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Our work explores a new consistency model for data 
replication in first-tier cloud services. The model combines 
agreement on update ordering with a form of durability 
that we call amnesia freedom. Our experiments confirm 
that this approach scales and performs surprisingly well. 

THE CAP THEOREM’S BROAD REACH
The CAP theorem has been highly influential within 

the cloud computing community, and is widely cited as 
a justification for building cloud services with weak con-
sistency or assurance properties. CAP’s impact has been 
especially important in the first-tier settings on which we 
focus in this article. 

Many of today’s developers believe that CAP precludes 
consistency in first-tier services. For example, eBay has 
proposed BASE (Basically Available replicated Soft state 
with Eventual consistency), a development methodology 
in which services that run in a single datacenter on a reli-
able network are deliberately engineered to use potentially 
stale or incorrect data, rejecting synchronization in favor 
of faster response, but running the risk of inconsistencies.3 
Researchers at Amazon.com have also adopted BASE. They 
point to the self-repair mechanisms in the Dynamo key-
value store as an example of how eventual consistency 
behaves in practice.4 

Inconsistencies that occur in eBay and Amazon cloud 
applications can often be masked so that users will not 
notice them. The same can be said for many of today’s most 
popular cloud computing uses: how much consistency is 
really needed by YouTube or to support Web searches?  
However, as applications with stronger assurance needs 

T he CAP theorem explores tradeoffs between con-
sistency, availability, and partition tolerance, and 
concludes that a replicated service can have just 
two of these three properties.1,2 To prove CAP, 

researchers construct a scenario in which a replicated 
service is forced to respond to conflicting requests during 
a wide-area network outage, as might occur if two differ-
ent datacenters hosted replicas of some single service, 
and received updates at a time when the network link 
between them was down. The replicas respond without 
discovering the conflict, resulting in inconsistency that 
might confuse an end user. 

However, there are important situations in which cloud 
computing developers depend upon data or service repli-
cation, and for which this particular proof does not seem 
to apply. Here, we consider such a case: a scalable service 
running in the first tier of a single datacenter. Today’s data-
centers employ redundant networks that almost never 
experience partitioning failures: the “P” in CAP does not 
occur. Nonetheless, many cloud computing application 
developers believe in a generalized CAP “folk theorem,” 
holding that scalability and elasticity are incompatible 
with strong forms of consistency. 

New data-consistency models make it pos-
sible for cloud computing developers to 
replicate soft state without encountering 
the limitations associated with the CAP 
theorem.
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Cloud computing systems are generally 
structured into tiers: a first tier that 
handles incoming client requests, 
caches and key-value stores that 
run near the first tier, and inner-tier 
services that provide database and file 
system functionality. 

migrate to the cloud, even minor inconsistencies could 
endanger users. For example, there has been considerable 
interest in creating cloud computing solutions for medical 
records management or control of the electric power grid. 
Does CAP represent a barrier to building such applications, 
or can stronger properties be achieved in the cloud?

At first glance, it might seem obvious that the cloud can 
provide consistency. Many cloud applications and products 
offer strong consistency guarantees, including databases 
and scalable global file systems. But these products do not 
run in the first tier of the cloud—the client-facing layer that 
handles incoming requests from browsers or responds to 
Web services method invocations. There is a perception 
that strong consistency is not feasible in these kinds of 
highly elastic and scalable services, which soak up much 
of the workload.

Here, we consider first-tier applications that replicate 
data—either directly, through a library that offers a key-
value storage API, or with some form of caching. We ignore 
application details, and instead look closely at the multi-
cast protocols used to update replicated data. Our work 
confirms that full-fledged atomic multicast probably does 
not scale well enough for use in this setting (a finding that 
rules out using durable versions of Paxos or ACID transac-
tions to replicate data), and in this sense we agree with the 
generalization of CAP. However, we also advocate other 
consistency options that scale far better: the amnesia-free 
protocols. By using them, developers can overcome the 
limitations associated with CAP. 

