
computer 50

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/12/$31.00 © 2012 IEEE

Our work explores a new consistency model for data
replication in first-tier cloud services. The model combines
agreement on update ordering with a form of durability
that we call amnesia freedom. Our experiments confirm
that this approach scales and performs surprisingly well.

THE CAP THEOREM’S BROAD REACH
The CAP theorem has been highly influential within

the cloud computing community, and is widely cited as
a justification for building cloud services with weak con-
sistency or assurance properties. CAP’s impact has been
especially important in the first-tier settings on which we
focus in this article.

Many of today’s developers believe that CAP precludes
consistency in first-tier services. For example, eBay has
proposed BASE (Basically Available replicated Soft state
with Eventual consistency), a development methodology
in which services that run in a single datacenter on a reli-
able network are deliberately engineered to use potentially
stale or incorrect data, rejecting synchronization in favor
of faster response, but running the risk of inconsistencies.3
Researchers at Amazon.com have also adopted BASE. They
point to the self-repair mechanisms in the Dynamo key-
value store as an example of how eventual consistency
behaves in practice.4

Inconsistencies that occur in eBay and Amazon cloud
applications can often be masked so that users will not
notice them. The same can be said for many of today’s most
popular cloud computing uses: how much consistency is
really needed by YouTube or to support Web searches?
However, as applications with stronger assurance needs

T he CAP theorem explores tradeoffs between con-
sistency, availability, and partition tolerance, and
concludes that a replicated service can have just
two of these three properties.1,2 To prove CAP,

researchers construct a scenario in which a replicated
service is forced to respond to conflicting requests during
a wide-area network outage, as might occur if two differ-
ent datacenters hosted replicas of some single service,
and received updates at a time when the network link
between them was down. The replicas respond without
discovering the conflict, resulting in inconsistency that
might confuse an end user.

However, there are important situations in which cloud
computing developers depend upon data or service repli-
cation, and for which this particular proof does not seem
to apply. Here, we consider such a case: a scalable service
running in the first tier of a single datacenter. Today’s data-
centers employ redundant networks that almost never
experience partitioning failures: the “P” in CAP does not
occur. Nonetheless, many cloud computing application
developers believe in a generalized CAP “folk theorem,”
holding that scalability and elasticity are incompatible
with strong forms of consistency.

New data-consistency models make it pos-
sible for cloud computing developers to
replicate soft state without encountering
the limitations associated with the CAP
theorem.

Kenneth P. Birman, Daniel A. Freedman, Qi Huang,
and Patrick Dowell, Cornell University

Overcoming CAP
with Consistent
Soft-State
Replication

r2bir.indd 50 1/25/12 11:36 AM

51FeBruArY 2012

Cloud computing systems are generally
structured into tiers: a first tier that
handles incoming client requests,
caches and key-value stores that
run near the first tier, and inner-tier
services that provide database and file
system functionality.

migrate to the cloud, even minor inconsistencies could
endanger users. For example, there has been considerable
interest in creating cloud computing solutions for medical
records management or control of the electric power grid.
Does CAP represent a barrier to building such applications,
or can stronger properties be achieved in the cloud?

At first glance, it might seem obvious that the cloud can
provide consistency. Many cloud applications and products
offer strong consistency guarantees, including databases
and scalable global file systems. But these products do not
run in the first tier of the cloud—the client-facing layer that
handles incoming requests from browsers or responds to
Web services method invocations. There is a perception
that strong consistency is not feasible in these kinds of
highly elastic and scalable services, which soak up much
of the workload.

Here, we consider first-tier applications that replicate
data—either directly, through a library that offers a key-
value storage API, or with some form of caching. We ignore
application details, and instead look closely at the multi-
cast protocols used to update replicated data. Our work
confirms that full-fledged atomic multicast probably does
not scale well enough for use in this setting (a finding that
rules out using durable versions of Paxos or ACID transac-
tions to replicate data), and in this sense we agree with the
generalization of CAP. However, we also advocate other
consistency options that scale far better: the amnesia-free
protocols. By using them, developers can overcome the
limitations associated with CAP.

THE FIRST-TIER PROGRAMMING MODEL
Cloud computing systems are generally structured into

tiers: a first tier that handles incoming client requests
(from browsers, applications using Web services stan-
dards, and so on), caches and key-value stores that run
near the first tier, and inner-tier services that provide data-
base and file system functionality. Back-end applications
work offline, preparing indices and other data for later
use by online services.

