.2 Queue-Lookahead

The FIFO policy has the drawback that the evicted model
may soon be required by a subsequent task, resulting in a
high number of evictions and fetch operations. To account
for this case, we implemented an alternative queue-lookahead
mechanism. Since the execution queue contains the tasks that
are scheduled to be executed on the worker, this information
can be used to implement a smarter cache management policy.

Upon eviction, GPU Memory Manager looks ahead into
the execution queue, examining some fixed number of future
tasks and their required models, and giving higher priority
to models that will be used sooner. Then it sorts the list of
models in GPU memory based on the priority. If a model must
be evicted to make room for the model of the current task,
GPU Memory Manager evicts models from the lowest priority
to the highest. This way Compass can avoid evicting models
that are needed for the near-future tasks, and the associated
overhead of fetching these models soon again.

5.4 Simulation
Although Compass is a fully working system, we wanted a
way to explore scenarios beyond what we can reasonably
deploy on our limited-scale testbed. Accordingly, we imple-
mented an event-driven simulator [git repo]. The simulator
itself is similar to that of Sparrow [13]. It models all elements
of the environment described in Section 3, and supports the
same request types as the real system, as illustrated in Fig-
ure 1. When estimating network delays and execution times,
the simulator uses values we measured in the real system for
input/output sizes, the sizes of ML models for our workload,

8

and the task duration. Compass’s simulator models the task
arrival, task waiting on the queue, task execution, and task
dispatch as events, processed in the order of the simulated
time. We validated the simulator against the real experiment
using the same scale of 5 workers and the same workload, and
observed that the performance difference between simulation
and real experiment lies within 5% of the median numeric
values.

6 Experiments and Evaluation

We evaluate Compass on a dedicated cluster, using 5 servers
as the worker nodes and one as a client node. All workers are
Dell PowerEdge R740 machines with dual Intel Xeon Gold
6242 processors and 192 GB memory. Each is additionally
equipped with a Tesla T4 GPU having 16GB memory. The
servers are connected by InfiniBand with RDMA-enabled
100Gbps network. Experiments in Section 6.2 and 6.3.2 are
evaluated on a real system. Experiment in Section 6.5 is per-
formed using the simulator.

Our experiments focus on performance when scheduling
multiple DFGs on a shared set of workers, and use a mix of
the four workflows from Figure 1. On an idle system with ML
models cached in GPU, the average completion times would
range from 1 to 3 seconds, reflecting a dependency on rela-
tively large models. In the experiment, the client node initiates
a mix of concurrent requests. Text inputs to the translation 1a
workflow and dialogue workflow 1c are randomly selected
from the GLUE benchmark dataset [30]. The image inputs
for image reading pipeline 1b and 3d perception pipeline 1d
are sampled from the COCO dataset [14].

6.1 Performance Evaluation Metrics

The metric slow down factor measures how close the execu-
tion of each job instance came to the (possibly unachievable)
lower bound for end-to-end latency. End-to-end latency is
computed from when the job instance arrives at the system
to the time when the last task in the job instance completes
(in our examples, always shown as the "exit task"). Although
the general problem of DAG-structured job scheduling is NP-
complete, as mentioned in Section 2.3, we can easily compute
the lower bound for a given job instance: it is simply the time
it takes to run the job instance with the maximum possible
task parallelism and all inputs cached on GPU, and can be
calculated from the DFG by assuming zero data transfer delay.
The slow down factor of a job instance j is represented as

slow_down_factor j =
end_to_end_latency j

lower_bound j
≥ 1

In reality, schedulers may never be able to achieve the slow
down factor of one. It is nevertheless a useful metric for
comparing the performance of different schedulers.

6.2 Scheduling Algorithm Analysis
Two primary considerations arise when scheduling workflows
with DFG dependencies. One entails optimizing for dependen-
cies within each job instance. For example, tasks that could
be processed in parallel can be sent to different workers to
maximize the level of concurrency during execution; tasks
with large intermediate data dependencies can be grouped to
run on a single worker to avoid data transfer delays. The other
entails optimization reflecting the current state of the system
as a whole, as represented in the shared metadata table. Here,
decisions will avoid overloading a worker that is already at
its peak capacity. Both approaches offer potential benefits,
but they lead to very different schedules. The Compass al-
gorithm takes both factors into consideration, using a hybrid
scheduling scheme. Below in Section 6.2.1 we describe two
scheduling schemes that each focus on one factor. Then Sec-
tion 6.2.2 compares Compass with these two baseline options.

6.2.1 Baseline Schemes

JIT: A Just-in-time (JIT) scheduler makes individual task
assignment decision as each task is about to be executed. Each
time a scheduling action is needed, a JIT algorithm selects
a task that has all prerequisite inputs available and assigns it
to the worker that offers the earliest start time, obtaining the
start time estimates by taking worker-state information from
Global State Monitor and computing the worker start time
using the worker wait time, model fetch time and intermediate
data transfer time (if a required input would need to be moved
from a different worker). The JIT optimization minimizes the
finish time for each individual task.
HEFT: The HEFT algorithm introduced in Section 4.2 opti-
mizes for inter-job dependencies. Similarly to Algorithm 1, it
first sorts tasks in the job instance, then assigns tasks to work-
ers in the descending order of priorities. The optimization
considers task parallelism and data transfer between depen-
dent tasks. Unlike the customized planning Algorithm 1, a
standard HEFT algorithm does not consider the worker wait
time and the task-dependent ML model locality. It also lacks
a dynamic adjustment mechanism: When a job instance is
first triggered, HEFT would assign all the associated tasks to
workers, and the workers subsequently adhere to the schedule.
Hash: The algorithm balances the load by randomizing task
assignment to workers by hashing the task name combined
with the request identifier. Hash is very simple and offers a
uniform distribution of tasks to workers, and it is commonly
used for workflow scheduling and load balancing.