THE FIRST-TIER PROGRAMMING MODEL
Cloud computing systems are generally structured into 

tiers: a first tier that handles incoming client requests 
(from browsers, applications using Web services stan-
dards, and so on), caches and key-value stores that run 
near the first tier, and inner-tier services that provide data-
base and file system functionality. Back-end applications 
work offline, preparing indices and other data for later 
use by online services. 

Developers typically tune applications running in the 
first tier for rapid response, elasticity, and scalability by 
exploiting a mixture of aggressive replication and very 
loose coupling between replicas. A load-balancer directs 
requests from client systems to a service instance, which 
runs the developer-provided logic. To minimize delay, an 
instance will compute as locally as possible, using cached 
data if available, and launching updates in the background 
(asynchronously). 

In support of this model, as little synchronization is 
done as possible: first-tier services are nontransactional 
and run optimistically, without obtaining locks or check-
ing that cached data is still valid. Updates are applied 
optimistically to cached data, but the definitive outcome 
will not occur until the real update is finally done later, 

on the underlying data; if this yields a different result, the 
system will often simply ignore the inconsistency. While 
first-tier services can query inner services, rather than fo-
cusing on that pattern, we consider reads and updates that 
occur entirely within the first tier, either on data replicated 
by first-tier service instances or within the key-value stores 
and caches supporting them. 

Modern cloud development platforms standardize this 
model, and in fact take it even further. First-tier applica-
tions are also required to be stateless: to support rapid 
instance launch or shutdown, cloud platforms launch 
each new instance in a standard initial state, and discard 
any local data when an instance fails or is halted by the 
management infrastructure. “Stateless” doesn’t mean that 
these instances have no local data at all, but rather that 
they are limited to a soft state that won’t be retained across 

instance failure/launch sequences. On launch, such state 
is always clean; a new instance initializes itself by copy-
ing data from some operational instance or by querying 
services residing deeper in the cloud. 

Even an elastic service will not be completely shut down 
without warning: to ensure continuous availability, cloud 
management platforms can be told to keep some mini-
mum number of replicas of each service running. Thus, 
these services vary the number of extra replicas for elastic-
ity, but preserve a basic level of availability. 

Jointly, these observations enable a form of weak du-
rability. Data replicated within the soft state of a service, 
in members that the management platform will not shut 
down (because they reside within the core replica set), 
will remain available unless a serious failure causes all 
the replicas to crash simultaneously, a rare occurrence in 
a well-designed application. 

Today’s first-tier  applications often use stale or other-
wise inconsistent data when responding to requests because 
the delays associated with fetching (or even validating) data 
are perceived as too high. Even slight delays can drive users 
away. Web applications try to hide resulting problems or to 
clean them up later (eventual consistency), possibly ending 
up in a state at odds with what the client saw. Cloud owners 
justify these architectural decisions by asserting a gener-
alized CAP principle, arguing that consistency is simply 
incompatible with scalability and rapid responsiveness. 
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Adopting a consistency model better matched to first-
tier characteristics permits similar responsiveness while 
delivering stronger consistency guarantees. This approach 
could enable cloud-hosting of applications that need to 
justify the responses they provide to users, such as medical 
systems that monitor patients and control devices. Con-
sistency can also enhance security: a security system that 
bases authorization decisions on potentially stale or incor-
rect underlying data is at risk of mistakes that a system 
using consistent data will not make. 

CONSISTENCY:  
A MULTIDIMENSIONAL PROPERTY

Developers can define consistency in many ways. Prior 
work on CAP defined “C” by citing the ACID (atomicity, 
consistency, isolation, and durability) database model; in 
this approach the “C” in CAP is defined to be the “C” and 
“D” from ACID. Consistency, in effect, is conflated with 

durability. Underscoring this point, several CAP and BASE 
articles cite Paxos as the usual way to implement consis-
tent replication: an atomic multicast protocol that provides 
total ordering and durability. 

