
1

Data Serving in the Cloud

Raghu Ramakrishnan
Chief Scientist, Audience and Cloud Computing

Brian Cooper
Adam Silberstein

Utkarsh Srivastava

Yahoo! Research

Joint work with the Sherpa team in Cloud Computing

2

Outline

• Clouds
• Scalable serving—the new landscape

– Very Large Scale Distributed systems (VLSD)
• Yahoo!’s PNUTS/Sherpa
• Comparison of several systems

– Preview of upcoming Y! Cloud Serving (YCS)
benchmark

3

Types of Cloud Services

• Two kinds of cloud services:
– Horizontal (“Platform”) Cloud Services

• Functionality enabling tenants to build applications or new
services on top of the cloud

– Functional Cloud Services
• Functionality that is useful in and of itself to tenants. E.g.,

various SaaS instances, such as Saleforce.com; Google
Analytics and Yahoo!’s IndexTools; Yahoo! properties aimed
at end-users and small businesses, e.g., flickr, Groups, Mail,
News, Shopping

• Could be built on top of horizontal cloud services or from
scratch

• Yahoo! has been offering these for a long while (e.g., Mail for
SMB, Groups, Flickr, BOSS, Ad exchanges, YQL)

5

Yahoo! Horizontal Cloud Stack
Pr

ov
is

io
ni

ng
 (

Se
lf-

se
rv

e)

Horizontal Cloud Services …YCS YCPI Brooklyn

EDGE
M

on
it

or
in

g/
M

et
er

in
g/

Se
cu

ri
ty

Horizontal Cloud Services…Hadoop

BATCH STORAGE

Horizontal Cloud Services…PNUTS/Sherpa MOBStor

OPERATIONAL STORAGE

Horizontal Cloud ServicesVM/OS …

APP

Horizontal Cloud ServicesVM/OS yApache

WEB

D
at

a
H

ig
hw

ay

Serving Grid

PHP App Engine

6

Cloud-Power @ Yahoo!

Ads
Optimization

Content
Optimization

Search
Index

Image/Video
Storage &
Delivery

Machine
Learning
(e.g. Spam

filters)

Attachment
Storage

7

Yahoo!’s Cloud:
Massive Scale, Geo-Footprint

• Massive user base and engagement
– 500M+ unique users per month
– Hundreds of petabyte of storage
– Hundreds of billions of objects
– Hundred of thousands of requests/sec

• Global
– Tens of globally distributed data centers
– Serving each region at low latencies

• Challenging Users
– Downtime is not an option (outages cost $millions)
– Very variable usage patterns

8

New in 2010!
• SIGMOD and SIGOPS are starting a new annual

conference (co-located with SIGMOD in 2010):

ACM Symposium on Cloud Computing (SoCC)
PC Chairs: Surajit Chaudhuri & Mendel Rosenblum
GC: Joe Hellerstein Treasurer: Brian Cooper

• Steering committee: Phil Bernstein, Ken Birman,
Joe Hellerstein, John Ousterhout, Raghu
Ramakrishnan, Doug Terry, John Wilkes

9

VERY LARGE SCALE
DISTRIBUTED (VLSD)
DATA SERVING

ACID or BASE? Litmus tests are colorful, but the picture is cloudy

10

Databases and Key-Value Stores

http://browsertoolkit.com/fault-tolerance.png

http://browsertoolkit.com/fault-tolerance.png�
http://browsertoolkit.com/fault-tolerance.png�
http://browsertoolkit.com/fault-tolerance.png�

11

Web Data Management

Large data analysis
(Hadoop)

Structured record
storage

(PNUTS/Sherpa)

Blob storage
(MObStor)

•Warehousing
•Scan
oriented
workloads

•Focus on
sequential
disk I/O

•$ per cpu
cycle

•CRUD
•Point lookups
and short
scans

•Index
organized
table and
random I/Os

•$ per latency

•Object
retrieval and
streaming

•Scalable file
storage

•$ per GB
storage &
bandwidth

12

The World Has Changed

• Web serving applications need:
– Scalability!

• Preferably elastic
– Flexible schemas
– Geographic distribution
– High availability
– Reliable storage

• Web serving applications can do without:
– Complicated queries
– Strong transactions

• But some form of consistency is still desirable

13

Typical Applications

• User logins and profiles
– Including changes that must not be lost!