Developers typically tune applications running in the
first tier for rapid response, elasticity, and scalability by
exploiting a mixture of aggressive replication and very
loose coupling between replicas. A load-balancer directs
requests from client systems to a service instance, which
runs the developer-provided logic. To minimize delay, an
instance will compute as locally as possible, using cached
data if available, and launching updates in the background
(asynchronously).

In support of this model, as little synchronization is
done as possible: first-tier services are nontransactional
and run optimistically, without obtaining locks or check-
ing that cached data is still valid. Updates are applied
optimistically to cached data, but the definitive outcome
will not occur until the real update is finally done later,

on the underlying data; if this yields a different result, the
system will often simply ignore the inconsistency. While
first-tier services can query inner services, rather than fo-
cusing on that pattern, we consider reads and updates that
occur entirely within the first tier, either on data replicated
by first-tier service instances or within the key-value stores
and caches supporting them.

Modern cloud development platforms standardize this
model, and in fact take it even further. First-tier applica-
tions are also required to be stateless: to support rapid
instance launch or shutdown, cloud platforms launch
each new instance in a standard initial state, and discard
any local data when an instance fails or is halted by the
management infrastructure. “Stateless” doesn’t mean that
these instances have no local data at all, but rather that
they are limited to a soft state that won’t be retained across

instance failure/launch sequences. On launch, such state
is always clean; a new instance initializes itself by copy-
ing data from some operational instance or by querying
services residing deeper in the cloud.

Even an elastic service will not be completely shut down
without warning: to ensure continuous availability, cloud
management platforms can be told to keep some mini-
mum number of replicas of each service running. Thus,
these services vary the number of extra replicas for elastic-
ity, but preserve a basic level of availability.

Jointly, these observations enable a form of weak du-
rability. Data replicated within the soft state of a service,
in members that the management platform will not shut
down (because they reside within the core replica set),
will remain available unless a serious failure causes all
the replicas to crash simultaneously, a rare occurrence in
a well-designed application.

Today’s first-tier applications often use stale or other-
wise inconsistent data when responding to requests because
the delays associated with fetching (or even validating) data
are perceived as too high. Even slight delays can drive users
away. Web applications try to hide resulting problems or to
clean them up later (eventual consistency), possibly ending
up in a state at odds with what the client saw. Cloud owners
justify these architectural decisions by asserting a gener-
alized CAP principle, arguing that consistency is simply
incompatible with scalability and rapid responsiveness.

r2bir.indd 51 1/25/12 11:36 AM

COVER FE ATURE

computer 52

Adopting a consistency model better matched to first-
tier characteristics permits similar responsiveness while
delivering stronger consistency guarantees. This approach
could enable cloud-hosting of applications that need to
justify the responses they provide to users, such as medical
systems that monitor patients and control devices. Con-
sistency can also enhance security: a security system that
bases authorization decisions on potentially stale or incor-
rect underlying data is at risk of mistakes that a system
using consistent data will not make.

CONSISTENCY:
A MULTIDIMENSIONAL PROPERTY

Developers can define consistency in many ways. Prior
work on CAP defined “C” by citing the ACID (atomicity,
consistency, isolation, and durability) database model; in
this approach the “C” in CAP is defined to be the “C” and
“D” from ACID. Consistency, in effect, is conflated with

durability. Underscoring this point, several CAP and BASE
articles cite Paxos as the usual way to implement consis-
tent replication: an atomic multicast protocol that provides
total ordering and durability.

Durability is the guarantee that once an update has been
ordered and marked as deliverable, it will never be lost,
even if the entire service crashes and then restarts. But for
a first-tier service, durability in this direct sense is clearly
not feasible: any state that can endure such a failure would
necessarily be stored outside the service itself. Thus, by
focusing on mechanisms that expend effort to guarantee
durability, CAP researchers arrive at conclusions that are
not applicable in first-tier services, which are limited to
soft state.

Membership
Any replication scheme needs a membership model.

Consider some piece of replicated data in a first-tier ser-
vice: the data might be replicated across the full set of
first-tier application instances or it might reside just within
some small subset of them (in the latter case the term shard
is often used). Which nodes are supposed to participate?

For the case in which every replica has a copy of the
data item, the answer is evident: all the replicas currently
running. But because cloud platforms vary this set elasti-
cally, the actual collection will change over time, perhaps
rapidly. Full replication necessitates tracking the set,

having a policy for initializing a newly launched service
instance, and ensuring that each update reaches all the
replicas, even if that set is quite large.

For sharded data, any given item will be replicated at
just a few members, hence a mapping from key (item-id)
to shard is needed. Since each service instance belongs
to just a few shards but potentially needs access to all of
them, a mechanism is also needed so that any instance can
issue read or update requests to any shard. Moreover, since
shard membership will vary elastically (but without com-
pletely shutting down the full membership of any shard),
membership dynamics must be factored into the model.