Durability is the guarantee that once an update has been 
ordered and marked as deliverable, it will never be lost, 
even if the entire service crashes and then restarts. But for 
a first-tier service, durability in this direct sense is clearly 
not feasible: any state that can endure such a failure would 
necessarily be stored outside the service itself. Thus, by  
focusing on mechanisms that expend effort to guarantee 
durability, CAP researchers arrive at conclusions that are 
not applicable in first-tier services, which are limited to 
soft state.

Membership 
Any replication scheme needs a membership model. 

Consider some piece of replicated data in a first-tier ser-
vice: the data might be replicated across the full set of 
first-tier application instances or it might reside just within 
some small subset of them (in the latter case the term shard 
is often used). Which nodes are supposed to participate? 

For the case in which every replica has a copy of the 
data item, the answer is evident: all the replicas currently 
running. But because cloud platforms vary this set elasti-
cally, the actual collection will change over time, perhaps 
rapidly. Full replication necessitates tracking the set, 

having a policy for initializing a newly launched service 
instance, and ensuring that each update reaches all the 
replicas, even if that set is quite large. 

For sharded data, any given item will be replicated at 
just a few members, hence a mapping from key (item-id) 
to shard is needed. Since each service instance belongs 
to just a few shards but potentially needs access to all of 
them, a mechanism is also needed so that any instance can 
issue read or update requests to any shard. Moreover, since 
shard membership will vary elastically (but without com-
pletely shutting down the full membership of any shard), 
membership dynamics must be factored into the model. 

One way to handle such issues is seen in Amazon’s 
Dynamo key-value store,5 which is a form of distributed 
hash table (DHT). Each node in Dynamo is mapped (using 
a hashing function) to a location on a virtual ring, and the 
key associated with each item is similarly mapped to the 
ring. The closest node with a mapped id less than or equal 
to that of the item is designated as its primary owner, and 
the value is replicated to the primary and to the next few 
(typically three) nodes along the ring: the shard for that 
key. Shard mappings change as nodes join and leave the 
ring, and data is moved around accordingly (a form of state 
transfer). Amazon apparently coordinates this with the 
cloud management service to minimize abrupt elasticity 
decisions that would shut down entire shards faster than 
the members can transfer state to new owners. 

A second way to implement shards occurs in systems 
that work with process groups:6 here, a group communica-
tion infrastructure such as our new Isis2 system solves the 
various requirements. Systems of this sort offer an API that 
provides much of the needed functionality: ways for pro-
cesses to create, join, and leave groups; group names that 
might encode a key (such as “shard123”); a state transfer 
mechanism to initialize a joining member from the state 
of members already active; and other synchronization fea-
tures. Isis2, for example, implements the virtual synchrony 
model.7 The developer decides how shards should work, 
then uses the provided API to implement the desired policy 
over the group infrastructure tools. Again, coordination 
with the cloud management infrastructure is required to 
avoid disruptive elasticity events.

Services that run on a stable set of nodes for a long 
period employ a third shard-implementation option that 
enables a kind of static membership in which some set of 
nodes is designated as running the service. Here, mem-
bership remains fixed, but some nodes might be down 
when a request is issued. This forces the use of quorum 
replication schemes, in which only a quorum of repli-
cas see each update, but reading data requires accessing 
multiple replicas; state transfer is not needed unless the 
static membership must be reconfigured—a rare and 
costly operation. Several CAP articles refer to the high 
cost of quorum operations, suggesting that many in the  

A security system that bases 
authorization decisions on potentially 
stale or incorrect underlying data is at 
risk of mistakes that a system using 
consistent data will not make.
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community have had direct experience with this category 
of solutions, which includes the most widely used Paxos 
libraries.

Notice that quorum operations are needed in this static 
membership case, but not in the others: the DHT and 
process group approaches avoid the need for quorums 
because they evolve shard membership as nodes join, 
leave, or fail. This matters because quorum operations 
residing on the critical path for a first-tier request intro-
duce nonlocal delays, which cloud developers are intent 
upon minimizing in the interests of rapid response and 
scalability. With dynamic shard membership both reads 
and writes can be done locally. The multicasts that update 
remote replicas occur asynchronously, in parallel with 
computation of the response that will be sent to the client. 