6.2.2 Performance Comparison Among Schedulers

Figure 6 shows results for an experiment that compares the
scheduling schemes under steady low and high workloads,
using mixes of the four job types presented in Figure 1.

Figure 6a shows the low-load case. Clients send pipeline
processing requests at the average rate of 0.5 requests per
second, with a Poison distribution on request types. The box

9

translation Q&A read img 3Dperception
Pipeline Name

0

10

20

30

40

50

slo
w_

do
wn

_f
ac

to
r

1.0 1.0 1.1 1.31.7 1.3 2.8 2.41.6 1.7 2.8 2.01.6 1.3 3.6 2.9

Compass
JIT
HEFT
HASH

(a) Low-load scheduling performance

translation Q&A read img 3Dperception
Pipeline Name

0
50

100
150
200
250
300

slo
w_

do
wn

_f
ac

to
r

1.7 1.7 1.6 1.82.6 2.2 10.1 16.28.2 4.7
37.5

63.8

4.5 4.6
22.8

39.5

(b) High-load scheduling performance

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
request rate (num/sec)

0

20

40

60

80

100

120

140

slo
w_

do
wn

_f
ac

to
r

Compass
JIT
HEFT
HASH

(c) Varying load performance

Figure 6: Comparison of scheduling schemes

plot shows the distribution of slow_down_factors for different
instances, broken down by job category. The top and bot-
tom of the box represent the first and third quartile of the
data, respectively. The whiskers represent 1.5 times the up-
per and lower quartiles, and the dots show outliers. While all
schedulers perform well under this case with close to opti-
mal slow_down_factor, Compass is the closest to the optimal
schedule (slow_down_factor of 1.0).

Figure 6b repeats the experiment with a job arrival rate
having a mean of 2 requests per second under a Poison dis-
tribution. This places the cluster under more pressure, so the
slow_down_factor for all four scheduling schemes increases
due to the higher load. Compass continues to outperform,
yielding overall performance 2x to 4x faster than HEFT and
Hash for the translation and Q&A pipelines, and 20x to 30x
faster for the image description and 3D perception pipeline.
The more extreme slow_down_factors in image description
and 3D perception pipelines are because of their relatively
short runtimes compared to translation and Q&A, which made
these pipelines more susceptible to the system overheads
caused by sub-optimal schedules.

Figure 6c experiments with different request rates un-
der a Poison distribution. The plot shows the average
slow_down_factors for a mixed workload. Compass has the
closest to ideal performance at different request rates. The
HEFT algorithm fails to adjust to the higher system loads
due to not taking the workers’ load into consideration. JIT
performs better than the HEFT and Hash schemes due to its in-
time task assignment mechanism, but not as well as Compass
because of it lacks a mechanism for intra-job coordination.

Table 1 shows average latency and other GPU-related per-
formance metrics for the experiment presented in Figure 6b.
GPU utilization is the percentage of time during which the
GPU was actively processing computations. Memory utiliza-
tion is the percentage of GPU memory being used, an indi-
cator of memory-pressure on the GPU. Energy consumption
is the total amount of energy consumed when running the
full workloads. The GPU cache hit rate is the percentage of
times when the required model is already in the GPU memory.
The results indicate that Compass consumes similar GPU re-
sources and energy to other schedulers, yet achieves superior

end-to-end latency.

Table 1: Scheduler performance metrics

Scheduler latency
(s)

GPU utiliza-
tion (%)

GPU memory
utilization (%)

GPU energy
use (J)

GPU cache
hit rate (%)

Compass 2.5 39 65 100760 99
JIT 5.0 42 68 103254 93
HEFT 18.0 38 73 103475 95
HASH 10.5 39 67 106851 91

6.3 Ablation Analysis
Compass employs multiple features that contribute to schedul-
ing. To understand the importance of each, we conduct an
ablation analysis by selectively disabling features.

6.3.1 Importance of Scheduler Features

Dynamic task scheduling: To show the effect of using dy-
namic adjustment, this experiment disables dynamic adjust-
ment that Compass normally employs as each job instance
executes, only retaining the preliminary planning phase. Fig-
ure 7 reveals a significant performance degradation.
Eviction policy: Next we investigate the importance of GPU
cache-content awareness by selectively disabling the Memory
Management policies introduced in Section 5.3. As seen in
Figure 7, queue lookahead improves latency performance
when the request rate is high, but has no significant impact at
low request rates, where the initial task assignment decision
is already close to optimal.
Model locality: The scheduler prioritizes workers whose
GPU cache already contains the required models, as reflected
in the metadata table. As shown in Figure 7, Compass incurs
an 8x degradation without this mechanism. The GPU cache
hit rate also decreases to 90% (as opposed to 99% when this
optimization is enabled).

