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Abstract 

Distributed computing has been slow to benefit from the productivity revolution that has 

transformed the desktop. We still treat the Web as a separate technology space: programmers 

develop network applications very differently from local ones. “Live Distributed Objects” 

promise to change this dynamic by enabling an active web, setting the stage for an exciting new 

style of distributed applications. The key technologies are an exceptionally scalable multicast 

infrastructure and a clean integration with the runtime environment. 

Introduction 

Developers who work with modern component 

integration and productivity tools can create 

desktop applications faster and more easily than 

ever before. These tools promote a style of 

development in which the language, runtime 

environment, debugger and profiler create a 

seamless whole.  

Architects of distributed systems face a more 

difficult challenge, especially when designing 

applications that replicate data or services to 

achieve scalability, guarantee fast response times 

or to put content close to the end user. The 

available technologies, such as publish-subscribe 

message buses or multicast toolkits, are often 

implemented as free-standing proprietary 

libraries and are integrated with operating 

systems and modern component-oriented development tools only in superficial ways.  

At Cornell, our team has been exploring ways to bridge this gap. We’ve created Live Distributed 

Objects (“live objects,” for short) that have the “look and feel” of ordinary objects in managed 

Figure 1. When multiple users across the Internet 

share a live distributed object, their workstations 

instantiate local representatives that cooperate to 

implement whatever abstraction makes the object 

"live". For example, if the live object is a room in an 

online game, the object’s state could be replicated 

among the users in this room, and updates would 

automatically be propagated. 
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environments such as .NET or J2EE.  Unlike  the objects already supported by such 

environments, live objects need not reside at a single location. A live object can be understood 

as a distributed mechanism whereby a group of software components can communicate with 

each other, share data, exchange events, or coordinate actions in a decentralized, peer-to-peer 

fashion (Figure 1). A live object can represent, for example, a streaming video, a news channel, 

a collaboratively edited document, a replicated variable, or a fault-tolerant service. The 

approach is intended to scale.  Eventually, we hope to support Internet deployments that might 

have, e.g., tens of millions of IPTV channels, new forms of collaboration and gaming 

environments, and new forms of self-managed applications that could literally span the globe. 

From the programmer’s perspective, live objects replace earlier technologies such as multicast, 

group communication, publish-subscribe, or state machine replication. These technologies are 

often proprietary and fit poorly into the modern component-oriented style of development. In 

contrast, live objects fit easily into environments such as .NET and J2EE, and can leverage their 

powerful type systems and “management” features. Development and debugging tools work in 

a natural way.  

Live objects are also easy to use. End-users can browse through virtual folders containing 

thousands of live objects such as chat sessions, enter rooms in a multiplayer game or shared 

documents, just as they browse through local folders, and can place shortcuts to live objects on 

their desktop. Applications can access live objects much as they access files. Eventually, it 

should be possible to drag and drop live objects to create live documents -- web pages, slide 

shows, and so forth.   

What makes live objects so exciting is that they 

are a gateway to a completely new vision for the 

Web: they enable a Web that, for the first time, is 

truly active. 

The Active Web 

To understand the concept of an Active Web, it will be helpful to think about Second Life 

[http://www.secondlife.com], a popular virtual reality environment that has gained millions of 

users in just a few years. In the words of its inventors, “Second Life is a 3-D virtual world 

entirely built and owned by its residents… a vast digital continent, teeming with people, 

entertainment, experiences and opportunity“. A typical Second Life scenario might start when a 

user’s avatar walks into a smoke-filled bar, where a seedy collection of creatures are playing 

poker around a stained oak table. The avatar pulls up a chair, joins the game, and perhaps the 

user makes (or loses) a fortune – in real money. 

Live Distributed Objects 

enable a Web that, for the 

first time, is truly active. 



Today, an application such as this would be 

hosted by a big datacenter.  But our vision is of a 

future in which data would flow directly from the 

applications that generate it (for example, that 

render an avatar) to the ones that consume it 

(for example, by displaying the room).  Not only 

can such an approach support much higher data 

rates with lower latency, but it can also scale 

better and promotes better security and privacy . 

