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Abstract: We present a general and practical method for computing BS-
DFs of layered materials. Its ingredients are transport-theoretical models
of isotropic or anisotropic scattering layers and smooth or rough bound-
aries of conductors and dielectrics. Following expansion into a directional
basis that supports arbitrary composition, we are able to efficiently and
accurately synthesize BSDFs for a great variety of layered structures.

Reflectance models created by our system correctly account for multi-
ple scattering within and between layers, and in the context of a rendering
system they are efficient to evaluate and support texturing and exact im-
portance sampling. Although our approach essentially involves tabulating
reflectance functions in a Fourier basis, the generated models are compact
to store due to the inherent sparsity of our representation, and are accurate
even for narrowly peaked functions. While methods for rendering general
layered surfaces have been investigated in the past, ours is the first system
that supports arbitrary layer structures while remaining both efficient and
accurate.

We validate our model by comparing to measurements of real-world
examples of layered materials, and we demonstrate an interactive visual
design tool that enables easy exploration of the space of layered materi-
als. We provide a fully practical, high-performance implementation in an
open-source rendering system.

Remark: This document follows the same structure as the paper. Differ-
ences are highlighted by change bars in the right margin.
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1 Introduction

The notion of scattering at a surface is central to rendering. It is appropriate, and
computationally essential, to treat thin structures as surfaces when the scale of the
scene allows: from a metal surface with microscopic imperfections to a rough ocean
viewed from space, surface-scattering models are often the correct representation.

Metal or dielectric interfaces with microscopic roughness are the simplest scatter-
ing surfaces, but the vast majority of nonmetallic materials are not transparent; they
reflect light diffusely by subsurface scattering. The most commonly used reflectance
models, with a diffuse and a specular component, are based on the idea of a dielectric
boundary above an optically dense scattering medium.

Surfaces can also be more complex, with layers that might not fully hide the material
below: glaze over ceramic, wall paint over primer, colored car paint with a clear coat,
vitreous enamel in gold and silver jewelry, and layered biological structures like leaves,
flower petals, or skin. All these can be described in terms of a stack of layers of
scattering and/or absorbing media, separated by interfaces that might be smooth or
rough. At the bottom the stack could be an opaque interface (such as a metal) or a
transparent one. Layers and interfaces provide a language that is useful for describing
a wide range of surfaces, and which already underlies most BRDF models.

Expressing a surface explicitly as a layered system with physical parameters also al-
lows it to be treated consistently across scales. For close views where a given structure
can’t be treated as a thin surface, the structure can be rendered directly, and with an
accurate reduction to a surface model, it can be freely switched to a surface for farther
views.

However, it is important to realize that we do not have accurate computational mod-
els for scattering from any systems more complex than a single layer or a single inter-
face. Even the simplest nontrivial system, of a single medium bounded by a smooth
interface, is only roughly approximated by standard BRDF models. Many other mod-
els have been proposed for layered or coated structures of one kind or another, but all
are limited to particular special cases or lacking in terms of accuracy. Of course, it is
possible to instantiate any kind of layered structure explicitly in a rendering system,
relying on a general purpose rendering algorithm to resolve interactions between the
layers; however, this approach is usually impractical due to the difficulty that a such
methods face in reliably finding light paths through a material stack.

In this paper we provide a complete solution for accurately simulating scattering
from layered surfaces. Our system handles any isotropic surface that can be expressed
in terms of layers and interfaces; in a sense we provide a computational language for
describing surface structure. The building blocks of our system—the grammar of the
language, so to speak—are basis expansions, the adding equations, and the adding/-
doubling method: computational tools from radiative transport that have seen occa-
sional use before in graphics. In this paper we develop the vocabulary needed to
express the kinds of surfaces that are useful for graphics: we show how to use micro-
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facet models for transmission and reflection, measured BRDFs, and media with the
Henyey-Greenstein and von Mises-Fisher phase functions in this framework. We also
provide efficient algorithms for evaluation and exact importance sampling at render
time.

Our system is expressive but also practical. A precomputation step expands all the
BSDFs and phase functions in a Fourier basis, which causes the plane-parallel multiple
scattering problem to decompose into separate problems per azimuthal frequency. The
multiple scattering problem is solved using adding/doubling for scattering layers and
the adding equations for the sequence of layers and interfaces. Finally the resulting
BSDF is stored to be used for rendering.

Our implementation scales efficiently to high orders, handling very rough to nearly
mirrorlike interfaces, and isotropic to strongly peaked phase functions, while main-
taining accuracy and avoiding ringing or other artifacts. The precomputed BSDF is
stored in a sparse format, requiring a few kilobytes to a few megabytes, depending on
the expansion order. Precomputation time is on the order of seconds, and render-time
performance is close to that of dedicated implementations of BSDF models—in fact,
the quality of our importance sampling technique means that precomputed represen-
tations of standard BSDF models sometimes outperform the corresponding analytic
models in equal-time comparisons.

Achieving this level of accuracy and performance requires considerable care in de-
signing representations, algorithms, and numerical techniques used in both precom-
putation and rendering. In this paper we discuss the design of the system and the
most important issues in making it work. We will release a complete open-source
implementation as part of the Mitsuba renderer [Jakob 2010].

This paper has the following contributions:

• We develop efficient and robust numerical methods for projecting a range of
transport-theoretic reflectance models into a basis that supports arbitrary com-
position.

• We recognize the inherently sparse nature of the problem to be solved and de-
velop a system that is able to exploit this property to scale to a wide range of
layered structures including very challenging input. To our knowledge it consti-
tutes the first practical solution for modeling the interactions of multiple rough
boundaries without simplifying assumptions.

• We show how to efficiently evaluate and importance sample the resulting tab-
ulations and propose an extrapolation method that accelerates precomputation
and rendering times further when some approximations are acceptable.

• We propose a multiple scattering term for microfacet BRDFs that avoids an en-
ergy loss issue of these models.
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• We develop heuristics that automatically select a basis of sufficient resolution to
guarantee bounds on representation error.

2 Prior work

Light transport in graphics is typically done in the framework of linear transport the-
ory (wave and quantum effects are neglected except, possibly, in deriving scattering
phase functions). Predicting reflectance from layered materials at this level of accu-
racy is the subject of the albedo problem [van de Hulst 1980] in one-dimensional linear
transport theory—the problem of determining the emergent distributions from plane-
parallel media subject to only external sources.

Exact closed-form albedo problem solutions are rare. In graphics, Blinn [1982] used
single-scattering solutions, which were extended by Hanrahan and Krueger [1993] to
include index of refraction changes, multiple layers, and a Monte Carlo method for
computing multiple scattering. These were some of the first graphics models to work
in terms of layered media, but single-scattering solutions have limited applicability
and the more general Monte Carlo method is unfortunately slow to converge—though
the convergence rate can be improved in some cases by the use of scattering equations
in integral form [Pharr and Hanrahan 2000]. Our work pursues the same goal with a
focus on efficiency, accuracy, and generality.

Exact solutions that include all orders of scattering are limited to infinitely-thick ma-
terials with isotropic or linearly-anisotropic scattering and smooth, indexed-matched
boundaries [Chandrasekhar 1960]. The semi-infinite solution for isotropic scatter-
ing involving the H-function was used by Premože [2002] to render dusty surfaces.
Solutions for finite layers [Das 2010] or for semi-infinite media with Fresnel reflec-
tion [Williams 2006] require solving integral equations by iteration or other methods.

The albedo problem for a single layer with general reflecting boundary conditions
has in some sense been solved exactly using either the Wiener-Hopf method [Williams
1973] or the singular eigenfunction method of Case [McCormick and Kuscer 1973]. The
transport operator in plane geometry has a simple spectral expansion: the angular
distribution everywhere in the layer has a unique representation as a superposition
of orthogonal eigenfunctions (a separation of variables yields exponentials in optical
depth multiplied by simple functions of angle Lν(z, µ) = e−z/νaν/(2(ν− µ))). There
are a finite number of discrete eigenfunctions corresponding to rigorous diffusion, the
number of which increase as the phase function becomes more peaked. However,
the spectrum has a continuous component ν ∈ [0, 1] and the “eigenfunctions” for
this portion are singular (they include a delta-function in angle µ). Solving for the
expansion coefficients for any particular problem and using the resulting expansion
numerically is challenging in most cases [Kaper et al. 1970]. However, with carefully
selected convergence acceleration schemes, these exact forms of solution can yield very
accurate numerical benchmark values [Ganapol 2008].
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A wide variety of approximate deterministic methods are available for computing
BSDFs for general layered materials, including discrete ordinates (SN) [Thomas and
Stamnes 2002], the transfer matrix method [Aronson 1971], the FN method [Siew-
ert 1978], adding-doubling [van de Hulst 1980], analytical discrete ordinates [Siewert
2000], and the singular eigenfunction method [McCormick and Kuscer 1973]. These
methods all have different accuracy/cost tradeoffs and stability issues [Chalhoub et al.
2003] and in principle any of them could be used to compute transport operators
within our general framework.

In graphics, our approach is most similar to that of Stam [2001]. In his paper, he
proposes the first BSDF model for rough dielectrics and uses it via the SN method to
compute a BSDF that models skin as an anisotropic scattering layer with rough dielec-
tric boundaries. Our work continues in the same vein as Stam’s: we also model sur-
faces in terms of layers and boundaries and we work in terms of a similar directional
basis. However, our system goes considerably beyond Stam’s earlier work, providing
a complete, modular solution that can handle any layered structure accurately and
efficiently and maintains good performance for high order expansions. This requires
fundamentally different ways of computing basis expansions, representing them com-
pactly, and solving the resulting equations robustly in the face of challenging input.
Also, to the best of our knowledge, we are the first to consider importance sampling,
von Mises–Fisher scattering, and an approximate multiple surface-scattering correc-
tion for rough interfaces using this approach.

Several specialized BRDF models have been proposed that approximate specific
types of layered structures using coupled diffuse and specular lobes [Wolff et al.
1998; Shirley et al. 1997; Kelemen and Szirmay-Kalos 2001], including asperity scat-
tering [Koenderink and Pont 2003], and modified microfacet distributions for rough
slabs [Dai et al. 2009]. Our framework subsumes these models and is generally also
more accurate as a consequence of correctly accounting for all interactions between
layers. A variety of other approximate analytic methods have been proposed for
rendering layered materials, such as Kubelka-Munk [Dorsey and Hanrahan 1996],
diffusion-based methods [Donner and Jensen 2005], or specialized approximations for
leaves [Wang et al. 2005]. A flexible family of layered BRDFs was proposed by Weidlich
and Wilkie [2007]. Their approach is simple and efficient but doesn’t achieve many
desirable properties that our model does, including reciprocity, energy conservation,
and accurate accounting for multiple scattering within and among layers.

Neglecting polarization effects, we consider only scalar radiative transfer in this
paper. Extension of our methods to handle vector radiative transfer is straightfor-
ward [Garcia 2012]. There is also the possibility of inhomogeneous scattering layers—
layers where the single-scattering albedo is a function of depth, which are solvable us-
ing known methods [Yanovitskij 1997a]. Flourescence [Wilkie et al. 2006], anomalous
dispersion [Weidlich and Wilkie 2009], and thin film interference effects [Hirayama
et al. 2001; Icart and Arquès 2000; Ershov et al. 2001] have been considered in re-
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flectance models and could be included as components in our framework but our
foremost focus here is on a comprehensive geometrical optics framework.

3 Background

This section describes the computational framework of our system, which builds upon
a number of prior works in transport theory that we review here. We will work
under a plane-parallel, or 1D transport, assumption, meaning that illumination and
surface properties are assumed to be invariant across the surface, so that all functions
depending on position can be modeled as depending on depth alone. Practically
speaking, this means that the we are deriving a BSDF rather than a BSSRDF model.

The system works in terms of radiance functions expanded in a directional basis, so
that the BSDFs of layers and interfaces are represented by matrices known as scattering
matrices.

We begin by introducing the adding equations, which are used to compute the
scattering matrix of a composite layer given the scattering matrices of its constituent
layers. Next, we describe the directional basis that underlies these matrix represen-
tations, and we show how to use it to discretize the radiative transfer equation and
boundary conditions. Finally, we describe how to solve the radiative transfer equation
using the adding-doubling method, which is named in this way due to its reliance on
the adding equations to repeatedly double a layer until it has the necessary size.

3.1 Adding equations

Some of the earliest theoretical work on layered materials was conducted by Stokes
[1860], who analyzed the combined reflection and transmission properties of a stack
of glass plates. It will be instructive to review the mathematics underlying the simplest
case of his analysis involving only a single plate.

The top interface of a glass plate illuminated by a ray of unit power reflects a portion
R of the light and transmits another portion T into the material, where it goes on to
encounter the bottom interface, reflecting back and forth with a fraction escaping at
each event:

...

In this case, R and T are given by the Fresnel equations. Due to reciprocity, the
reflection and transmission coefficients at the bottom interface are also equal to R and
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T. By summing over all light paths, it is then possible to compute the total reflectance
and transmittance of the plate as a whole. The resulting geometric series have a very
simple explicit form:

Rtot = R + TRT + . . . = R + T2
∞

∑
i=0

R2i+1 = R +
RT2

1− R2 ,

Ttot = TT + TR2T + . . . = T2
∞

∑
i=0

R2i =
T2

1− R2 . (1)

These equations show us how to compute the scalar reflectance and transmittance of
the two interfaces together from the reflectance and transmittance of the two separate
interfaces.