Update ordering 
A second dimension of consistency concerns the policy 

for applying updates to replicas. A consistent replication 
scheme applies the same updates to every replica in the 
same order and specifies the correct way to initialize new 
members or nodes recovering from a failure.6-8 

Update ordering costs depend on the pattern for is-
suing updates. In many systems, each data item has a 
primary copy through which updates are routed, and 
one or more replicas function as hot-standbys and can 
support read-only operations. Some systems shift the role 
of being primary around, but the basic idea is the same: 
in both cases, delivering updates in the order they were 
sent, without gaps, keeps the system consistent across 
multiple replicas. The resulting problem is very much like 
FIFO delivery of data with TCP, and is solved in much the 
same manner.

A more costly multicast ordering property is needed if 
every replica can initiate concurrent, conflicting updates to 
the same data items. When concurrent updates are permit-
ted, the multicast mechanism must select an agreed-upon 
order, then the delivery order ensures that the replicas 
apply the updates in a consistent order. The numerous ways 
to build such mechanisms are not tremendously complex, 
but they do introduce extra protocol steps, which slows 
down the update protocol. The CAP and BASE literature 
does not discuss this issue explicitly, but the examples used 
point to systems that permit concurrent updates. Simply 
requiring replicated data to have a primary copy can yield 
a significant cost reduction.

Durability
Yet a third dimension involves durability of updates. 

Obviously, an update that has been performed is durable 
if the service will not forget it. But precisely what does it 
mean to have “performed” an update? Must the durability 
mechanism retain data across complete shutdowns of a 
service or shard’s full membership?
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In applications where the goal is to replicate a database 
or file (some form of external storage), durability involves 
mechanisms such as write-ahead logs: all the replicas push 
updates to their respective logs, then acknowledge that 
they are ready to commit the update;  in a second phase, 
the system can apply the updates in the logs to the actual 
database. Thus, while the Paxos protocol9,10 does not refer 
to the application per se, most Paxos implementations 
are designed to work with external applications like da-
tabases for which durability entails logging of pending 
updates. This presumes durable storage that will survive 
failures. The analogous database mechanism would be a 
write-ahead log. 

But first-tier services are required to be stateless. Can 
they replicate data in a way that offers a meaningful durabil-
ity property? The obvious answer is to consider in-memory 
update replication: we could distinguish between a service 
that might respond to a client before every replica knows of 
the updates triggered by that client’s request, and a service 
that delays until after every replica has acknowledged the 
relevant updates. We call the former solution nondurable: if 
the service has n members, even a single failure can leave 

n – 1 replicas in a state where they will never see the update. 
We refer to the latter solution as amnesia freedom: the ser-
vice will not forget the update unless all n members fail. 
Recall that coordinating with the cloud management plat-
form minimizes abrupt shutdowns of all n replicas.

Amnesia freedom is not perfect. If a serious failure 
forces an entire service or shard to shut down, unless the 
associated data is backed up on an inner-tier service, state 
will be lost. But because this is a rare case, such a risk may 
be quite acceptable. For example, suppose that applica-
tions for monitoring and controlling embedded systems 
such as medical monitoring devices move to cloud-hosted 
settings. While these applications require consistency and 
other assurance properties, the role of online monitoring 
is continuous. Moreover, applications of this sort generally 
revert to a fail-safe mode when active control is lost. Thus, 
an inner-tier service might not be needed.

Applications that do push updates to an inner service 
have a choice: they could wait for the update to be acknowl-
edged or they could adopt amnesia freedom. However, in 
so doing, they accept a window of vulnerability for the 
(hopefully brief) period after the update is fully replicated 
in the memory of the first-tier service, but before it reaches 
the inner tier. 