One way to handle such issues is seen in Amazon’s
Dynamo key-value store,5 which is a form of distributed
hash table (DHT). Each node in Dynamo is mapped (using
a hashing function) to a location on a virtual ring, and the
key associated with each item is similarly mapped to the
ring. The closest node with a mapped id less than or equal
to that of the item is designated as its primary owner, and
the value is replicated to the primary and to the next few
(typically three) nodes along the ring: the shard for that
key. Shard mappings change as nodes join and leave the
ring, and data is moved around accordingly (a form of state
transfer). Amazon apparently coordinates this with the
cloud management service to minimize abrupt elasticity
decisions that would shut down entire shards faster than
the members can transfer state to new owners.

A second way to implement shards occurs in systems
that work with process groups:6 here, a group communica-
tion infrastructure such as our new Isis2 system solves the
various requirements. Systems of this sort offer an API that
provides much of the needed functionality: ways for pro-
cesses to create, join, and leave groups; group names that
might encode a key (such as “shard123”); a state transfer
mechanism to initialize a joining member from the state
of members already active; and other synchronization fea-
tures. Isis2, for example, implements the virtual synchrony
model.7 The developer decides how shards should work,
then uses the provided API to implement the desired policy
over the group infrastructure tools. Again, coordination
with the cloud management infrastructure is required to
avoid disruptive elasticity events.

Services that run on a stable set of nodes for a long
period employ a third shard-implementation option that
enables a kind of static membership in which some set of
nodes is designated as running the service. Here, mem-
bership remains fixed, but some nodes might be down
when a request is issued. This forces the use of quorum
replication schemes, in which only a quorum of repli-
cas see each update, but reading data requires accessing
multiple replicas; state transfer is not needed unless the
static membership must be reconfigured—a rare and
costly operation. Several CAP articles refer to the high
cost of quorum operations, suggesting that many in the

A security system that bases
authorization decisions on potentially
stale or incorrect underlying data is at
risk of mistakes that a system using
consistent data will not make.

r2bir.indd 52 1/25/12 11:36 AM

community have had direct experience with this category
of solutions, which includes the most widely used Paxos
libraries.

Notice that quorum operations are needed in this static
membership case, but not in the others: the DHT and
process group approaches avoid the need for quorums
because they evolve shard membership as nodes join,
leave, or fail. This matters because quorum operations
residing on the critical path for a first-tier request intro-
duce nonlocal delays, which cloud developers are intent
upon minimizing in the interests of rapid response and
scalability. With dynamic shard membership both reads
and writes can be done locally. The multicasts that update
remote replicas occur asynchronously, in parallel with
computation of the response that will be sent to the client.

Update ordering
A second dimension of consistency concerns the policy

for applying updates to replicas. A consistent replication
scheme applies the same updates to every replica in the
same order and specifies the correct way to initialize new
members or nodes recovering from a failure.6-8

Update ordering costs depend on the pattern for is-
suing updates. In many systems, each data item has a
primary copy through which updates are routed, and
one or more replicas function as hot-standbys and can
support read-only operations. Some systems shift the role
of being primary around, but the basic idea is the same:
in both cases, delivering updates in the order they were
sent, without gaps, keeps the system consistent across
multiple replicas. The resulting problem is very much like
FIFO delivery of data with TCP, and is solved in much the
same manner.

A more costly multicast ordering property is needed if
every replica can initiate concurrent, conflicting updates to
the same data items. When concurrent updates are permit-
ted, the multicast mechanism must select an agreed-upon
order, then the delivery order ensures that the replicas
apply the updates in a consistent order. The numerous ways
to build such mechanisms are not tremendously complex,
but they do introduce extra protocol steps, which slows
down the update protocol. The CAP and BASE literature
does not discuss this issue explicitly, but the examples used
point to systems that permit concurrent updates. Simply
requiring replicated data to have a primary copy can yield
a significant cost reduction.

Durability
Yet a third dimension involves durability of updates.

Obviously, an update that has been performed is durable
if the service will not forget it. But precisely what does it
mean to have “performed” an update? Must the durability
mechanism retain data across complete shutdowns of a
service or shard’s full membership?

53FeBruArY 2012

In applications where the goal is to replicate a database
or file (some form of external storage), durability involves
mechanisms such as write-ahead logs: all the replicas push
updates to their respective logs, then acknowledge that
they are ready to commit the update; in a second phase,
the system can apply the updates in the logs to the actual
database. Thus, while the Paxos protocol9,10 does not refer
to the application per se, most Paxos implementations
are designed to work with external applications like da-
tabases for which durability entails logging of pending
updates. This presumes durable storage that will survive
failures. The analogous database mechanism would be a
write-ahead log.