With this example in mind, let us move to a more general case: Rather than a smooth
interface illuminated from a single direction, consider a slab of arbitrary composition
illuminated by a radiance distribution expressed in some basis. (We leave the underly-
ing discretization unspecified for now.) The linearity of light transport then allows us
to write the scattered illumination projected into the same basis using a matrix-vector
product:

Φ↑(t) = RtΦ↓(t) + TbtΦ↑(b),

Φ↓(b) = RbΦ↑(b) + TtbΦ↓(t), (2)

where Φ↑(τ) and Φ↓(τ) are vectors describing the upwards and downwards radiance
at depth τ with respect to the basis. The depths t and b correspond to the top and
bottom surface, and the square matrices Rt, Rb and Ttb, Tbt describe the reflection and
transmission for light arriving at the top and bottom, respectively:

Multiplication by 

The analogous question to the glass plate example is: given the scattering matrices of
two distinct layers (i.e. Rt

1, Rt
2, Ttb

1 , Ttb
2 , etc.), what are the scattering matrices of the two

layers stacked together?
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Term Meaning

Φ(τ, µ, φ) Continuous radiance function
µ Cosine of the elevation angle
φ Azimuth angle
τ Optical depth within a layer
n Number of discretizations in µ

m Number of Fourier basis functions
δij Kronecker delta
l Index used for Fourier expansions
α Beckmann roughness of a layer
σt Extinction coefficient of a layer
p Phase function of a layer
f BSDF of a boundary between layers
Φl(µ), Φl Fourier expansion of φ and µ-discretization (Rn)
pl(µ, µ′), Pl Fourier expansion of p and µ-discretization (Rn×n)
fl(µ, µ′), Fl Fourier expansion of f and µ-discretization (Rn×n)
W Integration weights of the quadrature scheme (Rn×n)

Table 1: Notation used in this paper

The solution is similar, but with the R and T matrices replacing the scalars R and T. As
in the scalar case we sum over all possible sequences of reflections and transmissions,
replacing geometric series by their closed-form solutions. Attention must be paid to
the ordering of multiplications, since the matrices generally do not commute. For a
rigorous discussion of this derivation, we refer the reader to [Grant and Hunt 1969].
The final result of this computation, analogous to (1), are the so-called adding equations:

R̃t = Rt
1 + Tbt

1 (I− Rt
2Rb

1)
−1Rt

2Ttb
1

R̃b = Rb
2 + Ttb

2 (I− Rb
1Rt

2)
−1Rb

1Tbt
2

T̃tb = Ttb
2 (I− Rb

1Rt
2)
−1Ttb

1

T̃bt = Tbt
1 (I− Rt

2Rb
1)
−1Tbt

2 (3)

The same approach works equally well to compute the effect of a rough interface at
the top or bottom of a layer or at the boundary between two layers.

The adding equations are a key ingredient of our system, since they permit accurate
computation of the scattering properties of stacks of layers. We compute the scatter-
ing matrix of a layered material by repeatedly using Equation (3) to combine layers
and boundaries based on a structural description of the material. This requires know-
ing the matrices of the interior of layers, which we discuss in Section 3.4 and of the
boundaries, which is covered in Section 3.4.1.
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Figure 1: Our framework combines interface and layer operators to form a combined
material BSDF.

3.2 Problem statement

Before describing the basis we use to represent scattering functions and the methods
used to compute the matrices used in the adding equations, we first formalize the
global plane-parallel radiative transfer problem to be solved. The geometric situation
is illustrated in Figure 1: we have a sequence of layers, each containing a homogeneous
medium, separated by interfaces that are described by BSDFs. Because of the 1D trans-
port assumption, the radiance depends only on direction and depth. For simplicity
we define the dimensionless optical depth at z, measured from the top, as

τ(z) :=
∫ z

0
σt(z)dz (dimensionless)

where σt(z) denotes the extinction coefficient at depth z inside the layered material
(having units of 1/distance).

Radiance is then denoted as Φ(τ, µ, φ), where µ = cos θ ∈ [−1, 1] is the cosine of
the elevation angle, and φ ∈ [0, 2π] is the azimuth. Using this parameterization, the
radiative transport equation inside a layer takes on the following form [Chandrasekhar
1960]:

µ
dΦ(τ, µ, φ)

dτ
= −Φ(τ, µ, φ) +

∫ 2π

0

∫ 1

−1
Φ(τ, µ′, φ′)p(µ′, φ′, µ, φ)dµ′dφ′, (4)

where p(µ, φ, µ′, φ′) is the phase function of the layer, which is a function of the angle
between the directions (µ, φ) and (µ′, φ′). Note that p implicitly accounts for the
albedo of scattering interactions and will generally integrate to a value less than one.
More formally, ∫ 2π

0

∫ 1

−1
p(µ′, φ′, µ, φ)dµ′dφ′ ≤ 1 for all µ, φ.

The boundary conditions of this equation are the BSDFs at the interfaces between
layers. To describe interactions of light with these layer boundaries, we must dis-
tinguish between incident and exitant radiance, since a boundary at some depth τ0
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generally introduces a discontinuity in Φ:

Φi(τ0, µ, φ) =

{
Φ(τ−0 , µ, φ), µ ≥ 0

Φ(τ+
0 , µ, φ), µ < 0

Φo(τ0, µ, φ) =

{
Φ(τ+

0 , µ, φ), µ ≥ 0

Φ(τ−0 , µ, φ), µ < 0

With these definitions, the surface illumination integral at a layer boundary (account-
ing for both reflection and transmission) takes the form:

Φo(τ0, µ, φ) =
∫ 2π

0

∫ 1

−1
Φi(τ0, µ′, φ′) f (µ′, φ′, µ, φ) |µ|dµ′dφ′, (5)

where f is the BSDF of the boundary.

3.3 Directional basis

Before we can proceed to use the adding equations to solve actual problems, we must
decide on a basis that is used to represent the space of radiance functions. To discretize
Φ in direction, we rely on a basis originally proposed by Chandrasekhar [1960]. It rep-
resents the light distribution at depth τ using a Fourier series in the azimuth angle
φ and point samples in the elevation angle cosines µ. In this section, we review this
representation and motivate its choice. After projection onto this space, the radia-
tive transfer equation and surface illumination equations also take on different forms,
which we derive for completeness.

We restrict our analysis to surfaces that are isotropic, in the sense of invariance with
rotation around the normal (a), and add the further reasonable assumption of bilateral
symmetry (b):

(a) Isotropy (b) Bilateral symmetry

Together these imply that all relevant quantities only depend on µ, µ′, and |φ− φ′|.
There are two types of scattering functions that are used as inputs to our system:

phase functions characterizing the optical behavior of scattering layers, as well as
BSDFs characterizing interactions with layer boundaries. We represent both with even
real Fourier expansions with respect to φ− φ′ and point sample them in the µ argu-
ment.
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We now derive this representation step by step, starting with the azimuthal depen-
dence. For a phase function p(µ, φ, µ′, φ′), we set

p(µ, φ, µ′, φ′) =
∞

∑
l=0

pl(µ, µ′) cos(l(φ− φ′)) (6)

where pl(µ, µ′) denotes the l-th Fourier coefficient of p as a function of azimuth for
fixed µ and µ′. In practice, the series terms greatly decrease in magnitude as l → ∞ so
that (6) can be truncated after some maximum index m where the terms have become
sufficiently small. This is dictated by the lowest frequency integrand—for a e.g. diffuse
layer only the l = 0 term is necessary regardless of the frequency of the illumination.

This is the key benefit of the Fourier expansion—the problem of computing radiance
as a function of µ, µ′, and φ− φ′ has been reduced to a series of separate problems each
involving only µ and µ′. In practice, the coefficients pl and fl decay rapidly as l → ∞
so that only problems up to some maximum index m need to be solved. The value of
m dictated by the highest azimuthal frequency that could be created in a reflection or
transmission of sharp illumination. For a diffuse layer, the reflection is always constant
in azimuth, and hence only the l = 0 term is necessary.

Fourier series are often treated with reluctance when dealing with functions that
may contain narrow peaks, but they offer important benefits in this case: the sepa-
ration into independent problems for each azimuthal mode significantly reduces the
difficulty of the problem that must be solved. This is a consequence of the convolution
theorem, which is unique to the Fourier family of basis functions. By taking advan-
tage of inherent symmetries in the underlying scattering functions, their dimension is
furthermore reduced from 4D to 3D. As we will see later, in conjunction with sparsity,
these properties will allow us to go to high order expansions to represent even mirror-
like reflectors accurately. Finally, projecting existing material models onto this space
involves a sequence of one-dimensional integrals, which can be evaluated cheaply us-
ing recurrences (details in Section 5). Our system could in principle also be realized
using other types of basis functions, but this would involve complications due to the
loss of at least one of the above properties.

Projection of the radiative transfer equation

Having projected the phase function onto a directional representation, we can now
apply the same modification to the rest of the radiative transfer equation. Note that,
for an even real 2π-periodic function g(φ), the l-th Fourier coefficient can be extracted
by means of the following integral (where δij refers to the Kronecker delta)

Fl [g] :=
2− δ0l

π

∫ π

0
g(φ) cos(lφ)dφ, (7)

such that

g(φ) =
∞

∑
l=0
Fl [g] cos(lφ).
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Since an isotropic material is completely defined by its response to incident illumina-
tion that is even with respect to azimuth φ, we can assume without loss of generality
that the radiance function Φ is also given by an even real Fourier series such that

Φ(τ, µ, φ) =
∞

∑
l=0

Φl(τ, µ) cos lφ.

Note that it is fine to expand the illumination in a basis that is too smooth to represent
it; in this setting, the BSDF frequency content is the decisive factor.

Recall the definition of the radiative transfer equation (4):

µ
dΦ(τ, µ, φ)

dτ
= −Φ(τ, µ, φ) +

∫ 2π

0

∫ 1

−1
Φ(τ, µ′, φ′) p(µ′, φ′, µ, φ)dµ′dφ′,

The projection of the first two terms is simply

Fl

[
µ

dΦ(τ, µ, φ)

dτ

]
= µ

dΦl(τ, µ)

dτ
(8)

Fl [−Φ(τ, µ, φ)] = −Φl(τ, µ) (9)

For the last term, we first insert the definitions of Φ and p in terms of Fourier series
and integrate over φ′, which yields∫ 2π

0

∫ 1

−1
Φ(τ, µ′, φ′) p(µ′, φ′, µ, φ)dµ′dφ′

=
∞

∑
l1,l2=0

∫ 1

−1
Φl1(τ, µ′) pl2(µ

′, µ)
∫ 2π

0
cos(l1φ′) cos(l2(φ′ − φ))dφ′dµ′

=
∞

∑
l1,l2=0

∫ 1

−1
Φl1(τ, µ′) pl2(µ

′, µ) (πδl1l2(cos(l1φ) + δ0l1))dµ′

=
∞

∑
k=0

∫ 1

−1
Φk(τ, µ′) pk(µ

′, µ) (π(cos(kφ) + δ0k))dµ′

The Fourier projection of this expression then results in

Fl

[
∞

∑
k=0

∫ 1

−1
Φk(τ, µ′) pk(µ

′, µ) (π(cos kφ + δ0k))dµ′
]

=
2− δ0l

π

∫ π

0
cos(lφ)

[
∞

∑
k=0

∫ 1

−1
Φk(τ, µ′) pk(µ

′, µ) (π(cos kφ + δ0k))dµ′
]

dφ

= π(1 + δ0l)
∫ 1

−1
Φl(τ, µ′) pl(µ

′, µ)dµ′ (10)

After putting the terms (8), (9), and (10) back together, we obtain an infinite sequence
of projected radiance transfer equations.

µ
dΦl(τ, µ)

dτ
= −Φl(τ, µ) + π(1 + δ0l)

∫ 1

−1
Φl(τ, µ′) pl(µ

′, µ)dµ′ (l = 0, . . . , ∞) (11)
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Note that the l−th equation only involves the l−th Fourier coefficients of the radiance
field and phase function, since the azimuth and elevation dependence of the problem
fully decouples in frequency space. The main consequence of this separation is that
our system has to solve a number of independent subproblems over elevation angles
alone. The number of problems that must be solved is related to the highest azimuthal
frequency content present in p.

Projection of the surface illumination equation

To describe interactions of light with layer boundaries, we project the surface illumi-
nation equation in much the same way. For this, note that a boundary at some depth
τ0 generally introduces a discontinuity in Φ so that we must distinguish between the
radiance just above and below it—or, more conveniently, the incident and exitant ra-
diance, which are defined as

Φi(τ0, µ, φ) =

{
Φ(τ−0 , µ, φ), µ ≥ 0

Φ(τ+
0 , µ, φ), µ < 0

and Φo(τ0, µ, φ) =

{
Φ(τ+

0 , µ, φ), µ ≥ 0

Φ(τ−0 , µ, φ), µ < 0

With these definitions, the integral takes on the following form:

Φo(τ0, µ, φ) =
∫ 2π

0

∫ 1

−1
Φi(τ0, µ′, φ′) f (µ′, φ′, µ, φ) |µ′|dµ′dφ′.

where f is the BSDF of the boundary. Analogously to the medium case, we can now
make use the isotropy and evenness of the BSDF to replace f , as well as the incident
and exitant radiance functions, Φi and Φo, by even real Fourier expansions such that

f (µ, φ, µ′, φ′) =
∞

∑
l=0

fl(µ, µ′) cos(l(φ− φ′)),

Φi(τ0, µ, φ) =
∞

∑
l=0

Φi
l(µ) cos(lφ),

Φo(τ0, µ, φ) =
∞

∑
l=0

Φo
l (µ) cos(lφ).

Using a computation analogous to that in (10), we obtain an infinite sequence of pro-
jected surface illumination equations, one for each Fourier mode.