Simply requiring replicated data  
to have a primary copy can yield  
a significant cost reduction.
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Sometimes, a rapid response might be so important 
that it is not possible to wait for an inner-tier response; if 
so, amnesia freedom represents a compromise that greatly 
reduces the risk of update loss at very low cost. To offer 
another analogy, while database products generally sup-
port true multicopy serializability, costs can be high. For 
this reason, database mirroring is more often done by 
asynchronously streaming a log, despite the small risk that 
a failure could cause updates to be lost. Thus, databases 
often operate in the same manner as an amnesia-free solu-
tion that asynchronously pushes updates to an inner-tier 
service. 

Failure mode
Our work assumes that applications fail by crashing and 

that network packets can be lost. Within a single datacen-
ter, if a partition occurs, the affected machines are treated 
as if they had crashed: when the partition is repaired, those 
nodes will be forced to restart.

Putting it all together
From this complex set of choices and options, it is pos-

sible to construct diverse replication solutions with very 
different properties, required structure, and expected per-
formance. While some make little sense in the first tier; 
others represent reasonable options, including the following:

 • Build protocols that replicate data optimistically and 
later heal any problems that arise, perhaps using 
gossip (BASE). Updates are applied in the first tier, but 
then passed to inner-tier services that might perform 
them in different orders.

 • Build protocols synchronized with respect to mem-
bership changes, and with a variety of ordering and 
durability properties—virtual synchrony and also 
“in-memory” versions of Paxos, where the Paxos du-
rability guarantee applies only to in-memory data. 
Simply enforcing a barrier can achieve amnesia 
freedom: the system pauses if needed, delaying the 
response until any updates initiated by the request (or 
seen by the request through its reads) have reached 
all the replicas and thus become stable. 

 • Implement the state machine replication model, in-
cluding strong durability—the guarantee that even if 
all service members crash, the current state will be 
recoverable. Most Paxos implementations use this 

model. However, in our target scenario, strong dura-
bility is not meaningful, and the first phase is limited 
to logging messages in the memory of the replicas 
themselves.  

 • Implement database transactions in the first tier, cou-
pling them to the serialization order using inner tiers, 
for example, via a true multicopy model based on 
the ACID model or a snapshot-isolation model. The 
research community is currently investigating this 
approach.

How does CAP deal with these diverse options? The 
question is easier to pose than to answer. When Eric 
Brewer proposed CAP as a general statement,1 he offered 
the classic partitioning failure scenario as an illustration 
of a more broadly applicable principle. His references to 
consistency evoked ACID database properties. Seth Gilbert 
and Nancy A. Lynch offered their proof in settings with 
partitionable wide-area links.2 They pointed out that with 
even slight changes, CAP ceases to apply, and proposed a 
t-eventual consistency model that avoids the CAP tradeoff. 

In their work on BASE, Dan Pritchett3 and Werner 
Vogels4 pointed to both the ACID model and the durable 
form of Paxos.9,10 They argued that these models are too 
slow for use in the first tier, expressing concerns that ap-
parently stem from the costly two-phase structure of these 
particular protocols, and their use of quorum reads and 
updates, resulting in nonlocal responsiveness delays on 
the critical path that computes responses. 

The concerns about performance and scalability relate 
to durability mechanisms, not order-based consistency. 
Because sharded data predominates in the first tier, it is 
possible to require each shard to distinguish a primary 
copy where updates are performed first. Other replicas 
mirror the primary, supporting read-accesses, and taking 
over as primary only in the event of a reconfiguration. For 
a DHT-like structure, it is possible to use chain replication;11 
in a process group, the system would load-balance the 
reads while routing updates through the primary, which 
would issue the needed multicasts. This reduces the cost 
of consistency to the trivial requirement of performing 
updates in FIFO order. Of course, this also requires syn-
chronizing group membership changes relative to updates, 
but there is no reason that this should impact steady-state 
performance. 

We favor in-memory logging of updates, leading to 
amnesia freedom. Fusing order-based consistency with 
amnesia freedom results in a strongly consistent model 
with a slightly weaker notion of durability. Indeed, when 
acting on a request from an external user, any replica can 
perform everything locally with the appropriate data, up 
to the very last step: before responding to the external 
client, any updates triggered by a request must be stable—
that is, they must have reached all the relevant replicas. 