But first-tier services are required to be stateless. Can
they replicate data in a way that offers a meaningful durabil-
ity property? The obvious answer is to consider in-memory
update replication: we could distinguish between a service
that might respond to a client before every replica knows of
the updates triggered by that client’s request, and a service
that delays until after every replica has acknowledged the
relevant updates. We call the former solution nondurable: if
the service has n members, even a single failure can leave

n – 1 replicas in a state where they will never see the update.
We refer to the latter solution as amnesia freedom: the ser-
vice will not forget the update unless all n members fail.
Recall that coordinating with the cloud management plat-
form minimizes abrupt shutdowns of all n replicas.

Amnesia freedom is not perfect. If a serious failure
forces an entire service or shard to shut down, unless the
associated data is backed up on an inner-tier service, state
will be lost. But because this is a rare case, such a risk may
be quite acceptable. For example, suppose that applica-
tions for monitoring and controlling embedded systems
such as medical monitoring devices move to cloud-hosted
settings. While these applications require consistency and
other assurance properties, the role of online monitoring
is continuous. Moreover, applications of this sort generally
revert to a fail-safe mode when active control is lost. Thus,
an inner-tier service might not be needed.

Applications that do push updates to an inner service
have a choice: they could wait for the update to be acknowl-
edged or they could adopt amnesia freedom. However, in
so doing, they accept a window of vulnerability for the
(hopefully brief) period after the update is fully replicated
in the memory of the first-tier service, but before it reaches
the inner tier.

Simply requiring replicated data
to have a primary copy can yield
a significant cost reduction.

r2bir.indd 53 1/25/12 11:36 AM

COVER FE ATURE

computer 54

Sometimes, a rapid response might be so important
that it is not possible to wait for an inner-tier response; if
so, amnesia freedom represents a compromise that greatly
reduces the risk of update loss at very low cost. To offer
another analogy, while database products generally sup-
port true multicopy serializability, costs can be high. For
this reason, database mirroring is more often done by
asynchronously streaming a log, despite the small risk that
a failure could cause updates to be lost. Thus, databases
often operate in the same manner as an amnesia-free solu-
tion that asynchronously pushes updates to an inner-tier
service.

Failure mode
Our work assumes that applications fail by crashing and

that network packets can be lost. Within a single datacen-
ter, if a partition occurs, the affected machines are treated
as if they had crashed: when the partition is repaired, those
nodes will be forced to restart.

Putting it all together
From this complex set of choices and options, it is pos-

sible to construct diverse replication solutions with very
different properties, required structure, and expected per-
formance. While some make little sense in the first tier;
others represent reasonable options, including the following:

 • Build protocols that replicate data optimistically and
later heal any problems that arise, perhaps using
gossip (BASE). Updates are applied in the first tier, but
then passed to inner-tier services that might perform
them in different orders.

 • Build protocols synchronized with respect to mem-
bership changes, and with a variety of ordering and
durability properties—virtual synchrony and also
“in-memory” versions of Paxos, where the Paxos du-
rability guarantee applies only to in-memory data.
Simply enforcing a barrier can achieve amnesia
freedom: the system pauses if needed, delaying the
response until any updates initiated by the request (or
seen by the request through its reads) have reached
all the replicas and thus become stable.

 • Implement the state machine replication model, in-
cluding strong durability—the guarantee that even if
all service members crash, the current state will be
recoverable. Most Paxos implementations use this

model. However, in our target scenario, strong dura-
bility is not meaningful, and the first phase is limited
to logging messages in the memory of the replicas
themselves.

 • Implement database transactions in the first tier, cou-
pling them to the serialization order using inner tiers,
for example, via a true multicopy model based on
the ACID model or a snapshot-isolation model. The
research community is currently investigating this
approach.

How does CAP deal with these diverse options? The
question is easier to pose than to answer. When Eric
Brewer proposed CAP as a general statement,1 he offered
the classic partitioning failure scenario as an illustration
of a more broadly applicable principle. His references to
consistency evoked ACID database properties. Seth Gilbert
and Nancy A. Lynch offered their proof in settings with
partitionable wide-area links.2 They pointed out that with
even slight changes, CAP ceases to apply, and proposed a
t-eventual consistency model that avoids the CAP tradeoff.