• But single-record “transactions” suffice

• Events
– Alerts (e.g., news, price changes)
– Social network activity (e.g., user goes offline)
– Ad clicks, article clicks

• Application-specific data
– Postings in message board
– Uploaded photos, tags
– Shopping carts

14

Data Serving in the Y! Cloud

Simple Web Service API’s

Database

PNUTS /
SHERPA

Search

Vespa

Messaging
Tribble

Storage

MObStorForeign key

photo → listing

FredsList.com application

ALTER Listings
MAKE CACHEABLE

Compute

Grid

Batch export

Caching

memcached

1234323,
transportation,
For sale: one
bicycle, barely
used

5523442,
childcare,
Nanny
available in
San Jose

DECLARE DATASET Listings AS
(ID String PRIMARY KEY,
Category String,
Description Text)

32138,
camera,
Nikon
D40,
USD 300

15

VLSD Data Serving Stores
• Must partition data across machines

– How are partitions determined?
– Can partitions be changed easily? (Affects elasticity)
– How are read/update requests routed?
– Range selections? Can requests span machines?

• Availability: What failures are handled?
– With what semantic guarantees on data access?

• (How) Is data replicated?
– Sync or async? Consistency model? Local or geo?

• How are updates made durable?
• How is data stored on a single machine?

16

The CAP Theorem

• You have to give up one of the following in
a distributed system (Brewer, PODC 2000;
Gilbert/Lynch, SIGACT News 2002):
– Consistency of data

• Think serializability
– Availability

• Pinging a live node should produce results
– Partition tolerance

• Live nodes should not be blocked by partitions

17

Approaches to CAP
• “BASE”

– No ACID, use a single version of DB, reconcile later
• Defer transaction commit

– Until partitions fixed and distr xact can run
• Eventual consistency (e.g., Amazon Dynamo)

– Eventually, all copies of an object converge
• Restrict transactions (e.g., Sharded MySQL)

– 1-M/c Xacts: Objects in xact are on the same machine
– 1-Object Xacts: Xact can only read/write 1 object

• Object timelines (PNUTS)

http://www.julianbrowne.com/article/viewer/brewers-cap-theorem

18
18

“I want a big, virtual database”

“What I want is a robust, high performance virtual
relational database that runs transparently over a
cluster, nodes dropping in and out of service at will,
read-write replication and data migration all done
automatically.

I want to be able to install a database on a server
cloud and use it like it was all running on one
machine.”

-- Greg Linden’s blog

19

PNUTS /

SHERPA
To Help You Scale Your Mountains of Data

Y! CCDI

20

Yahoo! Serving Storage Problem

– Small records – 100KB or less
– Structured records – Lots of fields, evolving
– Extreme data scale - Tens of TB
– Extreme request scale - Tens of thousands of requests/sec
– Low latency globally - 20+ datacenters worldwide
– High Availability - Outages cost $millions
– Variable usage patterns - Applications and users change

20

21

E 75656 C

A 42342 E
B 42521 W
C 66354 W
D 12352 E

F 15677 E

What is PNUTS/Sherpa?

E 75656 C

A 42342 E
B 42521 W
C 66354 W
D 12352 E

F 15677 E

CREATE TABLE Parts (
ID VARCHAR,
StockNumber INT,
Status VARCHAR
…

)

Parallel database Geographic replication

Structured, flexible schema

Hosted, managed infrastructure

A 42342 E
B 42521 W
C 66354 W
D 12352 E
E 75656 C
F 15677 E

21

22

What Will It Become?

E 75656 C

A 42342 E
B 42521 W
C 66354 W
D 12352 E

F 15677 E

E 75656 C

A 42342 E
B 42521 W
C 66354 W
D 12352 E

F 15677 E

E 75656 C

A 42342 E
B 42521 W
C 66354 W
D 12352 E

F 15677 E

Indexes and views

23

Scalability
• Thousands of machines
• Easy to add capacity
• Restrict query language to avoid costly queries

Geographic replication
• Asynchronous replication around the globe
• Low-latency local access

High availability and fault tolerance
• Automatically recover from failures
• Serve reads and writes despite failures

Design Goals

23

Consistency
• Per-record guarantees
• Timeline model
• Option to relax if needed

Multiple access paths
• Hash table, ordered table
• Primary, secondary access

Hosted service
• Applications plug and play
• Share operational cost

24

Technology Elements

PNUTS
• Query planning and execution
• Index maintenance

Distributed infrastructure for tabular data
• Data partitioning
• Update consistency
• Replication