Fusing order-based consistency with 
amnesia freedom results in a strongly 
consistent model with a slightly  
weaker notion of durability.
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The degree of durability will depend on how this delay-
ing step is implemented. A service unwilling to tolerate any 
delay might respond while updates are still queued in the 
communication layer. Its responses to the client would 
reflect the orderly application of updates, but a crash could 
cause some updates to be forgotten. With amnesia free-
dom, other replicas back up an update: only the crash of 
the entire shard or service could result in their loss. Given 
that the cloud computing community has ruled out simply 
waiting for a durable inner-tier service to acknowledge the 
updates, this offers an appealing compromise: a surpris-
ingly scalable, inexpensive, and resilient new option for 
first-tier services that need consistency.

THE ISIS2 SYSTEM
Our Isis2 system supports virtually synchronous pro-

cess groups,6 and includes reliable multicasts with various 
ordering options (available at www.cs.cornell.edu.ken/
isis2). The Send primitive is FIFO-ordered. An Ordered-
Send primitive guarantees total order; we will not be using 
it here because we assume that sharded data has a pri-
mary copy. Amnesia freedom is achieved by invoking a 
barrier primitive called Flush that delays until any prior 
unstable multicasts have reached all destinations. This 
kind of Flush sends no extra messages; it just waits for 
acknowledgments (Figure 1a).

Isis2 also offers a virtually synchronous version of 
Paxos,7 via a primitive we call SafeSend. The user can 
specify the size of the acceptor set; we favor the use 
of three acceptors, but it is possible to select all mem-
bers in a process group to serve as acceptors, or half of 
those members, or whatever is most appropriate to a 
given application. SafeSend offers two forms of durabil-
ity: in-memory durability, which we use for soft-state 
replication in the first tier, and true on-disk durability.  
Here, we evaluate only the in-memory configuration, 

since the stronger form of durability is not useful in the 
first tier.

Figure 1 illustrates these protocol options. Figure 1a 
shows an application that issues a series of Send opera-
tions and then invokes Flush, which causes a delay until 
all the prior Sends have been acknowledged. In this par-
ticular run, updates A:1 and A:2 arrive out of FIFO order at 
member C, which delays A:2 until A:1 has been received; 
we illustrate this case to emphasize that implementing 
FIFO ordering is very inexpensive. Figure 1b shows our in-
memory Paxos protocol with two acceptors (nodes A and 
B) and one additional member (C); all three are learners. 
Figure 1c shows this same case, but with the durable ver-
sion of the Paxos protocol, emphasizing that in a durable 
mode, the protocol must store pending requests on disk 
rather than in memory. 

We ran our experiment in a datacenter with 48 ma-
chines, each with 12 Xeon X5650 cores (running at 2.67 
GHz) and connected by Gigabit Ethernet. We designed a 
client to trigger bursts of work during which five multicasts 
are initiated—for example, to update five replicated data 
objects. Two cases are considered: for one, the multicasts 
use Send followed by a Flush; the other uses five calls to 
SafeSend, in its in-memory configuration with no Flush. 

Figure 2a shows the latency between when processing 
started at the leader and when update delivery occurred, 
on a per-update basis. All three of these consistent-repli-
cation options scale far better than might be expected on 
the basis of the reports in the literature, but the amnesia-
free Send significantly outperforms SafeSend even when 
configured with just three acceptors. The delay associated 
with Flush was dwarfed by other sources of latency vari-
ance, and we did not measure it separately. Notice that 
if we were sharding data by replicating it to just three 
to five members, all of these options would offer good 
performance.

Client Server A Server B Server C Server A Server B Server C Server A Server B Server CClient Client
Request
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Figure 1. Communication between three members of an Isis2 process group for various primitives: (a) Send, followed by a Flush 
barrier, (b) SafeSend (in-memory Paxos), and (c) durable (disk-logged) Paxos. A:1 and A:2 are two updates sent from server A.
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In Figure 2a we omitted error bars, and instead plotted 
variance from the mean in Figure 2b. This figure focuses 
on the case of 192 members; for each protocol we took the 
mean as reported on Figure 2a and then binned individual 
latencies for the 192 receivers as deltas from the mean, 
which can thus be positive or negative. While Send laten-
cies are sharply peaked around the mean, the protocol 
does have a tail extending to as much as 100 ms but im-
pacting only a small percentage of multicasts. 