In their work on BASE, Dan Pritchett3 and Werner
Vogels4 pointed to both the ACID model and the durable
form of Paxos.9,10 They argued that these models are too
slow for use in the first tier, expressing concerns that ap-
parently stem from the costly two-phase structure of these
particular protocols, and their use of quorum reads and
updates, resulting in nonlocal responsiveness delays on
the critical path that computes responses.

The concerns about performance and scalability relate
to durability mechanisms, not order-based consistency.
Because sharded data predominates in the first tier, it is
possible to require each shard to distinguish a primary
copy where updates are performed first. Other replicas
mirror the primary, supporting read-accesses, and taking
over as primary only in the event of a reconfiguration. For
a DHT-like structure, it is possible to use chain replication;11
in a process group, the system would load-balance the
reads while routing updates through the primary, which
would issue the needed multicasts. This reduces the cost
of consistency to the trivial requirement of performing
updates in FIFO order. Of course, this also requires syn-
chronizing group membership changes relative to updates,
but there is no reason that this should impact steady-state
performance.

We favor in-memory logging of updates, leading to
amnesia freedom. Fusing order-based consistency with
amnesia freedom results in a strongly consistent model
with a slightly weaker notion of durability. Indeed, when
acting on a request from an external user, any replica can
perform everything locally with the appropriate data, up
to the very last step: before responding to the external
client, any updates triggered by a request must be stable—
that is, they must have reached all the relevant replicas.

Fusing order-based consistency with
amnesia freedom results in a strongly
consistent model with a slightly
weaker notion of durability.

r2bir.indd 54 1/25/12 11:36 AM

55FeBruArY 2012

The degree of durability will depend on how this delay-
ing step is implemented. A service unwilling to tolerate any
delay might respond while updates are still queued in the
communication layer. Its responses to the client would
reflect the orderly application of updates, but a crash could
cause some updates to be forgotten. With amnesia free-
dom, other replicas back up an update: only the crash of
the entire shard or service could result in their loss. Given
that the cloud computing community has ruled out simply
waiting for a durable inner-tier service to acknowledge the
updates, this offers an appealing compromise: a surpris-
ingly scalable, inexpensive, and resilient new option for
first-tier services that need consistency.

THE ISIS2 SYSTEM
Our Isis2 system supports virtually synchronous pro-

cess groups,6 and includes reliable multicasts with various
ordering options (available at www.cs.cornell.edu.ken/
isis2). The Send primitive is FIFO-ordered. An Ordered-
Send primitive guarantees total order; we will not be using
it here because we assume that sharded data has a pri-
mary copy. Amnesia freedom is achieved by invoking a
barrier primitive called Flush that delays until any prior
unstable multicasts have reached all destinations. This
kind of Flush sends no extra messages; it just waits for
acknowledgments (Figure 1a).

Isis2 also offers a virtually synchronous version of
Paxos,7 via a primitive we call SafeSend. The user can
specify the size of the acceptor set; we favor the use
of three acceptors, but it is possible to select all mem-
bers in a process group to serve as acceptors, or half of
those members, or whatever is most appropriate to a
given application. SafeSend offers two forms of durabil-
ity: in-memory durability, which we use for soft-state
replication in the first tier, and true on-disk durability.
Here, we evaluate only the in-memory configuration,

since the stronger form of durability is not useful in the
first tier.

Figure 1 illustrates these protocol options. Figure 1a
shows an application that issues a series of Send opera-
tions and then invokes Flush, which causes a delay until
all the prior Sends have been acknowledged. In this par-
ticular run, updates A:1 and A:2 arrive out of FIFO order at
member C, which delays A:2 until A:1 has been received;
we illustrate this case to emphasize that implementing
FIFO ordering is very inexpensive. Figure 1b shows our in-
memory Paxos protocol with two acceptors (nodes A and
B) and one additional member (C); all three are learners.
Figure 1c shows this same case, but with the durable ver-
sion of the Paxos protocol, emphasizing that in a durable
mode, the protocol must store pending requests on disk
rather than in memory.

We ran our experiment in a datacenter with 48 ma-
chines, each with 12 Xeon X5650 cores (running at 2.67
GHz) and connected by Gigabit Ethernet. We designed a
client to trigger bursts of work during which five multicasts
are initiated—for example, to update five replicated data
objects. Two cases are considered: for one, the multicasts
use Send followed by a Flush; the other uses five calls to
SafeSend, in its in-memory configuration with no Flush.

Figure 2a shows the latency between when processing
started at the leader and when update delivery occurred,
on a per-update basis. All three of these consistent-repli-
cation options scale far better than might be expected on
the basis of the reports in the literature, but the amnesia-
free Send significantly outperforms SafeSend even when
configured with just three acceptors. The delay associated
with Flush was dwarfed by other sources of latency vari-
ance, and we did not measure it separately. Notice that
if we were sharding data by replicating it to just three
to five members, all of these options would offer good
performance.