Φo
l (µ) = π(1 + δ0l)

∫ 1

−1
Φi

l(µ
′) fl(µ

′, µ) |µ′|dµ′ (l = 0, . . . , ∞) (12)

As before, this will later result in a number of independent subproblems, the size of
which is related to the highest azimuthal frequency content present in f .
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3.3.1 Discretization over elevation angles

We now turn to the µ dependence: here, a quadrature scheme with integration nodes
{µ1, . . . , µn} ⊂ [−1, 1] \ {0} and weights {w1, . . . , wn} is used to discretize the integra-
tion variable µ′. This turns the Fourier-space surface illumination integral (12) into a
sum:

Φo
l (µ) = π(1 + δ0l)

n

∑
i=1

wi Φi
l(µi) fl(µi, µ) |µi| (13)

To write out discretized forms of the radiative transfer and surface illumination
equations, it will be convenient to introduce the following notation:

Φl(τ) := (Φl(τ, µk))k ∈ Rn Pl := (pl(µi, µj))ij ∈ Rn×n

Φi
l(τ) := (Φi

l(τ, µk))k ∈ Rn Fl := ( fl(µi, µj))ij ∈ Rn×n

Φo
l (τ) := (Φo

l (τ, µk))k ∈ Rn W := (δijwi)ij ∈ Rn×n

M := (δijµi)ij ∈ Rn×n M := (δij|µi|)ij ∈ Rn×n

The discrete analogue of Equation (11) is then given by

µ
dΦl(τ, µi)

dτ
= −Φl(τ, µi) + π(1 + δ0l)

∫ 1

−1
pl(µ

′, µi)Φl(τ, µ′)dµ′

≈ −Φl(τ, µi) + π(1 + δ0l)
n

∑
i=1

pl(µj, µi)wi Φl(τ, µi) (l = 0 . . . , ∞)

or, using matrix and vector notation,

M
dΦl(τ)

dτ
= −Φl(τ) + π(1 + δ0l)PlW Φl(τ). (l = 0 . . . , ∞) (14)

Similarly, the surface illumination equation turns into

Φo
l (τ0) = π(1 + δ0l)F′l , WMΦi

l(τ0). (l = 0 . . . , ∞) (15)

Complexity-wise, it is worth noting that with this representation, a radiance distribu-
tion has size m× n, a scattering function has size m× n× n, and the cost of transform-
ing one by the other is m× n2 (i.e. not (mn)2).

A wide range of quadrature schemes are applicable in this setting; in our imple-
mentation, we use Gauss-Lobatto points [Chandrasekhar 1960], which include the
endpoints ±1 and maximize the order of exactly integrable polynomials subject to this
constraint.

3.4 Solving for the scattering matrices

Recall that in our system, we plan to use the adding equations (Section 3.1), whose in-
put are scattering matrices Rt, Rb, Ttb, Tbt describing the response of a layer to incident
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illumination. An important consequence of our transition to a frequency representa-
tion in azimuth is that each layer now in fact has a sequence of these matrices labeled
Rt

l , Rb
l , Ttb

l , Tbt
l (l = 0, . . . , m), which describe its response to illumination with differ-

ent azimuthal Fourier modes. In this section, we show how to find these scattering
matrices, starting with the simpler case of interaction with a boundary.

3.4.1 Scattering matrices of layer boundaries

For layer boundaries, it is straightforward to extract the scattering matrices directly
from the Fourier-projected BSDF Fl based on Equation (15). For this, let us partition
the matrix Fl into the four sub-blocks Ft

l , Fb
l , Ftb

l and Fbt
l corresponding to the different

modes of reflection and transmission at the top and bottom surfaces. Then we have Ttb
l Rb

l

Rt
l Tbt

l

 = π(1 + δ0l)

 Ftb
l Fb

l

Ft
l Fbt

l

WM. (16)

In Section 5 we look at specific scattering models to find Fl .
Note that this matrix layout is related to the ordering and interpretation of the

discrete elevation angle cosines µi. In our implementation, they are arranged in in-
creasing order from −1 to +1, where a positive value indicates illumination traveling
downwards into the direction of increasing optical depth τ.

3.4.2 The discrete ordinates method

Several different techniques exist that can be used to solve for the scattering matrices
of medium layers. In our system, we implemented the discrete ordinates method and
adding-doubling techniques; we review both here for completeness. Rearranging the
terms of the projected and discretized version of the radiative transfer equation (14)
yields

M
dΦl(τ)

dτ
= −Φl(τ) + π(1 + δ0l)PlWΦl(τ)

⇔ dΦl(τ)

dτ
= M−1 (−I + π(1 + δ0l)PlW)︸ ︷︷ ︸

=: Al

Φl(τ)

⇔ dΦl(τ)

dτ
= AlΦl(τ)

This is a system of first-order ordinary differential equations, which can be solved with
standard numerical techniques. Using an non-symmetric eigenvalue decomposition
Al = VΛV−1, its solutions take on the form

Φl(τ) = VeΛτc
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where c captures the boundary conditions. The R and T matrices are then found by
solving for c corresponding to a unit amount of radiance arriving from the different
elevation angle cosines µ1, . . . , µn, and then evaluating Φl(t) and Φl(b) to find the
scattered illumination at the top and bottom. This can all be accomplished in one big
matrix operation:  Ttb

l Rb
l

Rt
l Tbt

l

 =

 V↓eΛb

V↑eΛt


 V↓eΛt

V↑eΛb


−1

(17)

where V↓ and V↓ are the n/2× n sub-blocks of V corresponding to the upwards and
downwards radiance. A total of m separate n × n eigendecompositions and matrix
inversions must be performed.

A downside of the discrete ordinates method is that the linear system in (17) can
be badly conditioned when dealing with layers that have a very large optical depth.
Stamnes and Conklin [1984] propose several workarounds, but these involve addi-
tional complications. In our experiments, we ran into occasional numerical robustness
issues with this method and thus generally prefer the adding-doubling approach. One
exception are layers with parameters continuously varying in depth, described in the
following section, which are easier to handle with the semi-analytic approach of dis-
crete ordinates.

Heterogeneity: By a straightforward extension of the discrete ordinates method, it
is possible to handle layers that are heterogeneous in depth. For instance, suppose
that

dΦl(τ)

dτ
= Al(τ)Φl(τ)

where Al(τ) : R→ Rn×n is polynomial in τ and specifies the medium properties as a
function of depth. Then

Φl(τ) = e
∫

Al(τ)dτc

where the exponent now contains the antiderivative of Al(τ). Evaluation of this matrix
exponential is more costly, since we cannot simply precompute V and Λ. We must
thus perform the eigenvalue decomposition twice, once for τ = t and once for τ = b.
For the simple case of a layer whose properties interpolate linearly between reference
values At at the top and Ab at the bottom, we have

Al(τ) =
1

b− t

(
At

l(b− τ) + Ab
l (τ − t)

)
and ∫

Al(τ)dτ =
τ

2 (b− t)

(
At

l(2b− τ) + Ab
l (τ − 2t)

)
+ C
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3.4.3 The adding-doubling method

Several different techniques exist that can be used to solve for the scattering matrices
of medium layers. In our system, we implemented the discrete ordinates method and
adding-doubling techniques, and found the adding-doubling method to be generally
preferable due to its robustness. Adding-doubling builds on the property that, as a
function of optical depth, multiple scattering is a higher-order effect. For sufficiently
thin layers, the portion of multiply scattered illumination is so minuscule that it can
be neglected entirely. On the other hand, scattering matrices of layers with at most a
single scattering event are easily obtained, since they admit an analytic solution. The
idea of adding-doubling then is as follows: after computing the scattering matrices of
a very thin layer (thin enough that multiple scattering can be neglected), the results
of Section 3 are used to find the scattering matrices of a layer twice the thickness, by
joining two identical layers. The layer is repeatedly doubled until it has the desired
thickness.

Since τ increases exponentially, even very thick layers can be processed rapidly.
In our implementation, we start with a depth of dτ = 2−15. To obtain layers with

thicknesses other than powers of two times dτ, we first represent the number b(b−
t)/dτc in base 2 (where b − t is the desired thickness). A simple loop then iterates
through the digits in increasing magnitude and adds a layer of thickness 2idτ on top
of the partially generated layer whenever the i-th bit is 1.

Returning again to the projected and discretized radiative transfer equation (14),
note that it describes how one “unit” of optical depth of the ambient medium locally
influences the radiance function:

dΦl(τ)

dτ
= M−1 (−I + π(1 + δ0l)PlW)Φl(τ).

To obtain the scattering matrices of a thin layer with optical depth dτ, we can then
simply use the above differential equation as the linear term of a Taylor expansion.
With some liberty in notation, this can be interpreted as

Φafter
l = Φbefore

l + dτ
[
M−1 (−I + π(1 + δ0l)PlW)

]
Φbefore

l

More formally, let us partition the matrix Pl into the four sub-blocks Pt, Pb, Ptb and
Pbt corresponding to the different modes of reflection and transmission at the top and
bottom surfaces. Then we have Ttb

l Rb
l

Rt
l Tbt

l

 = I + dτ M−1

−I + π(1 + δ0l)

 Ptb
l Pb

l

Pt
l Pbt

l

W
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Algorithm 1 Solve for the scattering matrices of a layered material

1 function Solve-Scattering-Matrices(structure, n, m)
2 for l← 0 to m do . For each Fourier mode
3 R̂t

l , R̂b
l ← 0, T̂tb

l , T̂bt
l ← I . Initialize as clear layer

4 for L in structure do . Iterate over structure
5 if L is a boundary layer then
6 Compute Fl . Section 5.2
7 Extract Rt

l ,R
b
l ,Ttb

l , Tbt
l . Section 3.4.1

8 else if L is a medium layer then
9 Compute Pl . Section 5.1

10 Solve for Rt
l , Rb

l , Ttb
l , Tbt

l . Section 3.4

11 Use the adding equations to merge Rt
l , Rb

l , Ttb
l , Tbt

l into R̂t
l , R̂b

l , T̂tb
l , T̂bt

l . Section 3.1

12 return R̂t
l , R̂b

l , T̂tb
l , T̂bt

l (l = 0, . . . , m)

which tells us how to find the scattering matrix of the initial layer of depth dτ, which
is required to start up the adding and doubling process discussed above, from the
phase function matrices P.

So far, we have explained the basic mathematical framework of our system, which
consists of a directional basis and the requisite methods to turn the matrix represen-
tations of phase functions and BSDFs in that basis into a scattering matrix for any
layered material. The remainder of the paper is structured as follows: Section 4 gives
an overview of the core algorithm and ties together later sections. Section 5 shows
how to find the matrix representations Pl and Fl of relevant phase functions and BSDF
models that we required in Sections 3.4.1-3.4.3. Section 5.4 fixes an energy loss prob-
lem in traditional microfacet models that causes difficulties in layered BRDFs, and
Section 6 explains how to efficiently evaluate and importance sample our model in
a renderer. Finally, Section 7 demonstrates applications of our model and Section 8
concludes the paper.

4 Algorithm overview

Algorithm 1 implements the central component that computes the Fourier modes of
the reflection and transmission matrices for each layer, which are subsequently com-
bined using the adding equations. Inputs to this algorithm are a structural model
of the material consisting of the phase functions and optical depth of layers, the BS-
DFs of boundaries, as well as the targeted discretization n in µ and µ′ and the num-
ber of Fourier expansion coefficients m for the azimuth difference angle φ− φ′. The
discretization is related to the accuracy of the model, and in Section 5.7 we present
conservative bounds on these parameters.

This entire computation is an offline process in the sense that it is executed before
rendering starts. The output of this process is a set of n× n matrices Rt

l , Rb
l , Ttb

l , Tbt
l (l =

0, . . . , m) that characterize the material’s response to illumination. To use this repre-
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sentation in modern rendering systems, we augment it with auxiliary tables used for
importance sampling, which is covered in Section 6.

Note that the high level structure of Algorithm 1 itself is not new, being a combi-
nation of standard techniques in 1D linear transport theory. The key contributions of
this paper follow in the subsequent sections and focus on making each of the steps
sufficiently general and scalable to tackle relevant problems in rendering.

Sparsity: At this point, we make an observation with important implications regard-
ing the scalability of our approach:

1. To represent very peaked reflectance functions, we require many Fourier coef-
ficients, but this is only the case for a small set of elevation pairs (µ, µ′). For
instance, in the case of specular reflection, the expansions have high frequencies
only when µ ≈ µ′ and low frequencies or even zeroes elsewhere.

2. Smoother reflectance functions are nonzero over many pairs (µ, µ′), but they are
low frequency in the azimuth difference angle φ − φ′, and thus their Fourier
series decay rapidly.

Scattering matrices of high frequency materials expressed in Chandrasekhar’s [1960]
directional basis are sparse; our system therefore relies on sparse linear algebra tech-
niques, allowing us to go to very high orders to represent even mirror-like materials
without ringing or other artifacts (Figure 2), while generating BSDF representations
that require comparably little storage. We have not found any references of this prop-
erty in the literature and believe that we are the first to exploit it.

We now turn to the computation of Pl and Fl on lines 6 and 9.

5 Scattering models

Our system supports several kinds of scattering functions: for layer boundaries of di-
electrics and conductors, we use the microfacet model proposed by Walter et al. [2007],
and medium layers are modeled using linear combinations of the Henyey-Greenstein
[1941] phase function and the von Mises-Fisher lobe proposed by Gkioulekas et al. [2013].
The main difficulty in deriving the matrices Pl and Fl lies in finding Fourier expansions

pl(µ, µ′) = Fl
[
p(µ, µ′, ·)

]
=

2− δ0l

π

∫ π

0
p(µ, µ′, φ) cos(lφ)dφ,

for phase functions p and analogous for BSDFs f . The dependence on the elevations µ

and µ′ is simple as it is handled by discretization. We begin by looking at expansions
of the phase function.
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Figure 2: Frequency-based representations are usually impractical when trying to rep-
resent specular materials like this chrome object with Beckmann roughness α = 0.01.
We projected this material into a basis with m = 9763 Fourier series terms and n = 503
discretizations in µi and µo, which would normally produce about 28 GiB of dense co-
efficient data. By exploiting sparsity and our efficient Fourier projections, we require
only 51.3 MiB of coefficients (0.19%) computed in 9.6 seconds; rendering took 1.4 min-
utes.