6.3.2 Sensitivity Analysis

Recall from Section 3 that we made a decision to limit the
update rate for the SST-hosted metadata on which Compass
depends, forcing the system to run with potentially stale data.
The question arises of how sensitive Compass’s scheduling
quality actually is as a function of the degree of staleness.

10

translation Q&A read img 3Dperception
Pipeline Name

0

10

20

30

40

50

60
slo

w_
do

wn
_f

ac
to

r

1.4 1.3 1.5 1.81.9 2.1 2.0 2.11.7 1.5 1.9 2.32.7 2.4

10.8

16.9

Compass
Compass_no_dynamic_adjustment
FIFO_policy
Compass_no_model_locality_consider

Figure 7: Ablation analysis findings

load_info staleness (m
s)

1002003004005006007008009001000

model_info staleness (ms)
050000100000150000200000250000300000350000

slow down factor

2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

Performance on Different Information Staleness

Figure 8: Dependency on information dissemination rate

With this in mind, we set up a high-workload scenario
and vary the frequency of updates using a "delay between
updates" configuration parameter, reflected in Figure 8. In
this plot, the x axis represents the staleness of the workers’
load information as perceived by other workers, whereas the
y axis represents the staleness of the workers’ GPU cached
model information as perceived by other workers. Observe
first that the minimal slow_down_factor is achieved with the
highest rate of SST pushes (10 per second), and the worst –
with a very low rate (1 per second).

The graph tells us quite a bit more, however. Because ML
model fetching to the GPU memory is an infrequent event, we
see that Compass can tolerate a much higher level of staleness
for GPU cache-content information than for load. The delay
for the latter has a significant impact beyond the threshold
of 200ms (corresponding to 5 pushes per second). To make
this concrete, at the 200ms rate in a cluster of 32 nodes, each
participant would send and receive 160 RDMA updates per
second (out of an RDMA rate limit of 75M/second): a trivially
low overhead.

6.4 Production trace
Our next experiment considers scheduling performance for
the workflows described in Figure 1 using a public trace from
the Alibaba production GPU cluster [4,63,85]. We rescale this
trace to adapt it to the capacity of our experimental system.
Figure 9a shows request arrival rates on a timeline, while
Figures 9b-9e show completion times as a function of arrival
times. The plots make it clear that the Hash scheduling scheme
is least tolerant of bursts of job instances, at least in a small
worker cluster. Compass has the best completion times even
with these unpredictable request patterns.

6.5 Scalability Analysis
Hashing is widely used for scalability in today’s large clus-
ters [26, 43, 75], under the assumption that it leads to a more
even distribution of workloads and full use of resources. Our
next experiment shows that in fact, Compass uses hardware
resources more efficiently. For this work we create a large-
scale experiment using a simulation study. The workload is
Poisson with a mean of 40 requests per second. We consider
a range of up to 250 workers and examine a series of cluster
utilization metrics as well as the median slow_down_factor
over the job instances of all four types in Figure 1.

0 200 400 600 800 1000
timeline(s)

0

2

4

6

Fr
eq

ue
nc

y

Histogram of job instance arrivals

(a) trace histogram

HASH

JIT

Compass

0 200 400 600 800 1000
timeline (s)

0

5000

10000

15000

20000

la
te

nc
y

(m
s)

job instance end to end latency

(b) language translation

0 200 400 600 800 1000
timeline (s)

0

5000

10000

15000

20000

la
te

nc
y

(m
s)

job instance end to end latency

(c) image reading

0 200 400 600 800 1000
timeline (s)

0

5000

10000

15000

20000

la
te

nc
y

(m
s)

job instance end to end latency

(d) dialogue

0 200 400 600 800 1000
timeline (s)

0

5000

10000

15000

20000

la
te

nc
y

(m
s)

job instance end to end latency

(e) 3d perception

Figure 9: Experiment on production traces

As seen in Figure 10, Hashing is effective in the sense
that it utilizes all available workers in each round, and the
median slow_down_factor decreases as the number of work-
ers increases, due to its inherent load-balancing property, ap-
proaching its lower bound at the scale of around 100 workers.
Compass prioritizes the workers with models in GPU mem-

11

ory and expands the worker set only if by doing so, mean
job completion times would be improved. As observed in the
experiment with the same workload, the slow_down_factor
reaches its lower bound with just 50 active workers: half the
resources required for the Hashing scheduler! These unused
machines could be put into power-saving mode, reducing over-
all platform power consumption. With very large numbers
of workers, Hashing slightly outperforms Compass (at 150
machines and beyond), but to gain this tiny benefit it keeps
three times as many machines active.

7 Related work
The study of scheduling and cache management for ML has
been addressed in several prior works. Commercial systems
such as TensorFlow Serving [6], NVIDIA Triton [5], TFX
Platform [20] support ML application deployment in produc-
tion environments optimized for performance.