Client Server A Server B Server C Server A Server B Server C Server A Server B Server CClient Client
Request

Response

Request

Response

Request

Response

Accept Ok

Accept Ok

Accept Ok

Accept Ok

Flush wait
for acks

Isis group (view k) Isis group (view k) Isis group (view k)

A:1

A:1 A:1

A:1 A:1

A:1 A:1 A:1A:1A:1
A:2

A:2
A:2

A:2
A:2

A:2
A:2

A:2
A:2

A:2
A:2

A:1
A:1

A:1

A:1 A:1

A:2

A:2 A:2

(a) (b) (c)

Accept A:1
Notify Accept A:1

Notify

Notify
Notify

Notify
Notify

Notify

Accept A:2

Notify
Accept A:2

Deliver update to application Log update to disk

Figure 1. Communication between three members of an Isis2 process group for various primitives: (a) Send, followed by a Flush
barrier, (b) SafeSend (in-memory Paxos), and (c) durable (disk-logged) Paxos. A:1 and A:2 are two updates sent from server A.

r2bir.indd 55 1/25/12 11:36 AM

COVER FE ATURE

computer56

In Figure 2a we omitted error bars, and instead plotted
variance from the mean in Figure 2b. This figure focuses
on the case of 192 members; for each protocol we took the
mean as reported on Figure 2a and then binned individual
latencies for the 192 receivers as deltas from the mean,
which can thus be positive or negative. While Send laten-
cies are sharply peaked around the mean, the protocol
does have a tail extending to as much as 100 ms but im-
pacting only a small percentage of multicasts.

For SafeSend the latency deviation is both larger and
more common. These observations reflect packet loss: in
loss-prone environments—for example, cloud-comput-
ing networks, which are notoriously prone to overload
and packet loss—each protocol stage can drop messages,
which must then be retransmitted. The number of stages
explains the degree of spread: SafeSend latencies spread
broadly, reflecting instances that incur zero, one, two, or
even three packet drops (Figure 1b). In contrast, Send has
just a single phase (Figure 1a), hence is at risk of at most
loss-driven delay. Moreover, Send generates less traffic, re-
sulting in a lower loss rate at the receivers. In the future, we
plan to report on SafeSend performance with disk logging.

ANALYSES OF CAP TRADEOFFS
In addition to Eric Brewer’s original work1 and reports

by others who advocate for BASE,3,4 the relevant analyses
of CAP and the possible tradeoffs (CA/CP/AP) include Jim
Gray’s classic analysis of ACID scalability,12 a study by Hi-
roshi Wada and colleagues of NoSQL consistency options
and costs, and other discussions of this topic.13-17 Database
research that relaxes consistency to improve scalability
includes the Escrow transaction model,18 PNUTS,19 and
Sagas.20

At the other end of the spectrum, notable cloud services
that scale well and yet offer strong consistency include the
Google File System,21 Bigtable,22 and Zookeeper.23 Research
focused on Paxos performance includes the Ring-Paxos
protocol24,25 and the Gaios storage system.26

Our work employs a model that unifies Paxos (state-
machine replication) with virtual synchrony.7 In addition
to our prior work on amnesia freedom,6 other mechanisms
that we have exploited in Isis2 include the IPMC allocation
scheme from Dr. Multicast,27 and the tree-structured ac-
knowledgments used in QuickSilver Scalable Multicast.2,28

T he CAP theorem centers on concerns that the ACID
database model and the standard durable form
of Paxos introduce unavoidable delays. We have

suggested that these delays are actually associated with
durability, which is not a meaningful goal in the cloud’s
first tier, where applications are limited to soft state.
Nonetheless, an in-memory form of durability is feasible.
Leveraging this, we can offer a spectrum of consistency

Figure 2. Latency between the start of processing and up-
date delivery. (a) Mean delivery latency for the Send primi-
tive, contrasted with SafeSend with three acceptors and
SafeSend with acceptors equal to the number of members
in the group. (b) Histogram showing the probability of de-
livery latencies relative to mean update latency, for all three
protocols, for a group size of 192 members. (c) Cumulative
histogram of Flush latency for various numbers of members
in the group.