For SafeSend the latency deviation is both larger and 
more common. These observations reflect packet loss: in 
loss-prone environments—for example, cloud-comput-
ing networks, which are notoriously prone to overload 
and packet loss—each protocol stage can drop messages, 
which must then be retransmitted. The number of stages 
explains the degree of spread: SafeSend latencies spread 
broadly, reflecting instances that incur zero, one, two, or 
even three packet drops (Figure 1b). In contrast, Send has 
just a single phase (Figure 1a), hence is at risk of at most 
loss-driven delay. Moreover, Send generates less traffic, re-
sulting in a lower loss rate at the receivers. In the future, we 
plan to report on SafeSend performance with disk logging.

ANALYSES OF CAP TRADEOFFS
In addition to Eric Brewer’s original work1 and reports 

by others who advocate for BASE,3,4 the relevant analyses 
of CAP and the possible tradeoffs (CA/CP/AP) include Jim 
Gray’s classic analysis of ACID scalability,12 a study by Hi-
roshi Wada and colleagues of NoSQL consistency options 
and costs, and other discussions of this topic.13-17 Database 
research that relaxes consistency to improve scalability 
includes the Escrow transaction model,18 PNUTS,19 and 
Sagas.20

At the other end of the spectrum, notable cloud services 
that scale well and yet offer strong consistency include the 
Google File System,21 Bigtable,22 and Zookeeper.23 Research 
focused on Paxos performance includes the Ring-Paxos 
protocol24,25 and the Gaios storage system.26

Our work employs a model that unifies Paxos (state-
machine replication) with virtual synchrony.7 In addition 
to our prior work on amnesia freedom,6 other mechanisms 
that we have exploited in Isis2 include the IPMC allocation 
scheme from Dr. Multicast,27 and the tree-structured ac-
knowledgments used in QuickSilver Scalable Multicast.2,28 

T he CAP theorem centers on concerns that the ACID 
database model and the standard durable form 
of Paxos introduce unavoidable delays. We have 

suggested that these delays are actually associated with 
durability, which is not a meaningful goal in the cloud’s 
first tier, where applications are limited to soft state. 
Nonetheless, an in-memory form of durability is feasible. 
Leveraging this, we can offer a spectrum of consistency 

Figure 2. Latency between the start of processing and up-
date delivery. (a) Mean delivery latency for the Send primi-
tive, contrasted with SafeSend with three acceptors and 
SafeSend with acceptors equal to the number of members 
in the group. (b) Histogram showing the probability of de-
livery latencies relative to mean update latency, for all three 
protocols, for a group size of 192 members. (c) Cumulative 
histogram of Flush latency for various numbers of members 
in the group.
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options, ranging from none to amnesia freedom to strong 
f-durability (an update will not be lost unless more than 
f failures occur). It is possible to offer ordered-based con-
sistency (state machine replication), and yet achieve high 
levels of scalable performance and fault tolerance. 

Although the term amnesia freedom is new, our basic 
point is made in many comparisons of virtual synchrony 
with Paxos. A concern is that cloud developers, unaware 
that scalable consistency is feasible, might weaken consis-
tency in applications that actually need strong guarantees.

Obviously, not all applications need the strongest forms 
of consistency, and perhaps this is the real insight. To-
day’s cloud systems are inconsistent by design because this 
design point has been relatively easy to implement, scales 
easily, and works well for the applications that earn the 
most revenue in today’s cloud. The kinds of applications 
that need stronger assurance properties simply have not 
yet wielded enough market power to shift the balance. The 
good news, however, is that if cloud vendors ever tackle 
high-assurance cloud computing, CAP will not represent 
a fundamental barrier to progress. 
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