Prior work covers a range of perspectives. ML model opti-
mization is the focus in [46, 67] whereas hardware manage-
ment is the more central emphasis in [22,47,50,62–64,66,79].
Nimble [46] compiles and optimizes dynamic deep learning
models to portable VM-runtime. Orca [67] performs iteration-
level optimization to the transformer model to improve latency
and throughput. Clockwork [50] employs a fine-grained ap-
proach to manage the model in memory and during execution,
and minimize tail latency to achieve predictable performance.
To optimize for model serving SLOs, AlpaServe [79] uti-
lizes model parallelism and statistical multiplexing, while the
gpulet [62] scheduler takes the approach of spatio-temporal
sharing of partitioned hardware resources to support heteroge-
neous ML models. Singularity [64], Antman [47], Walle [66]
and PAI [63] schedule ML tasks in large-scale cloud pro-
duction platforms. Cloud scalability encourages this type of
elastic upscaling and downscaling, but these methods cannot
directly transfer to small edge cluster with ML tasks that have
large models and employ GPU accelerators. Additionally, this
work focuses primarily on workflows with just a single ML
task per request, and generalization to DFG workflows would
be a significant undertaking.

Scheduling for workflows with inter-job dependencies has
been explored in many prior efforts [8, 16, 48, 49]. Wing [48]
focuses on data-analytic queries; Apollo [16] focuses on

50 100 150 200 250
Total Number of Workers Available

50

100

150

200

250

Nu
m

be
r o

f W
or

ke
rs

 U
se

d

Compass number of used workers
Hash number of used workers
Compass slow down factor
Hash slow down factor

0

20

40

60

80

100

M
ed

ia
n

slo
w_

do
wn

_f
ac

to
r

Figure 10: Simulation testing a larger scale

data-processing jobs with dependencies in production cluster;
HEFT [8] schedules for general-purpose computation work-
flow on heterogeneous processors. Batchy [49] is a general-
purpose dataflow graph scheduler that uses batch-processing
profiles to balance the efficiency and latency under SLO con-
straints. The estimation-based job planning and deferred cor-
rection mechanism used in Apollo [16] resembles the schedul-
ing scheme in Compass; while the task assignment algorithm
in HEFT [8] resembles Compass’s job planning algorithm.
However, direct application of these methods to the ML work-
flows in Compass does not give latency-optimal scheduling
result because they do not consider ML model re-use, GPU
memory consumption and collocation of ML models.

Compass’s graphical workflows are similar to those con-
sidered in [18, 21, 38, 53, 74]. Video storm [21] and Nexus
[38] schedule pipeline-structure workflows for video stream.
Orion [74] schedules serverless DAGs with right-sizing,
bundling and pre-warming techniques to meet latency SLOs.
Stream Processing Engines (SPEs) scheduler [18] is similar
with Orion [74] in that both use workload prediction model
to estimate the worker waittime and provision the workers
accordingly. These provisioning methods rely on workload
prediction, but potentially sacrifice latency when the workload
distribution drifts or if a burst of jobs puts the system under re-
source stress. InferLine [53] introduces a low-frequency com-
binatorial planner and a high-frequency auto-scaling tuner
mechanism that it uses to upscale and downscale the num-
ber of workers as load varies. The process of worker selec-
tion for provision and up-scaling is less addressed in Infer-
Line [53], which becomes nontrivial when the model sizes
are significantly larger and when there are only limited GPU
memories. Compass addresses this scenario by scheduler and
resource management co-design, which optimizes the task
assignment while balancing the co-location of ML model
objects in Compass-managed GPU memory.

8 Conclusion

Compass manages memory and schedules tasks in support of
latency-sensitive ML workflows structured as DFGs. A novel
scheduling-aware eviction policy yields high GPU cache hit
rates, avoiding unnecessary model fetching and eviction. Our
evaluation compared Compass with state of the art schedulers
under a variety of request rates and workload patterns, show-
ing 2x to 6x speedup with similar resource use, while leaving
excess servers completely idle. Compass also turns out to
perform well with respect to energy consumption.

9 Acknowledgments

We are grateful to Professor Luís Rodrigues for his many
insightful comments and to Microsoft Corporation, Siemens
Corporation and the Cornell Institute for Digital Agriculture
for funding the effort.

12

References
[1] Intel Xeon Gold 6242R Processor. https:

//www.intel.com/content/www/us/en/products/
details/processors/xeon/scalable/gold.html.

[2] Intel Xeon Processor E5-2403. https://www.intel.
com/content/www/us/en/products/details/
processors/xeon/e.html.

[3] A Remote Direct Memory Access Protocol Specifica-
tion. https://tools.ietf.org/html/rfc5040.

[4] Alibaba. Alibaba Production Cluster Trace Data. https:
//github.com/alibaba/clusterdata.

[5] NVIDIA Triton Inference Server Organization.
Triton Inference Server. https://github.com/
triton-inference-server.

[6] TensorFlow Serving. https://github.com/
tensorflow/serving.

[7] J. D. Ullman. NP-Complete Scheduling Problems. In
Journal of Computer and System Sciences, pages 384-
393, 1975.

[8] Haluk Topcuoglu, Salim Hariri, and Min-You Wu.
Performance-Effective and Low-Complexity Task
Scheduling for Heterogeneous Computing. In IEEE
Transactions on Parallel and Distributed Systems, 2002.

[9] Michael L. Pinedo. Scheduling: Theory, Algorithms,
and Systems. Springer Publishing Company, 2008.

[10] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
fair scheduling for distributed computing clusters. In
SOSP, 2009.

[11] Luiz F. Bittencourt, Rizos Sakellariou, and Edmundo
R. M. Madeira. DAG Scheduling Using a Lookahead
Variant of the Heterogeneous Earliest Finish Time Algo-
rithm. In 18th Euromicro Conference on Parallel, Dis-
tributed and Network-based Processing, 2010.