5.1 Phase functions

5.1.1 Henyey-Greenstein phase function

The Henyey-Greenstein (HG) phase function is a widely used one-dimensional family
of phase functions with a single parameter g ∈ [−1, 1], which specifies the medium’s
disposition of scattering light into the backward or forward direction. As a function
of γ, the angle between the incident and outgoing directions, it is defined as

p(cos γ) =
1− g2

4π (1 + g2 − 2g cos γ)3/2 . (18)

To find pl , Stam [2001] used the following series, which relies on identities of associ-
ated Legendre functions:

pl(µ, µ′) = (2− δ0l)
∞

∑
k=l

(2k + 1)gk (k− l)!
(k + l)!

Pl
k(µ)Pl

k(µ
′) (19)

We found this series to converge very slowly, particularly for high g. Instead, we use a
technique by Yanovitskij [1997b] to rapidly and accurately compute the coefficients in
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one pass using recurrences. For completeness, a C++ implementation of this method
is given in Listing 1.

We wish to highlight a curious aspect of Yanovitskij’s recurrence because it will
resurface in the next section. His derivation shows that any three successive Fourier
coefficients of the HG model relate as

(2l + 1)pl+2 = (l + 1) ρ pl+1 − (2l + 3)pl , (20)

where ρ ∈ R does not depend on l. This suggests the following simple implemen-
tation: after computing p0 and p1 using an arbitrary numerical or analytic approach,
simply perform one sweep for l = 2, . . . , m, each time using Equation (20) to find the
next pl from pl−1 and pl−2. However, this does not work: after a few iterations, se-
vere cancellation and error amplification in Equation (20) lead to errors that are larger
than the magnitude of the correct answer. Yanovitskij therefore uses the recurrence the
other way, going from pl+2 and pl+1 to pl , where it is numerically well-behaved. This
leads to the somewhat unusual situation of having to start a recurrence at the end of a
desired range rather than its beginning, but the resulting implementation is fast and
numerically stable.

5.1.2 von Mises–Fisher phase function

Due to its inherent simplicity, the HG model is a common default choice when simu-
lating anisotropic volumetric scattering, but in a recent study, Gkioulekas et al. [2013]
analyzed the perceptual significance of different phase function spaces and recom-
mended switching to a larger space containing linear combinations of the HG model
and lobes of the von Mises–Fisher distribution defined as

pvMF(γ) =
κ

4π sinh κ
eκ cos γ (21)

We derive a recurrence for this phase function model which turns out to be useful a
second time to compute Fourier expansions of rough boundaries in Section 5.2. We
begin by noting that cos γ expressed in terms of µ, φ and µ′, φ′ is equal to

cos γ = µµ′ +
√
(1− µ2) (1− µ′2) cos(φ− φ′). (22)

After rewriting Equation (21) in terms of the azimuthal difference angle φd = φ− φ′

via (22) and applying an identity of the hyperbolic sine we have

pvMF(φd) =
κ

2π(1− e−2κ)
eA+B cos φd (23)

where A = κ(µµ′ − 1) and B = κ
√
(1− µ2)(1− µ′2) do not depend on φd and can

thus be considered constants for the purpose of this derivation.
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void hg_fseries(double mu_o, double mu_i, double g, int k, std::vector<double> &coeff){
/* Compute A and B coefficients */
double a = 1 + g*g - 2*g*mu_i*mu_o;
double b = -2 * g * sqrt((1-mu_i*mu_i) * (1-mu_o*mu_o));

/* Find the first two Fourier coefficients using elliptic integrals */
double absB = fabs(b), arg = sqrt(2*absB / (a+absB));
double K = boost::math::ellint_1(arg), E = boost::math::ellint_2(arg);
double sqrtAB = sqrt(a+absB), temp = (1-g*g) * 0.5 / (M_PI * M_PI);
double coeff0 = (E * temp * sqrtAB) / (a*a - b*b);
double coeff1 = b == 0 ? 0 :

(signum(b) * temp / (absB * sqrtAB) * (K - a / (a-absB) * E));

int m = std::max(k, 500); /* Allocate temporary memory for ratios */
double *s = (double *) alloca(sizeof(double) * (m + 1));

/* Compute the ratio of the m and m+1-th term using a 2nd-order Taylor expansion */
double z = a / sqrt(a*a - b*b), delta = z / sqrt(z*z-1);
s[m] = (1 + 1 / (double) (2*m) - (1+3*z) / (double) (8*m*m)) * sqrt((z-1) / (z+1));

do { /* Work backwards using a recurrence */
--m;
s[m] = (2*m+3) / (4*(m+1) * delta - (2*m+1) * s[m+1]);

} while (m != 0);

double C = 0.0;
if (s[0] != 0)

C = coeff1 / (coeff0 * s[0]);

/* Multiply all ratios together to get the desired coefficients */
coeff.push_back(coeff0);

double prod = coeff0 * C * 2;
for (int j=0; j<k-1; ++j) {

prod *= s[j];
if (j % 2 == 0)

coeff.push_back(prod);
else

coeff.push_back(prod * signum(g));
}

}

Listing 1: A C++ implementation for computing Pl matrices of the Henyey-Greenstein
model (based on the recurrence by Yanovitskij). This code uses the Boost library to
evaluate the elliptic integral expressions.
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Using the Jacobi-Anger expansion (Abramowitz and Stegun, 9.6.34), we turn the
trigonometric exponential in (23) into a Fourier series involving modified Bessel func-
tions of the first kind:

eA+B cos θ = eA

[
I0(B) + 2

∞

∑
l=1

Il(B) cos(lθ)

]
(24)

where

Il(z) =
( z

2

)l ∞

∑
i=0

( 1
4 z2)i

i! Γ(l + i + 1)
.

Technically, this completes the derivation of the Fourier projection, but in practice
Bessel functions are very costly to evaluate, and in our system, they can be invoked
with arguments that lead to overflows in floating point arithmetic due to their fast
growth (consider that I0(1000) ≈ 2.5 · 10432); this is particularly an issue with uses
of this expansion later in the paper. To address these issues, we start by noting that
Equation (24) actually takes on very reasonable values in the interval [0, 1] since A +

B cos φd ≤ 0. To always remain in the representable number range, it is thus key that
we incorporate the exponential scaling by eA into the computation of the coefficients.
We use the following expression for computing the l-th scaled Bessel function:

eA Il(B) = e−B I0(B)︸ ︷︷ ︸
= Ie

0(B)

eA+B
l

∏
j=1

Ij(B)
Ij−1(B)

(25)

There are several things to note about this expression: the first term Ie
0(B) is the expo-

nentially scaled modified Bessel function of order zero; we evaluate it using the I0E
function provided in Cephes mathematical library. The second term accounts for the
fact that we needed to scale by eA instead of eB. The last term is a product of ratios of
Bessel functions, which are close to 1 and easily representable. These ratios satisfy a
recurrence relation which we use not only to evaluate (25) but also to efficiently find
all series terms of (21) for a pair of angles µ, µ′ (i.e. for constant A and B) in one sweep.
The recurrence is given by

Il+1(B)
Il(B)

=
Il−1(B)
Il(B)

− 2l
B

. (26)

Interestingly, similar to the Henyey-Greenstein recurrence in Section 5.1.1 this relation
also suffers from catastrophic cancellation and error magnification when used in the
upward sense (i.e. computing the ratio for l + 1 from the previous one at l), while
being stable when used in the downward sense:

Il(B)
Il−1(B)

=
B

2l + B Il+1(B)
Il(B)

(27)
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double mbessel_ratio(Float k, double B) {
const double eps = std::numeric_limits<double>::epsilon(),

invTwoB = 2.0 / B;

double i = (double) k,
D = 1.0 / (invTwoB * i++),
Cd = D, C = Cd;

while (fabs(Cd) > eps * fabs(C)) {
double coeff = invTwoB * i++;
D = 1 / (D + coeff);
Cd *= coeff*D - 1;
C += Cd;

}

return C;
}

Listing 2: A C++ implementation that evaluates the continued fraction in Equation (28)
via Steed’s method.

Our implementation then starts with the maximum expansion order l = m, and com-
putes the ratios Il/Il−1, Il−1/Il−2 down to I1/I0 using recurrences. However, this re-
quires knowing the last ratio Il/Il−1 to bootstrap the recurrence formula: for this pur-
pose, we use a quickly converging continued fraction representation based on Gauss’
work on ratios of hypergeometric functions (see Gautschi and Slavik [1978] for a gen-
eral discussion):

Il(B)
Il−1(B)

=
1

2
B l +

1

2
B (l + 1) +

1
2
B (l + 2) + · · ·

(l > 0) (28)

We evaluate this continued fraction using Steed’s method, which yields a very accurate
routine shown in Listing 2. Combining the continued fraction representation, the
recurrence over ratios and the exponentially scaled function Ie

0, we obtain an efficient
and stable method for computing azimuthal Fourier series of the von Mises–Fisher
distribution. An implementation of this routine is shown in Listing 3.

5.2 Boundaries between layers

To model boundaries of dielectrics and conductors, we use the microfacet model pro-
posed by Walter et al. [2007]. Microfacet models describe the interaction of light with
random surfaces composed of microscopic dielectric or conducting facets that are ori-
ented according to a microfacet distribution. Integration over this distribution then
leads to simple analytic expressions that describe the expected reflection and trans-
mission properties at a macroscopic scale. Validations against real-world measure-
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void expcos_fseries(double A, double B, int m, std::vector<double> &coeffs) {
coeffs.resize(m+1);

/* Determine the last ratio and work downwards */
coeffs[m] = mbessel_ratio(B, m);
for (int i=m-1; i>0; --i)

coeffs[i] = B / (2*i + B*coeffs[i+1]);

/* Evaluate the exponentially scaled I0 and correct scaling */
coeffs[0] = std::exp(A+B) * cephes::i0e(B);

/* Apply the ratios & factor of two upwards */
double prod = 2*coeffs[0];
for (int i=1; i<m+1; ++i) {

prod *= coeffs[i];
coeffs[i] = prod;

}
}

Listing 3: A C++ implementation that computes series coefficients of the Jacobi-Anger
expansion in Equation (24).

ments have shown that microfacet models compare favorably against other families of
parametric BRDF models [Ngan et al. 2005].

We begin with a short review of the microfacet model by Walter et al., specifically the
variant that uses the Beckmann distribution derived from Gaussian random surfaces.
This model consists of a reflection and a transmission term

f (µi, φi, µo, φo) = fr(µi, µo, φi − φo) + ft(µi, µo, φi − φo). (29)

The reflection term fr is defined as

fr(µi, µo, φd) =
F(µh)D(µh)G(µi, µo)

4|µiµo|

where F specifies the Fresnel reflectance, D is the Beckmann distribution, G is a
shadowing-masking term, and µh denotes the cosine of the angle between the normal
and the half-direction vector of the incident and outgoing directions. The refractive
case is defined analogously but involves a modified half direction vector and different
weighting terms. Note that while the paper by Walter et al. only concerns itself with
dielectrics, it is straightforward to generalize the model to also handle conductors by
replacing F with the general unpolarized Fresnel reflectance term for boundaries with
a complex-valued relative index of refraction and setting ft = 0. We refer to the orig-
inal papers for many further details and a full discussion of the the refraction term
ft.

To compute the azimuthal modes of f we must again integrate

Fl
[

f (µ, µ′, ·)
]
=

2− δ0l

π

∫ π

0
f (µ, µ′, φd) cos(lφd)dφd. (30)
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However, we were not able to find an analytic expression for this integral due to the
significant complexity of the integrand. Forced to turn to numerical integration, we
encountered further problems:

• f varies greatly in magnitude with respect to φd: usually, only a tiny portion of
the of the domain contributes to the integral.

• Higher-order Fourier basis functions are oscillatory, i.e. they have a large number
of lobes of opposing signs, which almost (but not quite) cancel each other.

The combination of these properties makes both general-purpose and special oscilla-
tory integration methods impracticably slow. To sidestep these difficulties, we propose
a semi-analytic integration routine tailored to this specific problem.

We note that, although the full expression of the BSDF f has several parts that
depend on φd, the exponential term in the Beckmann microfacet distribution is the one
that, by far, dominates its behavior. Splitting the integrand of (30) into this exponential
term and a function frem containing the remaining terms produces

Fl [ f (µi, µo, ·)] = 2− δ0l

π

∫ π

0
frem(φd) eA+B cos φd cos(lφd)dφd

where in the reflective case A and B are defined as

A =
µ2

i + µ2
o − 2

α2(µi − µo)2 , B =
2
√

1− µ2
i

√
1− µ2

o

α2(µi − µo)2 . (31)

In the refractive case, they are given by

A =
η2

i
(
µ2

i − 1
)
+ η2

o
(
µ2

o − 1
)

α2(ηiµi − ηoµo)2 , B =
2ηiηo

√
1− µ2

i

√
1− µ2

o

α2(ηiµi − ηoµo)2 . (32)

We observe a striking similarity to the exponential-of-cosine Fourier series in Equa-
tion (24) encountered during our treatment of the von Mises–Fisher phase function,
with the main change being the extra term frem(φd) which contains normalization and
shadowing-masking terms as well as the Fresnel coefficient. Suppose for a moment
that we were able to obtain series representations of these pieces separately, i.e. coeffi-
cients al and bl such that

eA+B cos φd =
∞

∑
l=0

al cos(lφd)

frem(φd) =
∞

∑
l=0

bl cos(lφd)

The Fourier series we actually wanted to obtain is the pointwise multiplication of these
two series.