SafeSend (all members as acceptors)
SafeSend (three members as acceptors)
Send

Number of group members

Number of group members

6005004003002001000
(a)

(b)

(c)

2,500

2,000

1,500

1,000

500

10

0

20

20

0

40

60

80

100

30

40

50

60

M
ea

n d
eli

ve
ry

 la
te

nc
y (

m
s)

Pr
ob

ab
ilit

y (
pe

rce
nt

)
Cu

m
ula

tiv
e p

ro
ba

bil
ity

 (p
er

ce
nt

)

M
ea

n d
eli

ve
ry

 la
te

nc
y (

m
s)

5040302010

100

80

60

40

20

0

Delivery latency (di�erence from mean) (ms)

Flush latency (ms)

0

0 50 100 150 200 250

100 200 300–100–200–300

SafeSend (all members as acceptors)
SafeSend (three members as acceptors)
Send

3 members
5 members

48 members
192 members

r2bir.indd 56 1/25/12 11:36 AM

57FeBruArY 2012

options, ranging from none to amnesia freedom to strong
f-durability (an update will not be lost unless more than
f failures occur). It is possible to offer ordered-based con-
sistency (state machine replication), and yet achieve high
levels of scalable performance and fault tolerance.

Although the term amnesia freedom is new, our basic
point is made in many comparisons of virtual synchrony
with Paxos. A concern is that cloud developers, unaware
that scalable consistency is feasible, might weaken consis-
tency in applications that actually need strong guarantees.

Obviously, not all applications need the strongest forms
of consistency, and perhaps this is the real insight. To-
day’s cloud systems are inconsistent by design because this
design point has been relatively easy to implement, scales
easily, and works well for the applications that earn the
most revenue in today’s cloud. The kinds of applications
that need stronger assurance properties simply have not
yet wielded enough market power to shift the balance. The
good news, however, is that if cloud vendors ever tackle
high-assurance cloud computing, CAP will not represent
a fundamental barrier to progress.

Acknowledgments
We are grateful to Robbert van Renesse, Dahlia Malkhi, the
students in Cornell’s CS7412 class (spring 2011), and to the
DARPA MRC program, which funds our efforts.

References
 1. E. Brewer, “Towards Robust Distributed Systems,” Proc.

19th Ann. ACM Symp. Principles of Distributed Computing.
(PODC 00), ACM, 2000, pp. 7-10.

 2. S. Gilbert and N. Lynch, “Brewer’s Conjecture and the Fea-
sibility of Consistent, Available, Partition-Tolerant Web
Services,” ACM SIGACT News, June 2002, pp. 51-59.

 3. D. Pritchett, “BASE: An Acid Alternative,” ACM Queue, May/
June 2008, pp. 48-55.

 4. W. Vogels, “Eventually Consistent,” ACM Queue, Oct. 2008,
pp. 14-19.

 5. G. DeCandia et al., “Dynamo: Amazon’s Highly Available
Key-Value Store,” Proc. 21st ACM SIGOPS Symp. Operating
Systems Principles (SOSP 07), ACM, 2007, pp. 205-220.

 6. K. Birman, “History of the Virtual Synchrony Replica-
tion Model,” Replication: Theory and Practice, LNCS 5959,
Springer, 2010, pp. 91-120.

 7. K.P. Birman, D. Malkhi, and R. van Renesse, Virtually Syn-
chronous Methodology for Dynamic Service Replication,
tech. report MSR-2010-151, Microsoft Research, 2010.

 8. K. Birman and T. Joseph, “Exploiting Virtual Synchrony
in Distributed Systems,” Proc. 11th ACM Symp. Operating
Systems Principles (SOSP 87), ACM, 1987, pp. 123-138.

 9. L. Lamport, “Paxos Made Simple,” ACM SIGACT News, Dec.
2008, pp. 51-58.

 10. L. Lamport, “The Part-Time Parliament,” ACM Trans. Com-
puter Systems, May 1998, pp. 133-169.

 11. R. van Renesse, F.B. Schneider, “Chain Replication for
Supporting High Throughput and Availability,” Proc. 6th
Symp. Operating Systems Design & Implementation (OSDI
04), Usenix, 2004, pp. 7-7.

 12. J. Gray et al., “The Dangers of Replication and a Solu-
tion,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD 96), ACM, 1996, pp. 173-182.

 13. H. Wada et al., “Data Consistency Properties and the
Trade-offs in Commercial Cloud Storage: The Consum-
ers’ Perspective,” Proc. 5th Biennial Conf. Innovative Data
Systems Research (CIDR 11), ACM, 2011, pp. 134-143.

 14. D. Kossman, “What Is New in the Cloud?” keynote presen-
tation, 6th European Conf. Computer Systems (EuroSys 11),
2011; http://eurosys2011.cs.uni-salzburg.at/pdf/eurosys11-
invited.pdf.