YDOT FS
• Ordered tables

Applications

Tribble
• Pub/sub messaging

YDHT FS
• Hash tables

Zookeeper
• Consistency service

YC
A:

 A
ut

ho
riz

at
io

n

PNUTS API Tabular API

24

25

PNUTS: Key Components

• Maintains map from
database.table.key-to-
tablet-to-SU

• Provides load balancing

• Caches the maps from the TC
• Routes client requests to

correct SU

• Stores records
• Services get/set/delete

requests

25

26

Storage
units

Routers

Tablet Controller

REST API

Clients

Local region Remote regions

Tribble

Detailed Architecture

26

27

DATA MODEL

27

28

Data Manipulation

• Per-record operations
– Get
– Set
– Delete

• Multi-record operations
– Multiget
– Scan
– Getrange

• Web service (RESTful) API

28

29

Tablets—Hash Table

Apple

Lemon

Grape

Orange

Lime

Strawberry

Kiwi

Avocado

Tomato

Banana

Grapes are good to eat

Limes are green

Apple is wisdom

Strawberry shortcake

Arrgh! Don’t get scurvy!

But at what price?

How much did you pay for this lemon?

Is this a vegetable?

New Zealand

The perfect fruit

Name Description Price

$12

$9

$1

$900

$2

$3

$1

$14

$2

$8

0x0000

0xFFFF

0x911F

0x2AF3

29

30

Tablets—Ordered Table

30

Apple

Banana

Grape

Orange

Lime

Strawberry

Kiwi

Avocado

Tomato

Lemon

Grapes are good to eat

Limes are green

Apple is wisdom

Strawberry shortcake

Arrgh! Don’t get scurvy!

But at what price?

The perfect fruit

Is this a vegetable?

How much did you pay for this lemon?

New Zealand

$1

$3

$2

$12

$8

$1

$9

$2

$900

$14

Name Description Price
A

Z

Q

H

31

Flexible Schema

Posted date Listing id Item Price

6/1/07 424252 Couch $570
6/1/07 763245 Bike $86
6/3/07 211242 Car $1123
6/5/07 421133 Lamp $15

Color

Red

Condition

Good

Fair

32
32

Primary vs. Secondary Access

Posted date Listing id Item Price
6/1/07 424252 Couch $570
6/1/07 763245 Bike $86
6/3/07 211242 Car $1123
6/5/07 421133 Lamp $15

Price Posted date Listing id
15 6/5/07 421133
86 6/1/07 763245
570 6/1/07 424252
1123 6/3/07 211242

Primary table

Secondary index

Planned functionality

33

Index Maintenance

• How to have lots of interesting indexes
and views, without killing performance?

• Solution: Asynchrony!
– Indexes/views updated asynchronously when

base table updated

34

PROCESSING
READS & UPDATES

34

35

Updates

1
Write key k

2
Write key k7

Sequence # for key k

8

Sequence # for key k

SU SU SU

3
Write key k

4

5
SUCCESS

6
Write key k

Routers
Message brokers

35

36

Accessing Data

36

SUSU SU

1
Get key k

2
Get key k3 Record for key k

4 Record for key k

37

Bulk Read

37

SU
Scatter/
gather
server

SU SU

1
{k1, k2, … kn}

2Get k1

Get k2 Get k3

38

Storage unit 1 Storage unit 2 Storage unit 3

Range Queries in YDOT

• Clustered, ordered retrieval of records

Storage unit 1
Canteloupe

Storage unit 3
Lime

Storage unit 2
Strawberry

Storage unit 1

Router

Apple
Avocado
Banana
Blueberry

Canteloupe
Grape
Kiwi
Lemon

Lime
Mango
Orange

Strawberry
Tomato
Watermelon

Apple
Avocado
Banana
Blueberry

Canteloupe
Grape
Kiwi
Lemon

Lime
Mango
Orange

Strawberry
Tomato
Watermelon

Grapefruit…Pear?
Grapefruit…Lime?

Lime…Pear?

Storage unit 1
Canteloupe

Storage unit 3
Lime

Storage unit 2
Strawberry

Storage unit 1

39

Bulk Load in YDOT

• YDOT bulk inserts can cause performance
hotspots

• Solution: preallocate tablets

40

ASYNCHRONOUS REPLICATION
AND CONSISTENCY

40

41

Asynchronous Replication

41

42

Consistency Model

• If copies are asynchronously updated,
what can we say about stale copies?
– ACID guarantees require synchronous updts
– Eventual consistency: Copies can drift apart,

but will eventually converge if the system is
allowed to quiesce

• To what value will copies converge?
• Do systems ever “quiesce”?