C(φd) = eA+B cos φd frem(φd) =
∞

∑
l=0

cl cos(lφd)
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Figure 3: Plot of a typical configuration of the microfacet model for reflection, fr, as a
function of φd (µ = −0.6, µ′ = 0.5, α = 0.05, η = 1.5). Left: the full model, i.e. C(φd),
Right: The same function, but with the exponential term removed, varies smoothly
and is well-approximated using a truncated Fourier series with only 6 terms (relative
error < 10−6)

At this point, we note that as a consequence of the convolution theorem, the frequency
space analog to a pointwise multiplication in the φd argument is the discrete convolution
of the number sequences (an) and (bn). In particular, the coefficients ci we seek are
given by a discrete circular convolution, which takes on the form (using the convention
that a−i = ai):

ci =
1

2(1 + δ0i)

[
δ0ia0b0 +

∞

∑
j=0

bj
(
ai+j + ai−j

)]
(33)

If al and bl are easily obtained, and if one of them decays quickly enough, this yields
an attractive way of finding the coefficients of the product. We found that this is
indeed the case: for conductors, frem is generally smooth enough to representable
with relative error of 10−6 using only six series terms (we conservatively use 12). For
dielectrics, more coefficients are needed in certain cases , but the average is still very
low, around 14-20 depending on the parameters. Importantly, changing the roughness
α does not change the frequency content of frem, and we can therefore depend on the
robustness of our exponential-of-cosine expansion to handle low-roughness cases.

Figure 3 demonstrates the low frequency content of frem(φ). For the given param-
eters, this function can be approximated to a relative error of 10−6 using only six
Fourier coefficients. This low-frequency property holds throughout most of the pa-
rameter space (we will focus on exceptions shortly).

Our approach then is to compute two Fourier series and find their discrete convo-
lution: one of the high frequency exponential, where we simply use the algorithm
already developed in Section 5.1.2, and another of frem(φd), which is handled using a
traditional numerical method for Fourier integrals (we use Filon quadrature [1928]).

Listing 4 implements the discussed discrete circular convolution operation in C++.
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void fseries_convolve(const double *a, int ka, const double *b, int kb, double *c) {
/* Input: a[0]..a[ka-1], b[0]..a[kb-1]. Output: c[0]..c[ka+kb-1] */
for (int i=0; i<ka+kb-1; ++i) {

double sum = 0.0;

for (int j=0; j<std::min(kb, ka-i); ++j)
sum += b[j]*a[i+j];

for (int j=std::max(0, i-ka+1); j<std::min(kb, i+ka); ++j)
sum += b[j]*a[abs(i-j)];

if (i < kb)
sum += b[i]*a[0];

if (i == 0)
sum = 0.5 * (sum + a[0]*b[0]);

c[i] = 0.5 * sum;
}

}

Listing 4: C++ implementation of a truncated version of the circular convolution in
Equation (33)

The next sections will focus on computing series expansions of the exponential and
the remaining terms.

Measured materials: It is also possible to import measured materials into our sys-
tem to compose them with other layers. We have implemented this for materials in
the database of Matusik et al. [2003], for which we approximately Fourier-project the
BSDF for each pair µi, µo by densely sampling it in azimuth [0, 2π] and applying a Fast
Fourier Transform. This is relatively fast but only an approximation; also the required
resolution depends on the material’s specularity and must be determined manually.
We leave better integration schemes for such “black box” data as a future work.

5.3 Additional implementation considerations

The previous sections presented a scheme for computing Fourier coefficients of a
microfacet model by decomposing it into two parts: a high-frequency and a low-
frequency term, whose respective coefficients were found separately and then con-
volved. However, there are two remaining issues that we must address for this to
work robustly in all situations:

Divergence of A and B: A closer examination of the A and B constants used in
the exponential term for reflection (31) and refraction (32) reveals that they can grow
arbitrarily large in magnitude. In the reflective case, they diverge e.g. when µi and
µo simultaneously tend to zero. This is bad news for our Fourier series approach,
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Figure 4: For a relative error threshold of 10−6, this plot shows the required number
of series terms for increasing values of B

because it means that the microfacet model contains arbitrarily high frequency content.
We cannot possibly represent these frequencies; the series must be truncated at some
point, which would then introduce an unacceptable amount of ringing for sufficiently
small µi and µo.

This ostensively bleak outlook is unjustified: due to the foreshortening associated
with surface light transport, very little energy is actually transported at these grazing
angles. This means that it is fine for our representation to become approximate in this
setting which, as we will see, introduces very little error overall. We therefore apply
smoothing to frequencies that are too high to be represented so that no ringing occurs
after truncation.

Figure 4 shows how many series terms are needed to accurately represent the ex-
ponential term with a relative error threshold of 10−6 for different values of B. The
inverse of this function is closely approximated by

Bmax(k) ≈ 0.03k2.026 (relative error ≈ 0.0011)

For other error thresholds, we have

Bmax(k) ≈


0.0337 k2.03865, ε = 10−5

0.0406 k2.04686, ε = 10−4

0.0538 k2.05001, ε = 10−3

0.0818 k2.04982, ε = 10−2

For any given number of series terms, this function tells us the maximum value of B
that can be represented so that no ringing occurs after truncation (up to the chosen
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error threshold). In our implementation, we compute A and B according to Equa-
tions (31) and (32) and obtain clamped A′ and B′ using

B′ = min{B, Bmax(kmax)}

A′ = A + B− B′ + log
Ie
0(B)

Ie
0(B′)

where kmax is the number of coefficients used in the simulation. Here, A′ is chosen so
that the amount of energy (i.e. the 0th order Fourier coefficient) is preserved.

f �Φ�� eA�B cos Φ

Π

2
Π

Φ

1

f �Φ�

Figure 5: When passing into a material having a smaller index of refraction, the frem(φ)

term spikes at φcrit (µi = −0.5, µo = 0.5, η = 1/1.5, α = 0.1, normalized plot)

High frequencies in frem(φ): There is another part of the model that will cause diffi-
culties unless special precautions are taken: the Fresnel reflectance and transmittance
terms in frem(φ) contain high frequencies when passing into a medium that has a
smaller index of refraction (Figure 5). In particular, the function rapidly spikes (or
vanishes in the refraction case) when the angle between the microfacet normal and
the incident direction approaches the critical angle. In the (µi, µo, φ) parameterization,
this happens when φ→ φcrit, where

φcrit = cos−1 2η2 − µiµo − 1√
1− µ2

i

√
1− µ2

o

(reflection), or

φcrit = cos−1 1− ηµiµo

η
√

1− µ2
i

√
1− µ2

o

(refraction)

In most cases, f is effectively constant in the region where the exponential term takes
on non-negligible values, and hence the spikes disappear due to its exponential decay.

Yet, this presents a problem for our proposed scheme for finding the Fourier trans-
form of the combined model: if we try to fit such a function frem(φ) using a low-order
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Fourier series (e.g. with 6-12 terms) it will suffer from severe ringing globally, and this
ringing will be present even after the discrete convolution operation.

What we’d rather like to have is a Fourier series of frem that is a very good fit on
some region [0, φmax] where the exponential term takes on non-negligible values, and
which is free to have arbitrary behavior elsewhere (anything it might possibly do will
be dwarfed by the exponential decay). Solving for φ in eA+B cos φ/eA+B cos 0 = ε yields

φmax = cos−1 B + log ε

B

Our implementation uses a configurable threshold that is set by the desired relative
error goal (e.g. ε = 10−3). The next question is how such a “localized” Fourier series
should be obtained. Let us define the Fourier basis functions

qi(φ) := cos(iφ) (i = 0, 1, . . .)

and an inner product

〈g, h〉 =
∫ φmax

0
g(φ)h(φ)dφ

The functions qi clearly lose their orthogonality with respect to 〈·, ·〉 when φmax 6=
π. After computing the inner products 〈 f , qi〉, an additional transformation is thus
necessary to find the final coefficients a0, . . . , an:a0

...
an

 =

〈q0, q0〉 . . . 〈q0, qn〉
...

...
〈qn, q0〉 . . . 〈qn, qn〉


−1〈q0, f 〉

...
〈qn, f 〉


The entries of this matrix can be computed analytically:

〈qi, qj〉 =


(
i cos(jφmax) sin(iφmax)− j cos(iφmax) sin(jφmax)

)
/(i2 − j2), i 6= j(

sin(2iφmax) + 2iφmax
)
/(4i), i = j 6= 0

φmax, i = j = 0

Note that, depending on the value of φmax and the desired number of coefficients,
this fitting problem is potentially underdetermined (in the sense that several series
might be a good match on the interval). We regularize the linear system by means of
a singular value decomposition, where singular values close to zero (σi < 10−9σ1) are
associated with the null-space and consequently dropped. Figure 6 shows an example
of this scheme on the previous problem case.

Finally, it may happen that φcrit < φmax, in which case some of the high frequency
content “survives” the multiplication by the exponential term, and hence we must
account for it. Our implementation detects this case and increases the amount of
coefficients used for f from 12 (the conservative default) to 100. This case occurs very
rarely in practice.
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Figure 6: Demonstration of a Fourier series that only considers areas where the expo-
nential term takes on non-negligible values (cf. Figure 5). With n = 10 coefficients, this
fit achieves a relative error of 5 · 10−8 on the interval [0, φmax]. It does poorly elsewhere,
but this is irrelevant due to the exponential decay.

5.4 Multiple scattering term

One issue with currently used microfacet models is that they only account for a single
scattering event at the microgeometry level; light that interacts with multiple facets is
effectively ignored. This means that these models incur some energy loss which grows
steadily as the roughness of the interface is increased. In a simulation of layered
materials with multiple rough internal boundaries, this loss is incurred many times
due to interactions between layers, potentially removing significant amounts of energy.

We propose an additive correction term to the microfacet model, which reintroduces
any energy lost to multiple scattering. This term is approximate—in particular, we
assume that, following multiple interactions within the surface microgeometry, the
scattered radiation emerges with an angular distribution that is close to diffuse. The
main constraint on this correction is that it should be reciprocal like other parts of our
system. The discrete analog of continuous reciprocity [Veach 1997] in our setting is a
set of matrix equations:

Ft
l = Ft

l
T, Fb

l = Fb
l

T
, η2

t Ftb
l = η2

b Fbt
l

T
(l = 0, . . . , m)

The assumption of multiply scattered illumination emerging with an approximately
diffuse profile allows us to restrict the correction to the 0th order Fourier mode (i.e.
l = 0), and to preserve reciprocity we use the following rank-1 update of F:

F̂t
0 = Ft

0 + rtrtT, F̂b
0 = Fb

0 + rbrbT
, F̂tb

0 = Ftb
0 +

tbtttbT

η2
b

, F̂bt
0 = Fbt

0 +
ttbtbtT

η2
t

The vectors rt, rb, ttb and tbt are chosen appropriately so that the final representation
has no energy loss. We derived expressions for these vectors for rough conductors and
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dielectrics. Our approach is related to work by Kelemen et al. [2001] who derived a
continuous correction term for a specular-matte BRDF.

As a prerequisite, it will be necessary to know exactly how much energy is reflected
and transmitted for a certain value of µi; in other words, we must compute the inte-
grals of the type

et(µi) =
∫ 2π

0

∫ 1

0
f (µi, µo, φd)|µo|dµo dφd,

and so on. Let Ŵ := [2πµ0w0, . . . , 2πµnwn] ∈ R1×n, where µi and wi are the nodes
and weights of the underlying quadrature method. Then the discrete equivalents of
the above integrals are given by:

et = ŴFt
0, eb = ŴFb

0, etb = ŴFtb
0 , ebt = ŴFbt

0

Consequently, the amount of lost energy per incident µi is equal to lt := 1− et − etb

for illumination arriving at the top and lb := 1− eb − ebt at the bottom.
To motivate the following we start by considering a simple BRDF with a single

reflection lobe at the top boundary, having an energy loss of et. In this case the
correction term we require is simply a scaled version of the loss lt, i.e.

tt = ρlt (34)

and to find ρ we place the requirement that after the correction there should be no
energy loss, i.e.

Ŵ(Ft
0 + ttttT

) = 1

⇔ et +
(
ρ2 Ŵlt)(1− et) = 1

To satisfy this equation we set

ρ = 1/
√

Ŵ lt.

Our corrections for the microfacet lobes work in this way but involve some additional
considerations described in the next two sections.

5.5 Multiple scattering term for dielectrics

In the case of dielectrics, for each µi we split the correction between reflection and
refraction so that the current division of energy between these lobes is preserved.
This leads to the following unscaled corrections for refraction (written in component
notation where k = 1, . . . , n):

t̂tb
k = lt

k
etb

k

et
k + etb

k
, t̂bt

k = lb
k

ebt
k

eb
k + ebt

k
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Because of the reciprocal relationship of the two transmission lobes, we must be careful
not to create too much energy on one side of the BSDF by adding a correction to the
other. Hence, in this case the correction is a minimum of two terms and reads

ttb
k = t̂tb

k min

{
Ŵtbt, Ŵttb η2

t

η2
b

}

tbt
k = t̂bt

k min

{
Ŵttb, Ŵtbt η2

b
η2

t

}

After this correction we update the energy loss vectors lt and lb and simply put the
remaining lost energy onto the reflection lobes on each side of the surface using the
approach of Equation (34).

5.6 Multiple scattering term for conductors

We consider conductors as opaque and therefore just focus on the top surface. For
conductors, a simple correction would be to put all missing energy into the reflection
lobe—however, this is not correct because conductors have a complex-valued index of
refraction and thus naturally absorb some of the illumination, which we do not want
to recover.