Thus, an active web based on live objects could 

be a world with millions of IPTV streams, new 

forms of interactive art, live electronic health 

records that integrate regional medical 

providers, or banking systems that could trade 

“live” financial instruments.  

These applications will be tricky to build.  Consider electronic health records. Such a system 

would need to achieve high levels of availability and consistency, be largely self-configuring, 

and maintain privacy and security. A typical deployment scenario involves decentralized 

systems linked over networks, integrating subsystems running at hospitals, other care 

providers, laboratories, insurance companies, 

pharmacies, etc. Electronic monitoring devices 

and other sensors running both in the hospital 

and at home will contribute time-sensitive data, 

and some therapeutic and drug delivery devices 

will be remotely controlled.  

We want to enable an Active Web supporting 

these kinds of demanding applications.  The 

Active Web will be a place in which applications 

can be constructed by composing (gluing 

together) live objects of various kinds – objects 

that might embody strong guarantees, such as 

security, privacy, or fault-tolerance.   

Live Distributed Objects in the Quicksilver 

System 

Cornell’s Quicksilver system offers a glimpse of 

Figure 3. Live objects provided by QuickSilver can 

be accessed programmatically from applications, 

from Windows shell like files, or from development 

environments such as Visual Studio. QuickSilver is 

composed of two layers: a layer that exposes the 

virtual objects to applications as a part of the .NET 

typesystem,  and an extensible communication 

engine with “drivers” for different object types.  
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Figure 2. Existing massively multiplayer online 

games and virtual worlds rely on server farms. 

These keeps the entire system state and all player 

interactions occur indirectly, through a shared 

server. If users communicate directly with one 

another in a peer-to-peer fashion, server loads are 

slashed, latency and throughput are potentially 

improved, and privacy is better protected. 



the live object concept in action. Quicksilver is a system built in two layers (Figure 3). One layer 

extends a system such as .NET to support live objects, and focuses on the embedding of these 

objects into the .NET Common Language Runtime, and the hooks connecting the objects to the 

.NET type system and to the Windows shell (the GUI that interprets mouse actions, such as 

right-clicking on a file). A second layer of Quicksilver provides the scalable and extensible 

communication infrastructure needed to make the objects “live” and “distributed”.  

Briefly, here’s a summary of the abstract functionality provided by a live object: 

1. Each object has an Internet-wide unique name and is registered in a global distributed 

“directory” resembling a DNS, where it can be located by the software components that 

wish to access it. 

2. Live objects have “distributed” types. Among other things, type-checking helps verify 

that the communication “type” beneath an object matches the developer’s intent.  

3. A live object provides a “natural” interface to its clients. An object representing a video 

stream would provide methods to send or receive video frames.  An object that 

represents a replicated variable would provide get/set methods, etc.  

4. Each object also has object-specific “logic” implementing some abstraction: a room, a 

medical record, a gossip-based overlay network, etc. This logic is translated into code 

that is deployed on and executed by the components accessing the live object. The 

protocols for replicating the object’s data among components and for multicasting 

events among them are provided by type-specific underlying “communication drivers”. 

5. When a component tries to access a live object, an authentication and join protocol 

executes. This is used to enforce security, fetch the object’s “logic” from the distributed 

live objects directory, obtain a snapshot of the object’s state, initialize it etc. The 

object’s code maintains its state in response to event notifications.   

The underlying communications layer is composed of a set of “pluggable” communication 

substrates, which play a role analogous to that of a device driver. Each live object needs a 

“communication driver” to replicate its state, propagate events and updates; different objects 

might use different drivers specialized for different settings (wireless, WAN, LAN) or properties 

(secure, low latency, etc). QuickSilver allows existing multicast and group communication 

toolkits to be adapted for use as communication drivers. It also comes with a suite of built-in 

scalable and high-performance communication drivers for common types of applications, and 

designed to complement each other: 

 QSM (Quicksilver Scalable Multicast) is optimized to support large numbers of live 

objects that may represent streams of events, such as video channels, file backup 

folders, or stock price update notifications in a trading system. The current version of 

QSM is designed for enterprise LANs and datacenters. It can support tens of thousands 



of event streams, hundreds of users, and transmissions at network speeds. Events are 

delivered reliably, and the system is robust under stress.  