[12] Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, Ion Stoica. Spark: cluster com-
puting with working sets. In HotCloud, 2010.

[13] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and
Ion Stoica. Sparrow: Distributed, Low Latency Schedul-
ing. In SOSP, 2013.

[14] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona,
Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.
Microsoft COCO: Common Objects in Context. In Eu-
ropean Conference on Computer Vision(ECCV), 2014.

[15] Christina Delimitrou, Christos Kozyrakis. Quasar:
Resource-Efficient and QoS-Aware Cluster Manage-
ment. In ASPLOS, 2014.

[16] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jin-
gren Zhou, Zhengping Qian, Ming Wu, and Lidong
Zhou, Apollo: Scalable and Coordinated Scheduling
for Cloud-Scale Computing, In OSDI, 2014.

[17] Zsofia K. Takacs, Elise K. Swart, and Adriana G. Bus.
Benefits and Pitfalls of Multimedia and Interactive Fea-
tures in Technology-Enhanced Storybooks: A Meta-
Analysis. In Review of Educational Research, 85(4),
698–739, 2015.

[18] Björn Lohrmann, Peter Janacik, and Odej Kao. Elastic
Stream Processing with Latency Guarantees. In IEEE
35th International Conference on Distributed Comput-
ing Systems, 2015.

[19] M. Abadi, P. Barham, J. Chen, Z. Chen,A. Davis, J.
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irv-
ing, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit
Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: A System for Large-Scale Machine Learning. In
OSDI, 2016.

[20] Akshay Naresh Modi, Chiu Yuen Koo, Chuan Yu Foo,
Clemens Mewald, Denis M. Baylor, Eric Breck, Heng-
Tze Cheng, Jarek Wilkiewicz, Levent Koc, Lukasz Lew,
Martin A. Zinkevich, Martin Wicke, Mustafa Ispir,
Neoklis Polyzotis, Noah Fiedel, Salem Elie Haykal,
Steven Whang, Sudip Roy, Sukriti Ramesh, Vihan Jain,
Xin Zhang, and Zakaria Haque. TFX: A TensorFlow-
Based Production-Scale Machine Learning Platform. In
ACM SIGKDD KDD, 2017.

[21] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J. Freed-
man. Live Video Analytics at Scale with Approximation
and Delay-Tolerance. In NSDI, 2017.

[22] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper:
A Low-Latency Online Prediction Serving System. In
NSDI, 2017.

[23] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, Ricardo Bianchini. Re-
source Central: Understanding and Predicting Work-
loads for Improved Resource Management in Large
Cloud Platforms. In SOSP, 2017.

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser,

13

https://www.intel.com/content/www/us/en/products/details/processors/xeon/scalable/gold.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon/scalable/gold.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon/scalable/gold.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon/e.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon/e.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon/e.html
https://tools.ietf.org/html/rfc5040
https: //github.com/alibaba/clusterdata
https: //github.com/alibaba/clusterdata
https://github.com/triton-inference-server
https://github.com/triton-inference-server
https://github.com/tensorflow/serving
https://github.com/tensorflow/serving

and Illia Polosukhin. Attention is All you Need. In
Conference on Neural Information Processing Systems,
2017.

[25] Veton Këpuska and Gamal Bohouta. Next-generation
of virtual personal assistants (Microsoft Cortana, Apple
Siri, Amazon Alexa and Google Home). In IEEE CCWC,
2018.

[26] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and
Yinlong Xu. HashKV: Enabling Efficient Updates in KV
Storage via Hashing. In USENIX ATC, 2018.

[27] Yixin Bao, Yanghua Peng, Chuan Wu, and Zongpeng Li.
Online Job Scheduling in Distributed Machine Learning
Clusters. In IEEE INFOCOM, 2018.

[28] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson Enrique
Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin
Chen, Adithya Renduchintala, and Tsubasa Ochiai. ES-
Pnet: End-to-End Speech Processing Toolkit. arXiv.org
(March 2018). arXiv:1804.00015v1 [cs.CL].

[29] Ahmed Abbasi, Jingjing Li, Donald Adjeroh, Marie
Abate, and Wanhong Zheng. Don’t Mention It? Analyz-
ing User-Generated Content Signals for Early Adverse
Event Warnings. In INFORMS Analytics Collections
Vol. 16: Advances in Integrating AI and O.R., 2018.

[30] Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. GLUE: A Multi-
Task Benchmark and Analysis Platform for Natural
Language Understanding. arXiv.org (September 2018).
arXiv:1804.07461v3 [cs.CL].

[31] Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield, Tom
Neckermann, Frank Seide, Ulrich Germann, Alham
Fikri Aji, Nikolay Bogoychev, Andrė F. T. Martins, and
Alexandra Birch. Marian: Fast Neural Machine Transla-
tion in C++. In Association for Computational Linguis-
tics(ACL), pages 116-121, 2018.

[32] Helsinki-NLP/opus-mt-en-fr. https://huggingface.
co/Helsinki-NLP/opus-mt-en-fr. Hugging Face.

[33] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding. In
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies (NAACL), Volume 1, 2019.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary

DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances
in Neural Information Processing Systems (NeurIPS),
2019.