– Is there any middle ground?

43

Example: Social Alice

User Status
Alice Busy

West East

User Status
Alice Free

User Status
Alice ???

User Status
Alice ???

User Status
Alice Busy

User Status
Alice ___

Busy

Free

Free

Record Timeline

(Network fault,
updt goes to East)

(Alice logs on)

44

• Goal: Make it easier for applications to reason about updates
and cope with asynchrony

• What happens to a record with primary key “Alice”?

PNUTS Consistency Model

44

Time

Record
inserted

Update
Update

Update UpdateUpdate Delete

Timev. 1 v. 2 v. 3 v. 4 v. 5 v. 7
Generation 1

v. 6 v. 8

Update Update

As the record is updated, copies may get out of sync.

45

Time
v. 1 v. 2 v. 3 v. 4 v. 5 v. 7

Generation 1
v. 6 v. 8

Write

Current
version

Stale versionStale version

PNUTS Consistency Model

45

Achieved via per-record primary copy protocol
(To maximize availability, record masterships automaticlly
transferred if site fails)

Can be selectively weakened to eventual consistency
(local writes that are reconciled using version vectors)

46

Time
v. 1 v. 2 v. 3 v. 4 v. 5 v. 7

Generation 1
v. 6 v. 8

Write if = v.7

ERROR

Current
version

Stale versionStale version

PNUTS Consistency Model

46

Test-and-set writes facilitate per-record transactions

47

Time
v. 1 v. 2 v. 3 v. 4 v. 5 v. 7

Generation 1
v. 6 v. 8

Current
version

Stale versionStale version

Read

PNUTS Consistency Model

47

In general, reads are served using a local copy

48

Time
v. 1 v. 2 v. 3 v. 4 v. 5 v. 7

Generation 1
v. 6 v. 8

Read up-to-date

Current
version

Stale versionStale version

PNUTS Consistency Model

48

But application can request and get current version

49

Time
v. 1 v. 2 v. 3 v. 4 v. 5 v. 7

Generation 1
v. 6 v. 8

Read ≥ v.6

Current
version

Stale versionStale version

PNUTS Consistency Model

49

Or variations such as “read forward”—while copies may lag the
master record, every copy goes through the same sequence of changes

50

OPERABILITY

50

51
51

Server 1 Server 2 Server 3 Server 4

Bike $866/2/07 636353

Chair $106/5/07 662113

Distribution

Couch $5706/1/07 424252

Car $11236/1/07 256623

Lamp $196/7/07 121113

Bike $566/9/07 887734

Scooter $186/11/07 252111

Hammer $80006/11/07 116458

Distribution for parallelismData shuffling for load balancing

52

Tablet Splitting and Balancing

52

Each storage unit has many tablets (horizontal partitions of the table)

Tablets may grow over timeOverfull tablets split

Storage unit may become a hotspot

Shed load by moving tablets to other servers

Storage unit
Tablet

53

Consistency Techniques

• Per-record mastering
– Each record is assigned a “master region”

• May differ between records
– Updates to the record forwarded to the master region
– Ensures consistent ordering of updates

• Tablet-level mastering
– Each tablet is assigned a “master region”
– Inserts and deletes of records forwarded to the master region
– Master region decides tablet splits

• These details are hidden from the application
– Except for the latency impact!