 

 QS/2 (QuickSilver 2) is optimized to support live objects with strong reliability 

properties, such as replicated variables in a banking system or collaboratively edited 

documents, where strongly consistent replication and transactional updates are needed 

to preserve data integrity. QS/2 supports a wide range of reliability models, and even 

custom, user-defined types of reliability. This driver is optimized for use in WAN 

scenarios. 

 

 GO (Gossip Objects) is under development at IRISA and the University of Rennes, in 

France. It uses the so-called gossip protocols to build live objects that can help systems 

manage themselves, set their own configuration parameters, and even diagnose and 

self-repair when failures occur. 

We expect this list to grow over time, with protocols to support wireless communication, IPTV, 

security protocols, and protocols with real-time properties.  

How can it scale? 

Although brevity precludes a highly technical discussion of scalability, we can still give readers a rough 

intuition into how we’ve tackled this problem in QSM.  QSM’s role is to reliably multicast data in support 

of higher level “events” related to a number of live objects, such as updates to their state, commands 

that cause actions to occur, etc.  In a typical datacenter scenario, some computers might be using large 

numbers of live objects, and different live objects could be shared by the same computers. The groups 

of computers on which these live objects “live” might thus overlap. The world of QSM is one of vast 

numbers of “overlapping” groups. 

Let’s make a simplifying assumption (we can remove it later).  We’ll assume that the overlap is clean and 

hierarchical. For example, there might be “big” objects A, B, and C directly superimposed, i.e. such that 

the groups of computers using them overlap perfectly. The hierarchy could also include subsets. For 

example, perhaps object D lives on half of these computers, and E on the other half. QSM starts by 

decomposing such a hierarchy of overlapping groups into a set of regions, by clustering computers 

based on their “interest”. Each region contains computers that use the same live objects.  

QSM now constructs a data dissemination overlay for each region.  If possible, IP multicast is employed 

for this purpose (e.g. each region could be assigned its own IP multicast address). However, since IP 

multicast isn’t always available, QSM can also run on some form of overlay multicast technology.  

Dissemination is unreliable: like a UDP transmission in the Internet, a message might reach none of its 

destinations, some of them, or (if we are really lucky) all.   



Next, QSM builds a peer-to-peer repair structure within each region.  This involves many subtle issues, 

but the basic approach starts by constructing a logical token-ring that links the computers in the region 

(if a region gets larger than about 25 computers, we break the ring into a tree of smaller rings, linked by 

a higher-level ring).  As the token travels around the ring, a few times per second, we efficiently encode 

the received message set of each computer.  A machine that has a copy of a message some other 

machine lacks forwards a copy.  If an entire region lacks a multicast, the sender re-multicasts it.  In our 

experiments this is very rare; most packet loss involves a single machine that drops a single packet or a 

few in a row, and can be repaired locally with the help of a nearby peer. 

Clustering computers into “regions” enables QSM to handle large numbers of live objects efficiently, by 

amortizing overhead. While in a traditional system, tens of thousands of live objects would involve tens 

of thousands of multicast protocols, QSM can use a smaller number of token rings, each of which works 

for multiple objects at once. 

To handle computer crashes, QSM incorporates a hierarchical status-monitoring service structured a bit 

like the Internet DNS, but designed to track the health of components (live or failed), as well as some 

additional information used within our protocols.  A consensus protocol is employed to ensure that the 

membership decisions will be consistently reported. 

Obviously, we’re skipping a lot of details, such as the flow-control mechanism used, data aggregation 

when multiple small messages are sent to the same group, etc (interested readers can find more 

information in the technical reports on our web site).  But the upshot is that QSM seems to break every 

performance record we’re aware of. We’ve scaled it to many thousands of groups (live objects) per 

computer, supported groups with hundreds members, and are able to saturate 100Mbit Ethernet 

interconnects with inexpensive PCs on the endpoints. The system is stable under stress, and very well 

tolerates load fluctuations, broadcast storms, or other degenerate behaviors. Moreover, even at the 

highest loads, overheads are quite low. 