[35] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever. Language Models are Un-
supervised Multitask Learners. Technical Report. Ope-
nAI, 2019.

[36] Kostis Kaffes, Neeraja J. Yadwadkar, Christos
Kozyrakis. Centralized Core-granular Scheduling for
Serverless Functions. In SoCC, 2019.

[37] Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Mae
Milano, Weijia Song, Edward Tremel, Robbert Van Re-
nesse, Sydney Zink, Kenneth P. Birman. Derecho: Fast
State Machine Replication for Cloud Services. In ACM
Transactions on Computer Systems, 2019.

[38] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
Ravi Sundaram. Nexus: A GPU Cluster Engine for Ac-
celerating DNN-based Video Analysis. In SOSP, pages
322–337, 2019.

[39] K024/mt5-zh-ja-en-trimmed. https://huggingface.
co/K024/mt5-zh-ja-en-trimmed. Hugging Face.

[40] Colin Raffe, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, Peter J. Liu. Exploring the Limits of Transfer Learn-
ing with a Unified Text-to-Text Transformer. In Journal
of Machine Learning Research, 2020

[41] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language Models are Few-Shot
Learners. In Neural Information Processing Systems
(NeurIPS). 2020

[42] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART: De-
noising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension.
In Association for Computational Linguistics (ACL).
2020.

14

https://huggingface.co/Helsinki-NLP/opus-mt-en-fr
https://huggingface.co/Helsinki-NLP/opus-mt-en-fr
https://huggingface.co/K024/mt5-zh-ja-en-trimmed
https://huggingface.co/K024/mt5-zh-ja-en-trimmed

[43] Rohit Ranjan, Ishan Singh Thakur, Gagangeet Singh
Aujla, Neeraj Kumar, and Albert Y. Zomaya. Energy-
Efficient Workflow Scheduling Using Container-Based
Virtualization in Software-Defined Data Centers. IEEE
Transactions on Industrial Informatics, 2020.

[44] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
Diffusion Probabilistic Models. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[45] https://mxnet.apache.org/versions/

[46] Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-
Gon Chun. Nimble: Lightweight and parallel GPU task
scheduling for deep learning, In NeurIPS, 2020.

[47] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. AntMan: Dynamic Scaling on GPU Clus-
ters for Deep Learning. In OSDI, 2020.

[48] Andrew Chung, Subru Krishnan, Konstantinos Karana-
sos, Carlo Curino, and Gregory R. Ganger. Unearthing
inter-job dependencies for better cluster scheduling. In
OSDI, 2020.

[49] Tamás Lévai, Felicián Németh, Barath Raghavan, and
Gábor Rétvári. Batchy: Batch-scheduling Data Flow
Graphs with Service-level Objectives. In NSDI, 2020.

[50] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving DNNs like Clockwork: Performance Pre-
dictability from the Bottom Up, OSDI, 2020.

[51] Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-End Object Detection with Trans-
formers. European Conference on Computer Vision,
2020.

[52] Marcos K. Aguilera, Naama Ben-David, Rachid Guer-
raoui, Virendra J. Marathe, Athanasios Xygkis, and Igor
Zablotchi. Microsecond consensus for microsecond ap-
plications. In OSDI, pages 599–616, 2020.

[53] Daniel Crankshaw, Gur E. Sela, Xiangxi Mo, Corey Zu-
mar, Ion Stoica, Joseph E Gonzalez, and Alexey Tu-
manov. InferLine: Latency-Aware Provisioning and
Scaling for Prediction Serving Pipelines. In ACM Sym-
posium on Cloud Computing (SoCC), 2020.

[54] Deepak Narayanan, Keshav Santhanam, Fiodar
Kazhamiaka, Amar Phanishayee, and Matei Zaharia.
Heterogeneity-Aware Cluster Scheduling Policies for
Deep Learning Workloads. In OSDI, 2020.

[55] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, and Aditya Akella.
Themis: Fair and Efficient GPU Cluster Scheduling. In
NSDI, 2020.

[56] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subra-
manya, Willie Neiswanger, Qirong Ho, Hao Zhang, Gre-
gory R. Ganger, and Eric P. Xing. Pollux: Co-adaptive
Cluster Scheduling for Goodput-Optimized Deep Learn-
ing. In OSDI, 2021.

[57] Robin Rombach1, Andreas Blattmann1, Dominik
Lorenz1, Patrick Esser, Björn Ommer. High-Resolution
Image Synthesis with Latent Diffusion Models. In Pro-
ceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 12873–12883, 2021.

[58] Chao Wang, Kezhao Huang, Xuehai Qian. A Com-
prehensive Evaluation of RDMA-enabled Concur-
rency Control Protocols. arXiv.org (Jan 2021).
arXiv:2002.12664v4 [cs.DC].

[59] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. mT5: A massively multilingual pre-trained
text-to-text transformer. In Association for Computa-
tional Linguistics(NAACL). pages 483–498, 2021.

[60] Flink architecture: Tasks and operator chains. https:
//bit.ly/3rTFplD. 2021.

[61] Dimitri Bertsekas, Robert Gallager. Data Networks: Sec-
ond Edition. Athena Scientific, 2021. p. 149-271.

[62] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse
Park, Youngjin Kwon, and Jaehyuk Huh. Serving Het-
erogeneous Machine Learning Models on Multi-GPU
Servers with Spatio-Temporal Sharing. In USENIX ATC,
2022.