 15. T. Kraska et al., “Consistency Rationing in the Cloud: Pay
Only When It Matters,” Proc. VLDB Endowment (VLDB 09),
ACM, 2009, pp. 253-264.

 16. M. Brantner et al., “Building a Database on S3,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD 08), ACM,
2008, pp. 251-264.

 17. D. Abadi, “Problems with CAP, and Yahoo’s Little Known
NoSQL System,” blog; http://dbmsmusings.blogspot.
com/2010/04/problems-with-cap-and-yahoos-little.html.

 18. P.E. O’Neil, “The Escrow Transactional Method,” ACM
Trans. Database Systems, Dec. 1986, pp. 405-430.

 19. B.F. Cooper et al., “PNUTS: Yahoo!’s Hosted Data Serving
Platform,” Proc. VLDB Endowment (VLDB 08), ACM, 2008,
pp. 1277-1288.

 20. H. Garcia-Molina and K. Salem, “Sagas,” Proc. ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD 87), ACM, 1987,
pp. 249-259.

 21. S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google
File System,” Proc. 19th ACM Symp. Operating Systems
Principles (SOSP 03), ACM, 2003, pp. 29-43.

 22. F. Chang et al., “Bigtable: A Distributed Storage System for
Structured Data,” Proc. 7th Usenix Symp. Operating Sys-
tems Design and Implementation (OSDI 06), Usenix, 2006,
pp. 205-218.

 23. F.P. Junqueira and B.C. Reed, “The Life and Times of a
Zookeeper,” Proc. 21st Ann. Symp. Parallelism in Algorithms
and Architectures (SPAA 09), ACM, 2009, pp. 4-4.

 24. P. Marandi, M. Primi, and F. Pedone, “High-Performance
State-Machine Replication,” Proc. IEEE/IFIP Int’l Conf. De-
pendable Systems and Networks (DSN 11), IEEE CS, 2011,
pp. 454-465.

 25. P.J. Marandi et al., “Ring-Paxos: A High-Throughput Atomic
Broadcast Protocol,” Proc. IEEE/IFIP Int’l Conf. Depend-
able Systems and Networks (DSN 10), IEEE CS, 2010, pp.
527-536.

 26. W.J. Bolosky et al., “Paxos Replicated State Machines as
the Basis of a High-Performance Data Store,” Proc. 8th
Usenix Symp. Networked Systems Design and Implementa-
tion (NSDI 11), Usenix, 2011, pp. 141-154.

 27. Y. Vigfusson et al., “Dr. Multicast: Rx for Data Center Com-
munication Scalability,” Proc. 5th European Conf. Computer
Systems (EuroSys 10), ACM, 2010, pp. 349-362.

 28. K. Ostrowski, K. Birman, and D. Dolev, “QuickSilver Scal-
able Multicast (QSM),” Proc. 7th IEEE Ann. Int’l Symp.
Network Computing and Applications (NCA 08), IEEE, 2008,
pp. 9-18.

Kenneth P. Birman is the N. Rama Rao Professor of Com-
puter Science at Cornell University. His research focuses
on high assurance for cloud computing and other scalable

r2bir.indd 57 1/25/12 11:36 AM

COVER FE ATURE

computer 58

IEEE SoftwarE

offers pioneering ideas,

expert analyses, and

thoughtful insights for

software professionals

who need to keep up

with rapid technology

change. It’s the authority

on translating software

theory into practice.

www.computer.org/

software/subscribe

S
u

b
S

c
r

ib
e

 T
o

d
a

Y

distributed systems. Birman received a PhD in computer
science from University of California, Berkeley. He received
the 2009 IEEE Tsukomo Kanai award for his work in distrib-
uted systems and is an ACM Fellow. Contact him at ken@
cs.cornell.edu.

Daniel A. Freedman is a postdoctoral research associate
in the Department of Computer Science at Cornell Uni-
versity. His research interests span distributed systems
and communication networks. Freedman received a PhD in
theoretical physics from Cornell University. He is a member
of IEEE, ACM SIGOPS and SIGCOMM, and Usenix. Contact
him at dfreedman@cs.cornell.edu.

Qi Huang is a computer science PhD student at Cornell
University. His research interests include distributed
computing, networking, and operating systems. Huang
received a BE in computer science from Huazhong Uni-
versity of Science and Technology, China. He is a student
member of ACM. Contact him at qhuang@cs.cornell.edu.

Patrick Dowell is a computer science ME student at Cornell
University. His research interests include distributed sys-
tems, cloud computing, and security. Dowell received a BS
in computer science from Cornell University. Contact him
at pkd3@cs.cornell.edu.

r2bir.indd 58 1/25/12 11:36 AM