5454

Mastering

A 42342 E
B 42521 W
C 66354 W
D 12352 E
E 75656 C
F 15677 E

A 42342 E
B 42521 W
C 66354 W
D 12352 E
E 75656 C
F 15677 E

A 42342 E
B 42521 W
C 66354 W
D 12352 E
E 75656 C
F 15677 E

A 42342 E
B 42521 E
C 66354 W
D 12352 E
E 75656 C
F 15677 E

C 66354 W
B 42521 E
A 42342 E

D 12352 E
E 75656 C
F 15677 E

5555

Record vs. Tablet Master

A 42342 E
B 42521 W
C 66354 W
D 12352 E
E 75656 C
F 15677 E

A 42342 E
B 42521 W
C 66354 W
D 12352 E
E 75656 C
F 15677 E

A 42342 E
B 42521 W
C 66354 W
D 12352 E
E 75656 C
F 15677 E

A 42342 E
B 42521 E
C 66354 W
D 12352 E
E 75656 C
F 15677 E

C 66354 W
B 42521 E
A 42342 E

D 12352 E
E 75656 C
F 15677 E

Record master serializes updates

Tablet master serializes inserts

5656

Coping With Failures

A 42342 E
B 42521 W
C 66354 W
D 12352 E
E 75656 C
F 15677 E A 42342 E

B 42521 W
C 66354 W
D 12352 E
E 75656 C
F 15677 E

A 42342 E
B 42521 W
C 66354 W
D 12352 E
E 75656 C
F 15677 E

X X
OVERRIDE W → E

57

Further PNutty Reading

Efficient Bulk Insertion into a Distributed Ordered Table (SIGMOD 2008)
Adam Silberstein, Brian Cooper, Utkarsh Srivastava, Erik Vee,
Ramana Yerneni, Raghu Ramakrishnan

PNUTS: Yahoo!'s Hosted Data Serving Platform (VLDB 2008)
Brian Cooper, Raghu Ramakrishnan, Utkarsh Srivastava,
Adam Silberstein, Phil Bohannon, Hans-Arno Jacobsen,
Nick Puz, Daniel Weaver, Ramana Yerneni

Asynchronous View Maintenance for VLSD Databases (SIGMOD 2009)
Parag Agrawal, Adam Silberstein, Brian F. Cooper, Utkarsh Srivastava and
Raghu Ramakrishnan

Cloud Storage Design in a PNUTShell
Brian F. Cooper, Raghu Ramakrishnan, and Utkarsh Srivastava
Beautiful Data, O’Reilly Media, 2009

Adaptively Parallelizing Distributed Range Queries (VLDB 2009)
Ymir Vigfusson, Adam Silberstein, Brian Cooper, Rodrigo Fonseca

58

COMPARING SOME
CLOUD SERVING STORES

Green Apples and Red Apples

59

Motivation

• Many “cloud DB” and “nosql” systems out there
– PNUTS
– BigTable

• HBase, Hypertable, HTable
– Azure
– Cassandra
– Megastore (behind Google AppEngine)
– Amazon Web Services

• S3, SimpleDB, EBS
– And more: CouchDB, Voldemort, etc.

• How do they compare?
– Feature tradeoffs
– Performance tradeoffs
– Not clear!

60

The Contestants

• Baseline: Sharded MySQL
– Horizontally partition data among MySQL servers

• PNUTS/Sherpa
– Yahoo!’s cloud database

• Cassandra
– BigTable + Dynamo

• HBase
– BigTable + Hadoop

61

SHARDED MYSQL

61

62

Architecture

• Our own implementation of sharding

Shard Server

MySQL

Shard Server

MySQL

Shard Server

MySQL

Shard Server

MySQL

Client Client Client ClientClient

63

Shard Server
• Server is Apache + plugin + MySQL

– MySQL schema: key varchar(255), value mediumtext
– Flexible schema: value is blob of key/value pairs

• Why not direct to MySQL?
– Flexible schema means an update is:

• Read record from MySQL
• Apply changes
• Write record to MySQL

– Shard server means the read is local
• No need to pass whole record over network to change one field

MySQL

Apache Apache Apache Apache … Apache (100 processes)

64

Client

• Application plus shard client
• Shard client

– Loads config file of servers
– Hashes record key
– Chooses server responsible for hash range
– Forwards query to server

Client

Application

Shard client

Q?

Hash() Server map CURL

65

Pros and Cons

• Pros
– Simple
– “Infinitely” scalable
– Low latency
– Geo-replication

• Cons
– Not elastic (Resharding is hard)
– Poor support for load balancing
– Failover? (Adds complexity)
– Replication unreliable (Async log shipping)

66

Azure SDS

• Cloud of SQL Server instances
• App partitions data into instance-sized

pieces
– Transactions and queries within an instance

SDS InstanceData

Storage Per-field indexing

67

Google MegaStore

• Transactions across entity groups
– Entity-group: hierarchically linked records

• Ramakris
• Ramakris.preferences
• Ramakris.posts
• Ramakris.posts.aug-24-09

– Can transactionally update multiple records within an entity
group

• Records may be on different servers
• Use Paxos to ensure ACID, deal with server failures

– Can join records within an entity group
– Reportedly, moving to ordered, async replication w/o ACID

• Other details
– Built on top of BigTable
– Supports schemas, column partitioning, some indexing

Phil Bernstein, http://perspectives.mvdirona.com/2008/07/10/GoogleMegastore.aspx

68

PNUTS

68

69

Architecture

Storage
units

REST API

Clients

Log servers

Routers

Tablet controller

70

Routers

• Direct requests to storage unit
– Decouple client from storage layer

• Easier to move data, add/remove servers, etc.