Our approach then is as follows: we first compute an auxiliary version of the zero-
order scattering matrix Ft

0 that does not include the Fresnel coefficient, and compute
the energy loss vector lt for this matrix instead, leading to a preliminary correction

t̂t =
√

Ŵ ltlt

To determine the correct scale factor for this correction we use a very simple model of
diffuse light interreflecting inside the microfacet geometry.

After a single scattering interaction of a ray of light, the portion of the ray’s energy
that is eliminated due to energy loss in the BRDF is given by Wt̂T/π, and thus we can
think of

E = 1− Ŵt̂t

π

as the portion of light that is able to escape the surface microgeometry after a single
scattering event. We assume that the portion which did not escape re-emerges as
diffuse illumination that undergoes a multiple scattering process.

The next time this illumination encounters a microfacet, due to the diffuse assump-
tion, its energy is reduced by the average Fresnel reflectance of the conductor,

R = 2
∫ 1

0
F(µ)µdµ

which we compute numerically using Gaussian integration. Again, a portion E of
the illumination is now able to leave the surface, and the remainder undergoes further
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(a) α = 0.01 (b) α = 0.04 (c) α = 0.14 (d) α = 0.53 (e) α = 2

(f) α = 0.01 (g) α = 0.04 (h) α = 0.14 (i) α = 0.53 (j) α = 2

(k) α = 0.01 (l) α = 0.04 (m) α = 0.14 (n) α = 0.53 (o) α = 2

(p) α = 0.01 (q) α = 0.04 (r) α = 0.14 (s) α = 0.53 (t) α = 2

Figure 7: Traditional microfacet models for dielectrics and conductors (rows 1 and
3) suffer from energy loss that is particularly problematic in simulations of layered
materials. We propose a multiple scattering term that reintroduces this energy (rows
2 and 4).

scattering events. To find ρ, we sum over all of possible paths that the lost energy could
follow before exiting the surface, which turns into the following geometric series:

ρ = RE + R(1− E)RE + R2(1− E)2RE + · · · =
∞

∑
i=0

Rk(1− E)k =
RE

1− R(1− E)

Due to this multiple scattering process, the saturation of certain conductors with very
apparent coloration in the visible spectrum (e.g. copper or gold) increases when in-
stantiated with extreme roughness values (e.g. α = 2). Figure 7 highlights the effect of
our correction on dielectrics and conductors of different roughness values.

5.7 Error analysis

To use Algorithm 1 in practice we need a way of selecting an appropriate discretization
n in elevation, and number m of Fourier expansion terms. How these parameters
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should be set is not obvious; overly high values will cause unnecessary overheads
while a too low value may introduce unacceptable errors. Intuitively, their choice
relates to the “peakedness” of the ingredients, i.e. the parameter α for boundaries,
and g or κ for scattering layers.

We propose a heuristic for each kind of layer that specifies appropriate n and m if
that layer were be represented in isolation. These heuristics are simple functions that
map the relevant parameter to a discretization with less than 1% relative L2 represen-
tation error. We created these heuristics by bounding n and m values found via a brute
force search (Figure 8).

For a material made of multiple layers i = 1, . . . , N these heuristics will generally
recommend a set of incompatible parameter values (n1, m1), . . . , (nN , mN). However,
for Algorithm 1 to work we must decide on a single value of n and m that are used
for the entire computation. For the n parameter, we simply set n = maxi ni. In the
parameter m we do not need to be as conservative: each layer i can be thought of as a
low-pass filter that removes azimuthal frequency content that is higher than order mi.
Therefore, all interior layers are “filtered” by the top and bottom layers, and hence we
set m = max{m1, mN}.

To analyze the approximation errors of our system, and to find viable heuristics for
the individual layers, we define the weighted relative L2 error of the tabulation f̃ with
respect to an analytic BSDF model f as

Relative L2 Error =

[ ∫ 1

−1

∫ 1

−1

∫ π

0

(
|µiµo|

(
f (µi, µo, φ)− f̃ (µi, µo, φ)

))2
dφ dµi dµo

/
∫ 1

−1

∫ 1

−1

∫ π

0
(|µiµo| f (µi, µo, φ))2 dφ dµi dµo

]1/2

(35)

An analogous error can be defined for phase functions without the µµ′ weighting
term, which accounts for the reduced energy on surfaces at grazing angles due to
foreshortening.

We ran a program that instantiated all supported layer types with many different
parameter values, each time searching for suitable values of n and m. In particular, we
tried to find the smallest n and m subject to the cost function c(n, m) = n2m denoting
the number of parameters in the dense case, which led to less than 1% relative error
in our discretized and Fourier-expanded representation.

An example of the output of this program can be seen in Figure 8. The black dots in
the normal and log plots in the top row show the n and m values found by the search.
For rough interfaces, we bound both m and n by functions of the type

{n, m}(α) = max
{

a + bα log(α)4, c + dα−1.2
}

(36)

for constants a, b, c, d, where the first term models the behavior for high roughness
values and the second term captures the asymptotics as α→ 0.
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Material an bn cn dn am bm cm dm

Cond. 35.275 14.136 29.287 1.8765 39.814 88.992 -98.998 39.261
Diel. (1.1) 256.47 -73.180 99.807 37.383 110.782 57.576 94.725 14.001
Diel. (1.3) 100.264 28.187 64.425 14.850 45.809 17.785 -7.8543 12.892
Diel. (1.5) 74.176 27.470 42.454 9.6437 31.700 44.896 -45.016 19.643
Diel. (1.7) 80.098 17.016 50.656 7.2798 46.549 58.592 -73.585 25.473

Table 2: Coefficients for the parameter heuristic defined in Equation (36).

Table 2 lists the necessary constants for boundaries of conductors and dielectrics
with various indices of refraction. For indices of refraction between rows of this table,
we evaluate (36) for the adjacent rows and use the bigger value.

For the Henyey-Greenstein model we use the following bound:

m =
5.4

1− g
− 1.3

n =
8.6

1− g
− 0.2

and for the von Mises–Fisher phase function we reuse the bound with g = cothκ − 1
κ .

6 Evaluation and sampling

All elements of our system described until now tie into Algorithm 1 in one way or
another. This algorithm runs as an offline process prior to rendering and produces
a sequence of scattering matrices Rt

l , Rb
l , Ttb

l , Tbt
l (l = 0, . . . , m). The last part of this

pipeline is discussed below; its purpose is to convert the resulting data into a format
that is more convenient for rendering before writing it to disk.

Recall Equation (16), which we previously used to turn a projected BSDF model
Fl into scattering matrices suitable for computations involving the adding equations.
We now apply this equation once more in the reverse direction to convert the final
set of matrices Rt

l , Rb
l , Ttb

l , Tbt
l back into a projected BSDF Fl (l = 0, . . . , m). We then

transpose this tensor so that the Fourier coefficients (Fl)i,j are contiguous with respect
to the index l, matching the order in which they will be accessed sequentially later
on. To exploit sparsity, we also determine a minimal effective expansion order m(i, j)
separately for each pair of elevation angles, satisfying (Fl)i,j = 0 for l > m(i, j). Only
coefficients up to this order are stored.

Our system handles colored materials using separate Fl matrices for each color chan-
nel. In this case, we also precompute a luminance-only version of the model, which
we use for importance sampling outgoing direction.
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Figure 8: To develop a good heuristic for selecting the discretization and expansion
order (n, m), we instantiated the supported layer types of our system over a range of
parameters and ran a search for the cheapest representation with less than 1% error.
We bounded the resulting values from above using a simple analytic expressions that
capture the asymptotics (top row: bounds in normal and log domain for a rough con-
ductor, bottom row: storage requirements and relative error achieved by our bound).
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Figure 9: Rough dielectric (η=1.1) model: parameter heuristic and error/storage analysis
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Figure 10: Rough dielectric (η=1.3) model: parameter heuristic and error/storage analysis
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Figure 11: Rough dielectric (η=1.5) model: parameter heuristic and error/storage analysis
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Figure 12: Rough dielectric (η=1.7) model: parameter heuristic and error/storage analysis
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Figure 13: Henyey-Greenstein model: parameter heuristic and error/storage analysis

The remainder of this section discusses how to use this information in a rendering
algorithm. In our experiments, we used a standard Monte Carlo path tracer, which re-
quires the ability to evaluate the BSDF and importance sample directions proportional
to it; we show how to implement both of these operations efficiently.

6.1 Model evaluation

To evaluate the model for a pair of directions µi, φi and µo, φo, we determine the lo-
cation in the sparse file that contains the azimuthal Fourier expansion for the given
elevations (µi, µo) and fetch the associated coefficients a0, . . . , ak. The BRDF value is
then simply

f (µi, φi, µi, φo) =
k

∑
l=0

al cos(l(φi − φo)). (37)

This works when µi and µo are part of the set of discretized elevations, but this is
generally not the case. For intermediate values, we interpolate the Fourier coefficients
from those of nearby elevation angles on the fly using the 4× 4 interpolation stencil of
a standard 2D tensor product Catmull-Rom spline.

A naı̈ve implementation of Equation (37) can lead to serious performance issues
during rendering due to very many trigonometric function calls per BSDF evaluation.
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To reduce these to a minimum, we use the multiple angle formula for cosines

cos(nφ) = 2 cos(φ) cos((n− 1)φ)− cos((n− 2)φ) (38)

as a recurrence while iterating through the terms of the sum. To accelerate com-
putations even further, we exploit instruction level parallelism when evaluating (37).
All sum terms are independent from each other, and hence we can load and process
groups of several coefficients at a time, using iterated forms of (38) to find the cosine
values needed for the entire group in one step.

Texturing: To texture an arbitrary parameter of a layer (e.g. its optical depth σt),
we compute several BSDF models corresponding to samples throughout the targeted
parameter domain. To evaluate the BSDF for a particular parameter value we simply
interpolate between these models. For parameters with a linear dependence, two
samples suffice; higher numbers are necessary to capture nonlinear effects. Multiple
parameters can be textured simultaneously, though eventually the exponential growth
in the required number of samples becomes burdensome. This scheme is approximate
but works very well in practice for many types of parameters, including diffuse or
phase function albedos or optical depth. Other parameters are less suitable (e.g. index
of refraction and boundary roughness) and may require many samples when textured
in this way. This is a limitation of our system and an interesting avenue for future
work.

6.2 Importance sampling

The spline interpolation scheme introduced in Section 6.1 induces continuous exten-
sions of the BSDF matrices Fl to piecewise polynomial functions Fl : [−1, 1]× [−1, 1]→
R. For any two angles (µi, µj) from the initial discretization, Fl(µi, µj) simply returns
entry (i, j) from the underlying matrix; for arguments that lie between samples of the
discretization, nearby entries are interpolated.

Note the special significance of the 0-th order function F0, which describes the aver-
age value of the BSDF integrated over azimuth:

F0(µi, µo) =
1
π

∫ π

0
f (µi, µo, φd)dφd.

This means that the dependence on azimuth is effectively “marginalized” out of the
model, a fact which we use to build a simple and efficient importance sampling
method that is split into separate elevation and azimuth angle sampling steps. Be-
cause both can be implemented as smooth mappings from a single uniform variate
to an outgoing angle, they are particularly well-suited for use with certain structured
point sets, such as Sobol or Halton sequences, leading to reduced variance in render-
ings that use them.
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Both steps involve a standard numerical inversion method for integrals, which we
review for completeness: to draw samples proportional to a 1-dimensional density
function q(x) ≥ 0 on an interval [a, b], we generate a uniform variate ξ and solve for x
in Q(x) = ξ, where Q(x) =

∫ x
a q(x′)dx′. Note that Q is continuous and monotonically

increasing; since Q(a) = 0 and Q(b) = 1, this guarantees that a unique solution
exists; [a, b] is known as a bracketing interval. We rely on a hybrid Newton-Bisection
method to invert Q, which maintains a bracketing interval as an invariant, while using
Newton-Raphson steps whenever possible to benefit from quadratic convergence rates
near the solution.

Elevation sampling: Given a fixed incident elevation µi, this step picks an outgo-
ing elevation with a probability proportional to the piecewise cubic spline function
F0(µi, ·). For simplicity, let us briefly assume that µi is equal to one of the elevation
angles from the discretization. Let Ii,k denote the definite integral of F0(µi, ·) up to the
k-th spline segment, i.e.

Ii,k :=
∫ µk

µ1

F0(µi, µ′)dµ′ (k = 1, . . . , n).

We first use a O(log n) binary search to map a uniform variate ξ1 ∈ [0, 1) to the seg-
ment k satisfying Ii,k ≤ ξ1 Ii,n < Ii,k+1. Following this, we apply the discussed Newton-
Bisection method to robustly invert the integral of F0 (a quartic) on [µk, µk+1], pro-
ducing the desired outgoing elevation µo. The entries of the matrix Ii,k have analytic
solutions that can be precomputed ahead of time. Elevations µi that lie between sam-
ples of the discretization are easy to handle due to the linearity of this setup: we can
simply interpolate the precomputed integrals Ii,k using the same Catmull-Rom basis.

Azimuth sampling: To sample the azimuthal component conditioned on (µi, µo), we
fetch the associated interpolated Fourier coefficients al := Fl(µi, µo) from the sparse
coefficient storage and pick an azimuth difference angle φd proportional to the re-
sulting Fourier expansion q(φd). Finally, we set φo = φi + φd. As before, the main
sampling operation involves the inversion of a definite integral Q using the hybrid
Newton-Bisection approach. This integral fortunately has a simple explicit form:

Q(φd) =
∫ φd

0

m

∑
l=0

al cos(lφ′d)dφ′d = a0φd +
m

∑
l=1

l−1al sin(lφd)

The recurrence from Section 6.1 can also be applied here to avoid costly trigonometric
function evaluations. Instruction level parallelism offers further acceleration opportu-
nities.