Now, all of this reflected a simplifying assumption, namely that groups are hierarchical.  But it turns out 

multiple QSM hierarchies can be superimposed (Fig. 4).  We’re finding that even very irregular sets of 

overlapping groups can be “covered” with a surprisingly small number of hierarchies, provided that 

groups have Zipf-like popularity and traffic levels.  For example, studies of financial instruments show 

that the i’th most popular stock or bond tends to be popular in proportion to 1/iα where the exponent, 

α, can be as large as 2.5 to 3.5.  It seems reasonable to assume that in the Active Web, if applications 

use large numbers of live objects in irregular ways, the same property would hold. 

We don’t have room here to discuss the QS/2 or GO architectures, and hence will limit ourselves to just 

a few words on each.  QS/2 extends QSM by introducing a novel programming language, interpreted at 

runtime, that tells the system how to implement a desired reliability model.  Using this language we 

know how to support live objects with stronger semantics (we’ll say more about this question below).  



GO takes live objects in a completely different direction.  This subsystem builds a random peer selection 

layer and then constructs a variety of gossip and epidemic mechanisms over it, presenting these as live 

objects that can perform tasks such as tracking overall system state, assisting in auto-configuration or 

repair, and constructing the overlay networks needed for QSM’s dissemination layer.   

Thus, we have a fast and scalable but limited reliability option in QSM, a robust and self-configuring but 

relatively slow technology in the case of GO, and a way to support strong properties, through QS/2.  The 

future, of course, will probably bring additional options to extend this list.   

What’s in a type? 

Live objects open the possibility of extending normal type systems to encompass distributed 

behavioral patterns. A replicated variable that represents an account balance in a banking 

system might need strong reliability and fault-tolerance properties such as virtual synchrony, 

while for a similar variable in a monitoring application, weaker reliability properties and 

scalability of gossip might be a better match. Thus, to make live objects truly useful, we need a 

way to describe such behaviors as a part of their types. 

In QuickSilver, the type of a live object is a tuple, the elements of which specify different 

“aspects” of the type (much like in aspect-oriented programming). One element is the object’s 

interface (in the usual sense). Another is its “category” (replicated service, replicated variable, 

event stream, gossip object etc.), which tells which communication protocol driver to use. 



Other aspects configure the underlying dissemination substrate, and specify the object’s 

reliability, fault-tolerance, and security properties.  

By expressing distributed types this way, we enable a next step in which type information could 

be used as part of the application design and implementation process. A development 

environment such as Visual Studio would “understand” the possible distributed behaviors of 

such a typed object, and could guide the developer through the process of implementing code 

that will run correctly under the assumption that the communication drivers underlying the live 

object implement the specified behaviors. Moreover, the runtime system can throw exceptions 

if mistakes are made, for example if a component designed to work correctly only with live 

virtually synchronous multicast streams tried to access a live multicast stream that has a 

weaker QSM or best-effort reliability property. 

Type-based programming tools and debugging tools have transformed the experience of 

building applications for desktop environments. Service oriented architectures (which also 

revolve around type systems, albeit simple ones) are having a similar impact in networked 

applications that interact with services hosted in datacenters. Live objects are a natural step in 

this direction, and bring the benefits of strong typing to the realm of decentralized peer-to-peer 

applications. They suggest that the active web could be far more than just a veneer over the 

same old Internet technologies.  

Quicksilver Properties Framework 

Earlier, we commented that the QS/2 system will extend QSM by allowing some groups to have 

stronger reliability properties, defined using a high-level declarative Properties Language.  

Using this language, we are able to support a number of important reliability models – 

“reliability types”.  Let’s look at two of these models and how they might assist the developer of 

the gambling parlor in our Second Life scenario: 

 Virtual Synchrony is a powerful distributed computing model in which active programs join 

process groups, within which multicasts are used to disseminate updates and other events. 