– Tradeoff: Some latency to get increased flexibility

Router

Y! Traffic Server

PNUTS Router plugin

71

Msg/Log Server

• Topic-based, reliable publish/subscribe
– Provides reliable logging
– Provides intra- and inter-datacenter replication

Log server

Disk

Pub/sub hub

Disk

Log server

Pub/sub hub

72

Pros and Cons

• Pros
– Reliable geo-replication
– Scalable consistency model
– Elastic scaling
– Easy load balancing

• Cons
– System complexity relative to sharded MySQL to

support geo-replication, consistency, etc.
– Latency added by router

73

HBASE

73

74

Architecture

Disk

HRegionServer

Client Client Client ClientClient

HBaseMaster

REST API

Disk

HRegionServer

Disk

HRegionServer

Disk

HRegionServer

Java Client

75

HRegion Server

• Records partitioned by column family into HStores
– Each HStore contains many MapFiles

• All writes to HStore applied to single memcache
• Reads consult MapFiles and memcache
• Memcaches flushed as MapFiles (HDFS files) when full
• Compactions limit number of MapFiles

HRegionServer

HStore

MapFiles

Memcachewrites

Flush to disk
reads

76

Pros and Cons

• Pros
– Log-based storage for high write throughput
– Elastic scaling
– Easy load balancing
– Column storage for OLAP workloads

• Cons
– Writes not immediately persisted to disk
– Reads cross multiple disk, memory locations
– No geo-replication
– Latency/bottleneck of HBaseMaster when using

REST

77

CASSANDRA

77

78

Architecture

• Facebook’s storage system
– BigTable data model
– Dynamo partitioning and consistency model
– Peer-to-peer architecture

Cassandra node

Disk

Cassandra node

Disk

Cassandra node

Disk

Cassandra node

Disk

Client Client Client ClientClient

79

Routing

• Consistent hashing, like Dynamo or Chord
– Server position = hash(serverid)
– Content position = hash(contentid)
– Server responsible for all content in a hash interval

Server

Responsible hash interval

80

Cassandra Server

• Writes go to log and memory table
• Periodically memory table merged with disk table

Cassandra node

Disk

RAM

Log SSTable file

Memtable

Update

(later)

81

Pros and Cons

• Pros
– Elastic scalability
– Easy management

• Peer-to-peer configuration
– BigTable model is nice

• Flexible schema, column groups for partitioning, versioning, etc.
– Eventual consistency is scalable

• Cons
– Eventual consistency is hard to program against
– No built-in support for geo-replication

• Gossip can work, but is not really optimized for, cross-datacenter
– Load balancing?

• Consistent hashing limits options
– System complexity

• P2P systems are complex; have complex corner cases

82

Cassandra Findings

• Tunable memtable size
– Can have large memtable flushed less frequently, or

small memtable flushed frequently
– Tradeoff is throughput versus recovery time

• Larger memtable will require fewer flushes, but will
take a long time to recover after a failure

• With 1GB memtable: 45 mins to 1 hour to restart
• Can turn off log flushing

– Risk loss of durability
• Replication is still synchronous with the write

– Durable if updates propagated to other servers that
don’t fail

83

NUMBERS

Thanks to Ryan Rawson & J.D. Cryans for advice on HBase
configuration, and Jonathan Ellis on Cassandra

83

84

Overview
• Setup

– Six server-class machines
• 8 cores (2 x quadcore) 2.5 GHz CPUs, RHEL 4, Gigabit ethernet
• 8 GB RAM
• 6 x 146GB 15K RPM SAS drives in RAID 1+0

– Plus extra machines for clients, routers, controllers, etc.
• Workloads

– 120 million 1 KB records = 20 GB per server
– Write heavy workload: 50/50 read/update
– Read heavy workload: 95/5 read/update

• Metrics
– Latency versus throughput curves

• Caveats
– Write performance would be improved for PNUTS, Sharded ,and

Cassandra with a dedicated log disk
– We tuned each system as well as we knew how

85

Results
Read latency vs. actual throughput, 95/5 read/write

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000 7000

Throughput (ops/sec)

La
te

nc
y

(m
s)

PNUTS Sharded Cassandra Hbase

86

Results
Write latency vs. actual throughput, 95/5 read/write

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000 6000 7000

Throughput (ops/sec)

La
te

nc
y

(m
s)