The proposed importance sampling scheme is exact in the sense that it produces a
constant importance weight≤ 1 over all scattered directions when holding the incident
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R: 1h 48m

(a) Analytic (8K spp)

R: 30s

(b) Analytic (38 spp)

R: 30s

(c) Ours (26 spp, eq. time)

Figure 14: Reflectance models generated by our system support exact importance sam-
pling, which can make them interesting even in cases where an analytic reflectance
model exists. The images on the middle and right show equal-time renderings of a
sand-blasted vase modeled using a standard microfacet BSDF. Note improved conver-
gence in (c) despite the lower number of samples per pixel.

direction fixed. Additional terms (e.g. the cosine of the surface illumination integral)
are easily absorbed into the data to account for them as well.

This is a rare situation, since BSDF sampling techniques are almost never exact.
This effectively means that our approach can be interesting even when an analytic
(and potentially faster to evaluate) reflectance model is available. Figure 14 shows a
rough glass vase (η = 1.5, α = 0.3) rendered with the analytic evaluation and sampling
of Walter et al. [2007] and the approach presented in this section. Renderings were
performed using Quasi Monte-Carlo integration, specifically scrambled Halton points.

The analytic sampling technique only samples one factor of the model (the micro-
facet distribution) and relies on a transformation from microfacet normals to outgoing
directions, which distorts the equidistribution of the Halton points. In comparison, our
technique is able to sample all terms of the BSDF directly on the sphere of outgoing
directions.

6.3 Harmonic extrapolation

In looking to further reduce the computation time and storage requirements of BSDFs
generated by our system, we analyzed a large set of scattering and absorbing slabs
with interfaces of different roughness. We found that the azimuthal dependence of
the resulting reflection and transmission profiles could often be described by a simple
low-dimensional family of functions.

In particular, they were closely approximated by a linear combination of a constant
term and a wrapped Gaussian distribution on the circle, i.e.:

gδ,β,σ2(φ) :=
δ

2π
+ β

∞

∑
k=−∞

G(φ + 2πk, σ2),
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where G(x, σ2) is a normalized Gaussian of variance σ2. To fit an existing azimuthal
Fourier series a0, . . . , am, we require the first three circular moments of gδ,β,σ2 to agree
with the coefficients ai. Using the property that

Fl

[
∞

∑
i=−∞

G(φ + i2π, σ2)

]
=

1
π(1 + δ0l)

e−l2σ2/2

this results in the system of equations

a0
!
= F0

[
gδ,β,σ2

]
=
(
δ + β

)/
2π

a1
!
= F1

[
gδ,β,σ2

]
= β/πe−σ2/2

a2
!
= F2

[
gδ,β,σ2

]
= β/πe−2σ2

which can be solved for

δ = 2πa0 −
πa4/3

1
3
√

a2
, β =

πa4/3
1

3
√

a2
, σ2 = log

a2/3
1

a2/3
2

Since this approach extrapolates the entire behavior from the first three harmonics, Al-
gorithm 1 can be stopped after m = 2, which significantly reduces the precomputation
time. When evaluating the function gδ,β,γ during rendering, we use the approximation

ĝ(φ) =
δ

2π
+

{
∑1

i=−1 G(φ + i2π, σ2), σ2 < 5

(1 + 2 cos(φ)e−σ2/2)/2π, otherwise

which has maximum relative L2 error of approximately 0.005. Importance sampling
this representation is trivially implemented by randomly drawing a sample from a
uniform distribution or a normal distribution and taking the result modulo 2π.

7 Results

We implemented this technique in C++ on top of the Mitsuba renderer [Jakob 2010],
relying on the Eigen library [Guennebaud et al. 2010] for sparse linear algebra com-
putations. BSDF sampling and evaluation exploit instruction parallelism using Intel’s
AVX instruction set. To solve the sparse linear systems in the adding Equations (Sec-
tion 3.1), we use supernodal LU decompositions [Li 2005].

To ensure the correctness of our system, we routinely performed validation tests—
these included checking that projection of scattering models into the directional basis
is accurate, comparing against reference data including angular reflectance data of
index-matched isotropic and anisotropic slabs (Tables 12 and 35 of [van de Hulst 1980])
and albedo values for isotropic half-spaces with dielectric boundaries [Williams 2006].
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Slightly absorbing blue-green dielectric (η = 1.5)
α = 0.05

α = 0.05

Textured diffuse layer

Clear dielectric (η = 1.5)
α = 0.05

Red anisotropic scattering diel. (η = 1.5,  g=0.95)
α = 0.1

α = 0.1

Purple anisotropic scattering diel. (η = 1.5, g=0.8)

Thin blue absorbing dielectric (η = 1.5)
α = 0.1

α = 0.1

Conductor (copper)

Blue isotropic scattering dielectric (η = 1.5)
α = 0.1

α = 0.1

Conductor (Aluminum)

White isotropic scattering dielectric (η = 1.5)
α = 0.04

α = 0.04

White isotropic scattering diel. half space (η = 1.5)
α = 0.1

White isotropic scattering dielectric (η = 1.5)

Measured BRDF (Blue metallic paint 2, [Matusik et al.])

α = 0.1

Measured BRDF (Blue metallic paint 2, [Matusik et al.])

Conductor (chrome) 
α = 0.02

Figure 15: All materials in this interior scene were generated and rendered using the
techniques described in this paper. The insets on the left and right reveal the corre-
sponding structural descriptions that were used as inputs to our system.

Material n m Time Storage Sparsity

Coffee table 394 671 3.34s 68.4MiB 5.7%
Red vase 196 267 2.09s 11.9 MiB 9.9%
Coated copper vase 196 267 2.52s 3 MiB 2.5%
Large purple bowl 196 267 4.31s 5.2 MiB 4.3%
Measured BRDF 200 200 1.69s 22.7MiB 24%
Coated measured BRDF 200 267 3.49s 3.2 MiB 2.5%
White brick wall 196 267 0.96s 1.3 MiB 3.2%
Kitchen sink 502 890 7.52s 9.6 MiB 1.1%
Kitchen counter (wood) 394 671 6.5s 55.5 MiB 1.2%
Kitchen counter (metal) 236 4194 1.41s 10.1 MiB 0.38%

Table 3: Discretization, preprocessing time, storage requirements, and the percentage
of nonzero coefficients of the objects in Figure 15.

Finally, we also ran comparisons against Monte Carlo renderings with explicit layer
structure. In all cases, our validations showed excellent agreement, usually matching
reference data in the radiative transfer literature to four significant digits.

We now present a series of results produced using our system. Precomputation and
rendering times are reported for an Intel Xeon E5-2660 machine with 16 physical (32
hyper-threaded) cores.

7.1 Interior scene

Figure 15 depicts a range of layered materials generated by our model. The corre-
sponding layer structures are shown on the sides, and detailed statistics regarding
processing time and storage requirements are presented in Table 3. The wooden
kitchen counter material is a coated diffuse surface with texture-mapped albedo; to
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P: 13 s 760ms R: 3m 54s

Figure 16: Gu et al. [2007] provide a database of measured surface contaminants. We
use one of their optical thickness maps to render a shiny chrome cube with dried
deposits due to salt water exposure. Note how the salt blocks part of the caustic on
the ground.

capture the material’s non-linear dependence on albedo we use four BRDF samples
over the admissible parameter range [0, 1]. Following precomputation, the image was
path traced at with a resolution of 1800×1080 pixels using 2048 samples per pixel to
resolve glossy interreflections between objects, which took 1 hour and 23 minutes.

7.2 Contaminants maps

Figure 16 shows a shiny chrome cube with dried salt water deposits rendered under
daylight illumination. We modeled this as a shiny chrome base (α = 0.03) with an
index-matched anisotropic layer (g = 0.7) whose optical thickness is textured by a
contaminant map of Gu et al. [2007]. To capture the nonlinear dependence in σt, we
precomputed six BRDF samples over the parameter range. The combined BRDF with
discretization n = 158 and expansion order m = 2540 required 21.6 MiB as opposed
to 4.3 GiB for a dense version (a reduction to 0.5%) and was computed in 13.7 s.
Rendering using Manifold Exploration MLT [Jakob 2013] using 64 mutations/pixel
took 3m 54s.

7.3 Surface vs. volumetric scattering

The two classes of transport operators in our framework—surface and volume—act on
the incoming light fields in fundamentally different ways. It is instructive to analyze
their behaviors in isolation. Figure 17 compares the different loss of clarity caused by
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P: 2s 515ms R: 1m 23s

(a) α = 0.05

P: 883ms R: 1m 15s

(b) α = 0.1

P: 576ms R: 1m 14s

(c) α = 0.2

P: 554ms R: 1m 12s

(d) α = 0.3

P: 129ms R: 1m 12s

(e) τ = 0.5, g = 0.0

P: 118ms R: 1m 7s

(f) τ = 1, g = 0.0

P: 168ms R: 1m 6s

(g) τ = 2, g = 0.0

P: 201ms R: 1m 3s

(h) τ = 5, g = 0.0

P: 236ms R: 1m 22s

(i) τ = 0.5, g = 0.8

P: 247ms R: 1m 9s

(j) τ = 1, g = 0.8

P: 274ms R: 1m 21s

(k) τ = 2, g = 0.8

P: 327ms R: 1m 19s

(l) τ = 10, g = 0.8

Figure 17: Comparing the visual loss in clarity as caused by surface roughness ver-
sus volumetric scattering inside a layer. The top row ((a)-(d)) shows the transmission
through an index 1.5 dielectric plate with identical Beckmann roughness α on both
faces. The lower two rows demonstrate index-matched plates with volumetric im-
perfections simulated by HG scattering (which may be appropriate for material with
air pockets or other inclusions). A variety of appearances is evident as the optical
thickness and anisotropy are varied ((e)-(l)). The rough dielectric scattering produces
a blurring effect, while the volumetric scattering leads to a hazing of the transmitted
signal. Rendered at a resolution of 512×512 pixels using 1024 samples per pixel.
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P: 2s 263ms R: 1m 24s

(a) α = 0.05

P: 827ms R: 1m 18s

(b) α = 0.1

P: 556ms R: 1m 15s

(c) α = 0.2

P: 524ms R: 1m 13s

(d) α = 0.3

R: 1m 40s

(e) α = 0.05

R: 1m 41s

(f) α = 0.1

R: 1m 42s

(g) α = 0.2

R: 1m 34s

(h) α = 0.3

Figure 18: Top: our method using a single plane geometry to represent a glass plate
roughened on both sides. Bottom: a reference scene with an explicit thin glass plate
with a rough dielectric BSDF on both faces. Beckmann roughness α is the same on both
faces and varied left to right. The multiple scattering correction term is disabled in this
rendering to facilitate the comparison. Note the increased variance in the bottom row,
which is due to the importance sampling routine of the classical model. All images in
this figure were rendered at a resolution of 512×512 at 1024 samples per pixel.

transmission through layers with rough surfaces versus layers with smooth surfaces,
but with internal volumetric scattering. Roughening both sides of the glass plate
causes a uniformly blurred transmission of the background scene, whereas forward-
peaked volumetric scattering inside plates with smooth surfaces causes more of a
hazed appearance. The arbitrary combination of this wide variety of operators yields
a very flexible system for building BSDFs.

7.4 Asperity Scattering and Diffuse Materials

Adding a volumetric scattering layer to a base material can be used for asperity scatter-
ing [Koenderink and Pont 2003], useful for simulating fine layers of dust or fibers on
a surface. We illustrate this in Figure 20 by visualizing various forms of asperity layer-
ings on a black base layer, and then to simulate dust on a gold statue. Note that these
renderings resemble those of Pharr and Hanrahan [2000], whose nonlinear scattering
equations provide an alternative way of solving for the interaction between layers.
However, their approach does not lead to a reflectance model in explicit form: dur-
ing the rendering process, every interaction with a layered material triggers a nested
Monte Carlo integration over layers. Our system is the first to account for all orders
of interreflection between an asperity and underlying layer, and to include multiple
scattering in the asperity layer without requiring a costly integration over layers at
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P: 168ms R: 1m 6s

(a) g = 0, τ = 2

P: 201ms R: 1m 3s

(b) g = 0, τ = 5

P: 274ms R: 1m 19s

(c) g = 0.8, τ = 2

P: 327ms R: 1m 9s

(d) g = 0.8, τ = 10

R: 3m 3s

(e) g = 0, τ = 2

R: 5m 51s

(f) g = 0, τ = 5

R: 3m 11s

(g) g = 0.8, τ = 2

R: 11m 5s

(h) g = 0.8, τ = 10

Figure 19: Top: our method using a single plane geometry to represent a volumetric
HG-scattering layer. Bottom: a reference scene with an explicit smooth glass plate
with brute force Monte Carlo scattering inside. Note the increase in rendering time
for thicker layers in the Monte Carlo simulations. All images were rendered using
1024 samples per pixel.

render time.
Volumetric scattering layers can yield a wide variety of new diffusive BRDFs that

complement that standard analytic models. Figure 22 compares Lambert and Oren-
Nayar BRDFs to volumetric scattering materials with isotropic or forward-peaked
Henyey-Greenstein scattering. The use of an isotropic scattering material (c) yields
a very dusty look, which is lessened in (d) by layering a HG scattering layer g =

0.8, τ = 5 on top of a 90% Lambertian reflector. The volumetric-scattering renders
were no more than 30% slower, and the BSDFs were compactly stored in 3.5 KiB.