At the moment a process joins, it can initialize itself using a state transfer from some active 

member, and the virtual synchrony platform notifies all members each time membership 

changes. The power of this model is that it can support consistency guarantees: all the 

users of a virtual synchrony group see the same thing in the same order.  This can be 

important when multiple users are concurrently taking actions, and yet the “physical 

world” needs to somehow order them.  For example, in some card games, users slap cards 

onto a stack – first card “wins”.  Using traditional event notification solutions there can be 

cases where different users would see the same events in different orders – and in our 

saloon, it’s easy to imagine (virtual) fights erupting in such cases!  With virtual synchrony, 



the Quicksilver platform would enforce a single, system-wide event ordering, hence all 

participants see the same events in the same sequence.   

 Transactions are a stronger execution model.  Suppose that a power failure were to cause 

a few machines to crash simultaneously.  Although we didn’t make this clear in our  

discussion of virtual synchrony, that model only provides consistency among live objects 

that remain operational.  If an object crashes and then restarts, saved data from its 

previous life must be discarded.  But suppose that the object represents the bank and real 

money is changing hands.  Transactional live objects support the full one-copy serializability 

version of the ACID model; with this 

guarantee, crashed objects can reconstruct a 

consistent, agreed-upon state after they 

recover.  However, these stronger 

guarantees come at a (steep) price: 

performance and scalability won’t be nearly 

as good.  

In QS/2, each object can be configured to have the kind of consistency guarantee appropriate 

to the way it will be used.  Different models are expressed using a kind of script that QS/2 

“executes” to control the delivery of messages and other events, and to trigger actions such as 

the forwarding of a message to repair a loss, or the sending of ordering information when a 

batch of messages must be placed into a total order.   

Aiming for the Active Web 

Most of the live objects system is now operational in the lab at Cornell.  QSM can be 

downloaded by interested developers.  As noted earlier, this communications driver is breaking 

every performance record we’re aware of in the technology space: raw throughput, scalability, 

tolerance of stress, and robustness against broadcast storms and other forms of oscillatory 

behavior. The remainder of the system (including QS/2) is running as an experimental 

prototype and tested under laboratory conditions. Elements still under development include a 

configuration manager service that can run at Internet Scale, the GO subsystem mentioned 

above, and many elements of the runtime and debugging/performance-tuning environment.   

When completed, early in 2008, we believe that live objects will enable a completely new kind 

of distributed programming, inspired by the Web, but in which much of the content is dynamic 

and may be evolving in real-time. Live objects could represent video feeds, streams of media or 

other content generated by participating computers, telemetry from sensors, etc. By 

integrating such content into systems like Windows or J2EE in a clean and natural way that 

leverages the power of type systems and component integration technologies, but offers a 

Will the Active Web be the next 

big thing for the Internet?  At 

Cornell, we’re making it happen! 



portal to distributed computing, we’re hoping to enable a revolution. Live objects could open 

the door to a new and disruptive generation of Active Web applications that combine high data 

rates with strong properties, including fault-tolerance, consistency, and security.  

Will the Active Web be the next big thing for the Internet? It’s too early to know, but at Cornell, 

we’re betting that live objects will make the Active Web a reality. 

Learning More 

Readers wishing to learn more about our work will find a collection of technical papers at the 

primary Quicksilver web site, http://www.cs.cornell.edu/projects/quicksilver (this also has a 

free download link).   The team developing the Gossip Objects infrastructure maintains a web 

site at http://www.irisa.fr/asap. Birman’s book, Reliable Distributed Systems: Technologies, 

Web Services, and Applications (Springer-Verlag; 2005), covers many of the protocols and 

reliability concepts mentioned above.   A short article discussing some of the technical issues 

we face is available as “Exploiting Gossip for Self-Management in Scalable Event Notification 

Systems.”  Ken Birman, Anne-Marie Kermarrec, Krzystof Ostrowski, Marin Bertier, Danny Dolev, 

Robbert Van Renesse.  IEEE Distributed Event Processing Systems and Architecture Workshop 

(DEPSA-07).  Toronto (June 2007). 
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