PNUTS Sharded Cassandra HBase

87

Results

88

Results

89

Qualitative Comparison

• Storage Layer
– File Based: HBase, Cassandra
– MySQL: PNUTS, Sharded MySQL

• Write Persistence
– Writes committed synchronously to disk: PNUTS, Cassandra,

Sharded MySQL
– Writes flushed asynchronously to disk: HBase (current version)

• Read Pattern
– Find record in MySQL (disk or buffer pool): PNUTS, Sharded

MySQL
– Find record and deltas in memory and on disk: HBase,

Cassandra

90

Qualitative Comparison

• Replication (not yet utilized in benchmarks)
– Intra-region: HBase, Cassandra
– Inter- and intra-region: PNUTS
– Inter- and intra-region: MySQL (but not guaranteed)

• Mapping record to server
– Router: PNUTS, HBase (with REST API)
– Client holds mapping: HBase (java library), Sharded

MySQL
– P2P: Cassandra

91

YCS Benchmark
• Will distribute Java application, plus extensible benchmark suite

– Many systems have Java APIs
– Non-Java systems can support REST

Scenario file
• R/W mix
• Record size
• Data set
• …

Command-line parameters
• DB to use
• Target throughput
• Number of threads
• …

YCSB client

D
B

 c
lie

nt
Client

threads

Stats

Scenario
executor C

lo
ud

 D
B

Extensible: plug in new clients
Extensible: define new scenarios

92

Benchmark Tiers

• Tier 1: Cluster performance
– Tests fundamental design independent of replication/scale-

out/availability

• Tier 2: Replication
– Local replication
– Geographic replication

• Tier 3: Scale out
– Scale out the number of machines by a factor of 10
– Scale out the number of replicas

• Tier 4: Availability
– Kill system components

If you’re interested in this, please contact me or cooperb@yahoo-inc.com

93

Shadoop

Sherpa
Hadoop

Adam Silberstein and the Sherpa
team in Y! Research and CCDI

94

Sherpa vs. HDFS

Sherpa HDFS

Shadoop Goals
1. Provide a batch-processing framework for Sherpa using Hadoop
2. Minimize/characterize penalty for reading/writing Sherpa vs. HDFS

Router

• Sherpa optimized for low-latency record-level access: B-trees
• HDFS optimized for batch-oriented access: File system
• At 50,000 feet the data stores appear similar

 Is Sherpa a reasonable backend for Hadoop for Sherpa users?

Name node

Client Client

95

Building Shadoop

Hadoop Tasks

scan(0x2-0x4)

scan(0xa-0xc)

scan(0x8-0xa)

scan(0x0-0x2)

scan(0xc-0xe)

Map
Sherpa

1. Split Sherpa table into hash ranges
2. Each Hadoop task assigned a range
3. Task uses Sherpa scan to retrieve

records in range
4. Task feeds scan results and feeds

records to map function

Input Output

Map or Reduce
Hadoop Tasks Sherpa

router
set
set
set
setset
set

1. Call Sherpa set to write output
1. No DOT range-clustering
2. Record at a time insert

Record
Reader

set

96

Use Cases

HDFS Sherpa

Bulk Load Sherpa Tables
Source data in HDFS

Map/Reduce, Pig
Output is servable content

Migrate Sherpa Tables
Between farms, code versions

Map/Reduce, Pig
Output is servable content

Validator Ops Tool
Ensure replicas are consistent

reads

Map/Reduce, Pig
Output is input to further analysis

Sherpa

Sherpa Sherpa

Sherpa Sherpa

HDFS

HDFS

Sherpa as Hadoop “cache”
Standard Hadoop in HDFS,
using Sherpa as a shared cache

HDFS

Sherpa

98

SYSTEMS
IN CONTEXT

98

99

Application Design Space

Records Files

Get a few
things

Scan
everything

Sherpa MObStor

Everest Hadoop

YMDB
MySQL

Filer

Oracle

BigTable

99

100

Comparison Matrix

H
as

h/
so

rt

D
yn

am
ic

Fa
ilu

re
s

ha
nd

le
d

R
ou

tin
g

D
ur

in
g

fa
ilu

re

PNUTS

MySQL

HDFS

BigTable

Dynamo

S
yn

c/
as

yn
c

Cassandra

Lo
ca

l/g
eo

C
on

si
st

en
cy

100

Partitioning

Megastore

Azure

H+S

H+S

Other

H+S

S

S

S

H

Y

Y

Y

Y

Y

N

N

Y

Cli

Rtr

Rtr

Rtr

P2P

P2P

Rtr

Cli

Availability

Colo+
server
Colo+
server

Colo+
server

Colo+
server

Colo+
server
Colo+
server

Colo+
server

Replication

Async

Sync

Sync

Sync+
Async

Sync

Async

Local+
geo

Local+
nearby

Async

Local+
nearby

Local+
nearby
Local+
nearby

Local+
nearby

Timeline +
Eventual

ACID

N/A (no
updates)