7.5 Approximate layered BRDFs

The model of Weidlich and Wilkie [2007] supports texturable layered materials with
anisotropic interfaces but does not account for all orders of interreflection between
layers. This leads to incorrect albedos from simple combinations, such as a smooth
dielectric interface over a Lambertian reflector. Figure 23 compares the total albedo
of such a model with refractive index 1.5 as a function of diffuse reflectance kd of the
underlying Lambertian surface. Due to internal scattering, the total reflected energy
has an inherently nonlinear dependence on kd. Weidlich and Wilkie’s model discards
such internal reflection light paths and uses an heuristic scaling factor to compensate
for the resulting loss of energy. However, the nonlinear behavior of the layers is not
captured regardless of whether or not the heuristic is used. Another limitation of
this approach is that it cannot faithfully simulate the interaction of multiple rough
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P: 8ms R: 8m 3s

(a) g = 0, τ = 0.1

P: 12ms R: 7m 54s

(b) g = 0, τ = 0.25

P: 10ms R: 7m 47s

(c) g = 0, τ = 0.5

P: 9ms R: 7m 37s

(d) g = 0, τ = 1

P: 11ms R: 8m 55s

(e) g = 0.5, τ = 0.1

P: 12ms R: 8m 40s

(f) g = 0.5, τ = 0.25

P: 12ms R: 8m 23s

(g) g = 0.5, τ = 0.5

P: 13ms R: 8m 19s

(h) g = 0.5, τ = 1

P: 230ms R: 8m 17s

(i) g = 0.9, τ = 0.5

P: 328ms R: 8m 54s

(j) g = 0.9, τ = 1

P: 215ms R: 8m 42s

(k) g = 0.9, τ = 2

P: 223ms R: 8m 34s

(l) g = 0.9, τ = 4

P: 300ms R: 8m 44s

(m) τ = 0.05

P: 221ms R: 8m 46s

(n) τ = 0.1

P: 218ms R: 8m 48s

(o) τ = 0.25

P: 236ms R: 8m 52s

(p) τ = 0.5

P: 229ms R: 8m 40s

(q) τ = 1

P: 254ms R: 8m 32s

(r) τ = 2

P: 226ms R: 8m 17s

(s) τ = 4

Figure 20: Top: asperity scattering using a volumetric scattering layer on top of a
black surface. Various thicknesses τ and HG phase functions (with mean cosine g) are
compared. The single-scattering albedo is slightly orange in all cases. Because more
scattering events are required to scatter a similar amount of light for g = 0.9 as for the
isotropic case (using much larger optical thickness), the result is more saturated. Bot-
tom: applying various thicknesses τ of grey HG (g = 0.9) dust to a rough gold statue.
All images were rendered at a resolution of 1200×1000 pixels using 1024 samples per
pixel.
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P: 538ms R: 1m 57s

(a) kd = {0.1, 0.2, 0.3}
P: 506ms R: 1m 51s

(b) kd = {0.4, 0.5, 0.6}
P: 504ms R: 1m 48s

(c) kd = {0.7, 0.8, 0.9}

R: 2m 6s

(d) kd = {0.1, 0.2, 0.3}
R: 2m 15s

(e) kd = {0.4, 0.5, 0.6}
R: 2m 24s

(f) kd = {0.7, 0.8, 0.9}

Figure 21: Here we compare (top row) our BRDF for a rough Beckmann dielectric
interface (α = 0.1, η = 1.5) over top of a Lambertian base layer with various (RGB)
values of diffuse reflectance kd. The bottom row shows a brute force simulation with a
slightly larger rough dielectric sphere surrounding an interior Lambertian sphere. The
adding equations in our approach account for all orders of interreflection between the
two layers, producing accurate total albedos. The images in both rows were rendered
at a resolution of 1024x1024 pixels using 512 samples per pixel and slightly cropped.
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R: 6m 14s

(a) Lambert

R: 6m 7s

(b) Oren-Nayar

P: 100ms R: 7m 17s

(c) g = 0

P: 33ms R: 7m 49s

(d) g = 0.7

Figure 22: A wide variety of diffusive reflectance models are possible by combining
volumetric scattering layers and Lambertian reflectors. Note the different silhouettes
and overall subtle appearance differences between the volumetric models in (c) and (d)
vs. the traditional diffuse BRDFs in (a) and (b). Both (a) and (b) have spectral albedos
kd = {0.5, 0.25, 0.12}, with the Oren-Nayar render using a roughness α = 0.6. For
(c) and (d) spectral single-scattering albedos a were selected so as to produce diffuse
albedos of {0.5, 0.25, 0.12} under normal incident illumination. For (c) with isotropic
scattering, a = {0.938, 0.759, 0.513}. For (d), a = {0.983, 0.93, 0.833}. The images above
were rendered at a resolution of 1200×1000 pixels using 1024 samples per pixel.

boundaries, which requires a full integration over internal reflection paths.

7.6 Fitting to measured data

We also conducted measurements of real-world materials with the goal of reproducing
observed reflectance curves using our model. Our experiments focused on vitreous
enamel coatings used in traditional jewelry design. Such enamels are usually available
in powdered form and consist of lead glass colored by cobalt compounds or similar
pigments (Figure 24 (a)). To coat an object, the enamel powder is mixed with water to
turn it into a thick paste, which is then applied to the object using a paintbrush and
dried. Finally, the object is heated to a temperature around 830◦C, causing the powder
to melt and turn into a homogeneous glaze under the influence of surface tension.

To conduct reflection and transmission measurements of enamel layers, we prepared
1 mm thick swatches of fine silver with a punched-out circular hole of 8 mm diameter
that was filled with enamel of the same thickness (i.e. 1 mm, see Figure 24 (b)). We
did this by laser-welding a smooth sheet of metal1 foil onto one side of the swatch to
firmly close the circular hole. Next, we filled the resulting cavity with enamel paste
and melted it in a furnace, making sure to use enough enamel so that the solidified
enamel protrudes out of the cavity. After grinding down the protrusion and a second
melting pass, the metal foil on the bottom can be peeled off to yield a 1 mm thick layer
of enamel with a smooth finish on both sides; this type of enamel preparation is also

1We used gold foil to prevent chemical reactions between the enamel surface and the foil at melting
time, which can lead to slight color shifts.
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Figure 23: Comparing the total reflected energy R of a smooth dielectric η = 1.5 on
top of a Lambertian surface with reflectance kd. A recent approximate model (dashed)
proposes a linear relation between kd and total reflectance, which is not seen in the
exact solution that considers all orders of interreflection.

known as plique-à-jour.
We mounted the resulting swatches at the center of a spherical gantry. In our setup

(Figure 25), a stationary DSLR camera (Canon EOS 50D) measured the radiance leav-
ing the surface along the normal direction, while a rectangular area light source per-
formed a 180◦ sweep around the sample. For light each angle, we took an exposure
series and merged it into a HDR image. The black dots in Figure 26 show transmis-
sion and reflectance measurements for a milky light blue enamel swatch. The angle
θ = −90◦ on the horizontal axis corresponds to the camera and light source being
exactly opposite to each other and normal to the swatch. We did not record results
for angles |θ| < 30 and θ > 70 due to occlusion by the sample holder and camera,
respectively.

We replicated this lighting and viewing geometry in our simulation framework
and performed an automated search for a layer that best fits the observed data. The
enamel swatch was modeled as a rough dielectric slab filled with a Henyey-Greenstein
medium. Our enamels had 38% lead (II) oxide content, giving them an index of re-
fraction of approximately 1.586, and we manually estimated the roughness of the in-
terfaces to be around α ≈ 0.05. This left a three parameter family of models to be
searched involving the single scattering albedo, extinction, and anisotropy. The search
was greatly accelerated using the following observations:

1. The simulated radiance measurement corresponding to the θ = −90◦ transmis-
sion configuration decreases monotonically when increasing the extinction σt. A
simple bisection search can thus be used to select σt such that the simulated data
point matches the measurement (assuming that the other parameters are fixed).
This bisection constitutes the innermost loop of our search procedure.
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(a) A sample of jewelry enamels in powdered form (b) Enamel test swatch

Figure 24: Jewelry enamels come in a wide variety of colors and range from fully
absorptive to highly scattering. To acquire model parameters, we prepared 1 mm
thick enamel test swatches suitable for reflectance and transmission measurements.

Figure 25: Photograph of our measurement setup: a small swatch of enamel mounted
at the center of a spherical gantry is illuminated by a rotating rectangular light source,
while the camera measures the radiance along the normal direction
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Red channel summary:

rel. L1 error = 0.015974
g             = 0.890000
albedo        = 0.993494
eta           = 1.586000
tau           = 46.646118

Green channel summary:

rel. L1 error = 0.015004
g             = 0.750000
albedo        = 0.993003
eta           = 1.586000
tau           = 22.105927

Blue channel summary:

rel. L1 error = 0.021755
g             = 0.880000
albedo        = 0.997320
eta           = 1.586000
tau           = 49.218750

Figure 26: Our method can be used to determine suitable scattering parameters for
measured materials; here we fitted it to transmission and reflectance measurements of
a 1 mm layer of a milky light blue vitreous enamel used in jewelry design. This dielec-
tric had a known index of refraction and was very smooth, leaving only a three pa-
rameter family of models to be explored involving albedo, extinction, and anisotropy.
An automatic search found the fit shown as a blue curve, which is in good agreement
with the data (left to right: RGB, top: radiance, bottom: log radiance). Positions on the
horizontal axis correspond to different light source rotations (left half: transmission,
right half: reflection). The sharp increase near θ = 90◦ is due to specular reflection of
the light source.
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rel. L1 error = 0.047936
g             = 0.460000
albedo        = 0.416774
eta           = 1.586000
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Green channel summary:

rel. L1 error = 0.059593
g             = 0.380000
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Figure 27: Measurement results for three additional jewelry enamels (from top to bot-
tom): scattering milky red, absorbing cobalt red, absorbing cobalt blue.
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Figure 28: Left: photograph of a flower art piece manufactured by casting a 3D printed
wax model into gold and manually coating it with jewelry enamel. The petals use the
same enamel also measured in Figure 26. Note the subtle hue shifts due to varying
layer thickness. Right: a rendering using our framework.

2. The sum of all reflectance (θ > 0) measurement data points satisfies a similar
monotonic relationship with respect to the single scattering albedo parameter.
We also use a similar bisection search in this parameter to ensure that the sum
of reflectance measurements in the simulation matches that of the real measure-
ment. This constitutes the middle loop of the search procedure.

3. The behavior of the anisotropy parameter is more involved. In the outermost
loop, we therefore perform an exhaustive search from g = −0.99 to g = 0.99 in
increments of 0.01.

For every triplet of considered parameters, we ran a virtual measurement of a layer
with the same lighting and viewing configuration and computed the L1 difference with
respect to the real measurement, keeping track of the best-scoring set of parameters.
Figures 26 and 27 show the results obtained in this way. Note that all parameters are
given in the camera’s native color space to prevent gamut issues.

7.7 Applications of measured enamel parameters; predictive rendering

Being able to describe a material or coating in our framework leads to interesting pos-
sibilities, which we demonstrate on a flower art piece. This object (shown in Figure 28)
was manufactured by 3D printing a triangle mesh using an industrial hard wax (Fig-
ure 29 (a)). The resulting wax object was cast into 24k fine gold using a traditional
lost-wax casting process and polished (Figure 29 (b)). The gold surface was coated
using the scattering red and blue and absorbing red enamels previously measured.

Since we previously acquired scattering parameters of these enamels, it should be
possible to obtain a similar image by applying the coatings on top of a gold base
layer within our framework and assigning the resulting BRDF models to the different
parts of the triangle mesh. This is shown on the right side of Figure 28. Note that
this technically not a predictive rendering, since we still had to manually set several
parameters to match the photograph; in particular: the roughness of the gold base and
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(a) 3D printed wax object (b) Gold cast prior to enamel application

Figure 29: Intermediate steps while manufacturing the flower art piece in Figure 28.

coating, as well as the layer thickness. To simulate the effects of gravity, we defined
the layer thickness as a procedural texture that depends on the surface normal n:

T(n) = c0(c1 + (1− c1)|g · n|c2)

where c0, c2, c3 are suitable constants and n is the gravity vector.
Disregarding obvious differences in geometry that are due to the manual casting

and enamel application, we find that our model can faithfully capture the important
effects, including subtle color shifts due to variation in layer thickness.

We expect that more accurate predictions of the fine-scale geometry may be available
when using a carefully controlled industrial manufacturing process. Given such data
and estimates of roughness and layer thickness, our model could also be used for truly
predictive renderings with novel layer configurations.

7.8 Visual layer design tool

To conveniently assemble materials from layers and render them, we developed a
visual design tool shown in Figure 30. The supplementary video contains a screen
recording of an interactive material editing session using this tool.

8 Conclusion

We have presented a new framework for rendering layered materials. Our system
allows arbitrary layered combinations of any known analytic or measured isotropic
BSDF and produces new energy-conserving, reciprocal BSDFs with importance sam-
pling. All interreflections between layers are computed at the same level of accuracy
that is used for the primary light transport throughout the scene. This allows seamless
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Figure 30: We developed an interactive visual design tool to explore the space of lay-
ered BRDF models; the supplementary video shows an editing session using it.

level-of-detail transitions for practically authoring complex scenes as well as allow-
ing design of layered materials in a fashion that is closely tied to their physical con-
stituents, which is useful for rapid authoring of heterogeneous or temporally-varying
materials and essential for predictive rendering. Combining smooth and rough inter-
face BSDFs with volumetric scattering layers produces a large variety of new layered
BSDFs, including expressive generalizations of diffuse surfaces and asperity scattering
layers. We have demonstrated the practicality of our approach, which hinges critically
on novel methods for treating rough surfaces and scattering events in a stable fashion,
a new method for conserving energy at rough interfaces, and also sparse methods
and extrapolation techniques for compact storage and accelerated computation of our
BSDFs. Our system remains practical over a large range of model parameters, scaling
even to narrowly peaked reflectance functions, but cannot represent perfect mirrors or
ideally smooth glass, which are Dirac delta functions in direction. Ultimately, analytic
solutions exist for such cases that will be preferable to numerical approaches like ours.
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