[63] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. MLaaS in the Wild: Workload Analy-
sis and Scheduling in Large-Scale Heterogeneous GPU
Clusters. In NSDI, 2022.

[64] Dharma Shukla, Muthian Sivathanu, Srinidhi
Viswanatha, Bhargav Gulavani, Rimma Nehme,
Amey Agrawal, Chen Chen, Nipun Kwatra, Ramachan-
dran Ramjee, Pankaj Sharma, Atul Katiyar, Vipul Modi,
Vaibhav Sharma, Abhishek Singh, Shreshth Singhal,
Kaustubh Welankar, Lu Xun, Ravi Anupindi, Karthik
Elangovan, Hasibur Rahman, Zhou Lin, Rahul Seethara-
man, Cheng Xu, Eddie Ailijiang, Suresh Krishnappa,
and Mark Russinovich. Singularity: Planet-Scale,
Preemptive and Elastic Scheduling of AI Workloads.
arXiv.org (February 2022). arXiv:2202.07848v2
[cs.DC].

15

[65] Jashwant Raj Gunasekaran, Cyan Subhra Mishra,
Prashanth Thinakaran, Bikash Sharma, Mahmut Tay-
lan Kandemir, and Chita R. Das. Cocktail: A Multidi-
mensional Optimization for Model Serving in Cloud. In
NSDI, 2022.

[66] Chengfei Lv, Chaoyue Niu, Renjie Gu, Xiaotang Jiang,
Zhaode Wang, Bin Liu, Ziqi Wu, Qiulin Yao, Congyu
Huang, Panos Huang, Tao Huang, Hui Shu, Jinde Song,
Bin Zou, Peng Lan, and Guohuan Xu, Fei Wu, Shaojie
Tang, Fan Wu and Guihai Chen. Walle: An End-to-End,
General-Purpose, and Large-Scale Production System
for Device-Cloud Collaborative Machine Learning. In
OSDI, 2022.

[67] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. Orca: A Distributed
Serving System for Transformer-Based Generative Mod-
els. In OSDI, 2022.

[68] Weijia Song, Yuting Yang, Thompson Liu, Andrea Mer-
lina, Thiago Garrett, Roman Vitenberg, Lorenzo Rosa,
Aahil Awatramani, Zheng Wang, Ken Birman. Cascade:
An Edge Computing Platform for Real-time Machine
Intelligence. In ApPLIED, 2022.

[69] Romil Bhardwaj, Zhengxu Xia, Ganesh Anantha-
narayanan, Junchen Jiang, Yuanchao Shu, Nikolaos Kar-
ianakis, Kevin Hsieh, Paramvir Bahl, Ion Stoica. Ekya:
Continuous Learning of Video Analytics Models on
Edge Compute Servers. In NSDI, 2022.

[70] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, An-
toine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur
Mensch, Katie Millican, Malcolm Reynolds, Roman
Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhi-
tao Gong, Sina Samangooei, Marianne Monteiro, Jacob
Menick, Sebastian Borgeaud, Andrew Brock, Aida Ne-
matzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ri-
cardo Barreira, Oriol Vinyals, Andrew Zisserman, and
Karen Simonyan. Flamingo: a Visual Language Model
for Few-Shot Learning. arXiv.org (November 2022).
arXiv:2204.14198v2 [cs.CV].

[71] Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared Casper,
Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vi-
jay Korthikanti, Elton Zhang, Rewon Child, Reza Yaz-
dani Aminabadi, Julie Bernauer, Xia Song, Mohammad
Shoeybi, Yuxiong He, Michael Houston, Saurabh Ti-
wary, and Bryan Catanzar. Using DeepSpeed and Mega-
tron to Train Megatron-Turing NLG 530B, A Large-
Scale Generative Language Model. arXiv.org (Januaray
2022). arXiv:2201.11990v3 [cs.CL].

[72] Aakanksha Chowdhery, Sharan Narang, Jacob De-
vlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,

Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker
Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prab-
hakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner
Pope, James Bradbury, Jacob Austin, Michael Isard, Guy
Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya,
Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski,
Xavier Garcia, Vedant Misra, Kevin Robinson, Liam
Fedus, Denny Zhou, Daphne Ippolito, David Luan,
Hyeontaek Lim, Barret Zoph, Alexander Spiridonov,
Ryan Sepassi, David Dohan, Shivani Agrawal, Mark
Omernick, Andrew M. Dai, Thanumalayan Sankara-
narayana Pillai, Marie Pellat, Aitor Lewkowycz, Er-
ica Moreira, Rewon Child, Oleksandr Polozov, Kather-
ine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta,
Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei,
Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav
Petrov, and Noah Fiedel. PaLM: Scaling Language
Modeling with Pathways. arXiv.org (September 2022).
arXiv:2204.02311v5 [cs.CL].

[73] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang,
and Luke Zettlemoyer. OPT: Open Pre-trained Trans-
former Language Models. arXiv.org (June 2022).
arXiv:2205.01068v4 [cs.CL].

[74] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick
Shankar, Sameh Elnikety, Somali Chaterji, Saurabh
Bagchi. Orion and the Three Rights: Sizing, Bundling,
and Prewarming for Serverless DAGs. In OSDI, 2022.