Multi-
version

Eventual

ACID/
other

ACID

D
ur

ab
ili

ty

Double
WAL

WAL

Triple
replication

Triple
replication

Triple
WAL

Triple
replication

WAL

Storage

R
ea

ds
/

w
rit

es

Buffer
pages

Buffer
pages

Files

LSM/
SSTable

LSM/
SSTable

LSM/
SSTable

Buffer
pages

Read+
write

Read+
write

Read+
write
Read+
write

Read+
write

Read+
write

Read Local+
nearby

Eventual WAL Buffer
pages

Sync LocalRead+
write

Server

101

Comparison Matrix

E
la

st
ic

O
pe

ra
bi

lit
y

G
lo

ba
l l

ow
la

te
nc

y

Av
ai

la
bi

lit
y

S
tru

ct
ur

ed
ac

ce
ss

Sherpa

Y! UDB

MySQL

Oracle

HDFS

BigTable

Dynamo
U

pd
at

es
Cassandra

C
on

si
st

en
cy

m

od
el

S
Q

L/
A

C
ID

101

102

QUESTIONS?

102

	Data Serving in the Cloud���Raghu Ramakrishnan�Chief Scientist, Audience and Cloud Computing���Brian Cooper�Adam Silberstein�Utkarsh Srivastava��Yahoo! Research��
	Outline
	Types of Cloud Services
	Yahoo! Horizontal Cloud Stack
	Cloud-Power @ Yahoo!
	Yahoo!’s Cloud: �Massive Scale, Geo-Footprint
	New in 2010!
	VERY LARGE SCALE DISTRIBUTED (VLSD) �DATA SERVING
	Databases and Key-Value Stores
	Web Data Management
	The World Has Changed
	Typical Applications
	Data Serving in the Y! Cloud
	VLSD Data Serving Stores
	The CAP Theorem
	Approaches to CAP
	“I want a big, virtual database”
	Slide Number 19
	Yahoo! Serving Storage Problem
	What is PNUTS/Sherpa?
	What Will It Become?
	Design Goals
	Technology Elements
	PNUTS: Key Components
	Detailed Architecture
	DATA MODEL
	Data Manipulation
	Tablets—Hash Table
	Tablets—Ordered Table
	Flexible Schema
	Primary vs. Secondary Access
	Index Maintenance
	PROCESSING�READS & UPDATES
	Updates
	Accessing Data
	Bulk Read
	Range Queries in YDOT
	Bulk Load in YDOT
	ASYNCHRONOUS REPLICATION AND CONSISTENCY
	Asynchronous Replication
	Consistency Model
	Example: Social Alice
	PNUTS Consistency Model
	PNUTS Consistency Model
	PNUTS Consistency Model
	PNUTS Consistency Model
	PNUTS Consistency Model
	PNUTS Consistency Model
	OPERABILITY
	Distribution
	Tablet Splitting and Balancing
	Consistency Techniques
	Mastering
	Record vs. Tablet Master
	Coping With Failures
	Further PNutty Reading
	COMPARING SOME�CLOUD SERVING STORES
	Motivation
	The Contestants
	SHARDED MYSQL
	Architecture
	Shard Server
	Client
	Pros and Cons
	Azure SDS
	Google MegaStore
	PNUTS
	Architecture
	Routers
	Msg/Log Server
	Pros and Cons
	HBASE
	Architecture
	HRegion Server
	Pros and Cons
	CASSANDRA
	Architecture
	Routing
	Cassandra Server
	Pros and Cons
	Cassandra Findings
	NUMBERS
	Overview
	Results
	Results
	Results
	Results
	Qualitative Comparison
	Qualitative Comparison
	YCS Benchmark
	Benchmark Tiers
	Shadoop
	Sherpa vs. HDFS
	Building Shadoop
	Use Cases
	SYSTEMS�IN CONTEXT
	Application Design Space
	Comparison Matrix
	Comparison Matrix
	QUESTIONS?

