
Consistency without
concurrency control

in large, dynamic systems
Marc Shapiro, INRIA & LIP6

Nuno Preguiça, Universidade Nova de Lisboa
Mihai Leția, ENS Lyon

Two things
 • no concurrency control
 • large dynamic

Consistency without concurrency control in large, dynamic systems

Consistency without
concurrency control

Object x, operation f(x)
• propose f(x1)
• eventually replay f(x2), f(x3), ...

If f || g commute: converges safely without
concurrency control

Commutative Replicated Data Type (CRDT):
Designed for commutative operations

2

x3

x1

x2

x f (x1)

g(x2)

f (x3)

g(x1)

g(x3)

Not same order at 1 and 2?
OK if
 • concurrent f and g commute
Assuming causal delivery

Consistency without concurrency control in large, dynamic systems

A sequence CRDT
Treedoc = sequence of elements:

• insert-at-pos, delete
• Commutative when concurrent
• Minimise overhead
• Scalable

A commutative replicated data type for
cooperative editing, ICDCS 2009

Focus today:
• Garbage collection
• vs. scale

3

I will just skim the surface of the Treedoc design
Refer to ICDCS paper for the details

Consistency without concurrency control in large, dynamic systems

Commutative updates

insert adds leaf ⇒ non-destructive, TIDs don’t change

4

1

1

0

Naming tree: minimal, self-adjusting: logarithmic
TID: path = [0|1]*
Contents: infix order

’

0
L

0

Delete: tombstone, TIDs don't change

= I N R I AL ’ L

I

R

A

N I

Thanks to non-destructive updates, immutable TIDs: concurrent updates commute
Efficient: Data structures and TID lengths logarithmic *if balanced*
Ignoring lots of details, e.g. concurrent inserts at same position (see paper)

Consistency without concurrency control in large, dynamic systems

Wikipedia GWB page: space
overhead

5
×10 revisions

kB serialised

Treedoc

wikidoc

GWB: most edited page
Edits translated into treedoc insert/deletes
 • Tree unbalanced, long TIDs, lots of tombstones: not logarathmic

Consistency without concurrency control in large, dynamic systems

Rebalance

6

I

R

A

N

’

L I

= L ' I N R I

I

R

A

N

’

L I

= L ' I N R I

In this example rebalancing is not spectacular.
Imagine a deep unbalanced tree with lots of tombstones: large effect.
Why rebalance:
 • Unbalanced tree costs time, space
 • Long TIDs
 • Tombstone overhead

Consistency without concurrency control in large, dynamic systems

= L ' I N R I !!!

Rebalance

Invalidates TIDs:
• Frame of reference = epoch
• Requires agreement
• Pervasive!

- e.g. Vector Clocks
7

I R

N

’

L

I

•

= L ' I N R I

I

R

A

N

’

L I

= L ' I N R I

!!!

TID changed: R was ε, now 10
Pervasive problem:
 • asynchronous updates ==> old data structures
 • see cleaning up Vector Clocks
(Background colour indicates epoch)

Consistency without concurrency control in large, dynamic systems

Rebalance in large, dynamic
systems

Rebalance requires consensus
Consensus requires small, stable membership

• Large communities?!
• Dynamic scenarios?!

Solution: two tiers
• Core: rebalancing (and updates)
• Nebula: updates (and rebalancing)
• Migration protocol

8

Core: controls rebalancing

Consistency without concurrency control in large, dynamic systems

Core Nebula

Group membership
Small, stable
Rebalance:
• Unanimous agreement

(2-phase commit)
• All core sites in same

epoch

9

Arbitrary membership
Large, dynamic
Communicate with sites in
same epoch only

Catch-up to rebalance, join
core epoch

Migrate core to nebula: just leave group

Consistency without concurrency control in large, dynamic systems

Core Nebula

10

Arbitrary membership
Large, dynamic
Communicate with sites in
same epoch only

Catch-up to rebalance, join
core epoch

Group membership
Small, stable
Rebalance:
• Unanimous agreement

(2-phase commit)
• All core sites in same

epoch

Migrate from nebula to core: migrate to core epoch + join group

Consistency without concurrency control in large, dynamic systems

Catch-up protocol summary

11

Core Nebula

Send old updates

replay core's updates

Send rebalance

Replay rebalance,
ignoring nebula updates.

Transform nebula updates.

Send transformed updates.
Replay nebula updates

Here is the basic insight to the migration protocol
• Replay core's updates: N now in same state as C before rebalance
• Replay rebalance: *ignoring concurrent N updates*, has same effect as in C ==> same TIDs, same
epoch
• Transform buffer: now ready to be replayed in C (in different order, but that's OK since they
commute)
• N now in C state, can join the core or remain in nebula

Furthermore updates are idempotent (multiple catch-ups cause no harm)

Consistency without concurrency control in large, dynamic systems

Catch-up protocol

12

I

R

N I

I

R

A

N

’

L I

Core Site Nebula Site

del(1) ins(L,00)
ins(',001)

del(1)

A

ins(L,00)
ins(',001)

del in old epoch ins + ins in
old epoch
rebalance starts new epoch

Consistency without concurrency control in large, dynamic systems

rebalance

Catch-up protocol

13

I

R

N I

I

R

A

N

’

L I

Core Site Nebula Site
ins(L,00)
ins(',001)

A

del(1)
rebalance

ins(L,00)
ins(',001)

del in old epoch ins + ins in
old epoch
rebalance starts new epoch

Consistency without concurrency control in large, dynamic systems

Catch-up protocol

14

I R

N

I

•

• •

I

R

N

’

L I

A

Core Site Nebula Site

del(1)
rebalance

ins(L,00)
ins(',001)

white = old epoch
pink = new epoch

Consistency without concurrency control in large, dynamic systems

Catch-up protocol

15

’

L

del(1)
rebalance

del(1)
rebalance

ins(L,00)
ins(',001)

I

R

N I

A

I R

N

I

•

• •

Core Site Nebula Site

del uttered in old epoch ==> can send to S S replays del;
now up to date with Core
send rebalance S replays rebalance;
 intervening ins move;
 S now in new epoch

Consistency without concurrency control in large, dynamic systems

Catch-up protocol

16

ins(L,000)
ins(',0001)

I

’

L

’

L

I R

N

I

•

• •I R

N

I

•

• •

Core Site Nebula Site

ins(L,000)
ins(',0001)

 ins arguments transformed to new epoch

Core replays ins

Consistency without concurrency control in large, dynamic systems

Summary

CRDT:
• Convergence ensured
• Design for commutativity

GC cannot be ignored
• Requires commitment
• Pervasive issue

Large-scale commitment:
• Core / Nebula
• To synchronise: catch-up

+ migration

17

CRDT = non-locking synchronisation in weak memory model

Consistency without concurrency control in large, dynamic systems

Future work

More CRDTs
Understanding CRDTs: what invariants can be

CRDTized
Approximations of CRDTs
Data types for consistent cloud computing

without concurrency control

18

Consistency without concurrency control in large, dynamic systems 19