[75] Kuljeet Kaur, Sahil Garg, Gagangeet Singh Aujla, Neeraj
Kumar, and Albert Y. Zomaya. A Multi-Objective Op-
timization Scheme for Job Scheduling in Sustainable
Cloud Data Centers. IEEE Transactions on Cloud Com-
puting, 2022.

[76] Longlong Jing, Ruichi Yu, Henrik Kretzschmar, Kang
Li, Charles R. Qi, Hang Zhao, Alper Ayvaci, Xu Chen1,
Dillon Cower, Yingwei Li, Yurong You, Han Deng, Con-
gcong Li, and Dragomir Anguelov. Depth Estimation
Matters Most: Improving Per-Object Depth Estimation
for Monocular 3D Detection and Tracking. In IEEE
International Conference on Robotics and Automation
(ICRA), 2022.

[77] Doyeon Kim, Woonghyun Ka, Pyunghwan Ahn, Dong-
gyu Joo, Sewhan Chun, and Junmo Kim. Global-
Local Path Networks for Monocular Depth Estima-
tion with Vertical CutDepth. arXiv.org (October 2022).
arXiv:2201.07436v3 [cs.CV].

16

[78] Azure. Durable functions overview. https://docs.
microsoft.com/en-us/azure/azure-functions/
durable/durable-functions-overview?tabs=
csharp, Last retrieved: Auguest, 2023.

[79] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent
Liu, Ying Sheng, Xin Jin, Yanping Huang, Zhifeng
Chen, Hao Zhang, Joseph E. Gonzalez and Ion Stoica.
AlpaServe: Statistical Multiplexing with Model Paral-
lelism for Deep Learning Serving. In OSDI, 2023.

[80] Attila Biró, Antonio Ignacio Cuesta-Vargas, Jaime
Martín-Martín, László Szilágyi, and Sándor Miklós
Szilágyi. Synthetized Multilanguage OCR Using CRNN
and SVTR Models for Realtime Collaborative Tools. Ap-
plied Sciences, 2023.

[81] Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala,
Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh
Iyer, Soroush Saryazdi, Nikhil Keetha, Ayush Tewari,
Joshua B. Tenenbaum, Celso Miguel de Melo, Madhava
Krishna, Liam Paull, Florian Shkurti, and Antonio Tor-
ralba. ConceptFusion: Open-set Multimodal 3D Map-
ping. arXiv.org (Feburary 2023). arXiv:2302.07241v2
[cs.CV].

[82] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. HuggingGPT: Solv-
ing AI Tasks with ChatGPT and its Friends in Hug-
ging Facev. arXiv.org (May 2023). arXiv:2303.17580v3
[cs.CL].

[83] vit-gpt2-image-captioning. https://huggingface.
co/nlpconnect/vit-gpt2-image-captioning.
Hugging Face.

[84] Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala,
Qiao Gu, Mohd Omama, Tao Chen, Shuang Li, Ganesh
Iyer, Soroush Saryazdi, Nikhil Keetha, Ayush Tewari,
Joshua B. Tenenbaum, Celso Miguel de Melo, Madhava
Krishna, Liam Paull, Florian Shkurti, and Antonio Tor-
ralba. ConceptFusion: Open-set Multimodal 3D Map-
ping. arXiv.org (February 2023). arXiv:2302.07241v2
[cs.CV]

[85] Kangjin Wang, Ying Li, Cheng Wang, Tong Jia, King-
sum Chow, Yang Wen, Yaoyong Dou, Guoyao Xu,
Chuanjia Hou, Jie Yao, and Liping Zhang. Characteriz-
ing Job Microarchitectural Profiles at Scale: Dataset and
Analysis. In Proc. ICPP, 2023.

17

https: //docs.microsoft.com/en-us/azure/azure- functions/durable/durable-functions-overview?tabs=csharp
https: //docs.microsoft.com/en-us/azure/azure- functions/durable/durable-functions-overview?tabs=csharp
https: //docs.microsoft.com/en-us/azure/azure- functions/durable/durable-functions-overview?tabs=csharp
https: //docs.microsoft.com/en-us/azure/azure- functions/durable/durable-functions-overview?tabs=csharp
https://huggingface.co/nlpconnect/vit-gpt2-image-captioning
https://huggingface.co/nlpconnect/vit-gpt2-image-captioning

	Introduction
	Deployment Scenarios and Environment
	Dataflow Graphs
	Deployment Assumptions
	Scheduler Objectives

	System Architecture
	Repository of Workflow Profiles
	Scheduler and Task Dispatcher
	GPU Memory Manager
	Global State Monitor

	Compass Scheduler Design
	Parameters
	Planning Phase
	Vertex Ranking
	Task Assignments

	Dynamic Adjustment Phase

	Implementation
	Data communication layer
	Remote Direct Access Communication and the Data Plane Developers Kit
	Data Transfer between Task Dispatchers

	Shared State Table Considerations
	GPU Memory Management
	FIFO
	Queue-Lookahead

	Simulation

	Experiments and Evaluation
	Performance Evaluation Metrics
	Scheduling Algorithm Analysis
	Baseline Schemes
	Performance Comparison Among Schedulers

	Ablation Analysis
	Importance of Scheduler Features
	Sensitivity Analysis

	Production trace
	Scalability Analysis

	Related work
	Conclusion
	Acknowledgments

