
© 2009 IBM Corporation

A Unified Execution Model
for Cloud Computing

Eric Van Hensbergen & Phillip Stanley-Marbell - IBM Research
Noah Paul Evans - Alcatel-Lucent Bell-Labs
10 October 2009 - ACM SIGOPS LADIS 2009 Workshop

© 2009 IBM Corporation

A Unified Execution Model for Cloud Computing

Motivation

Clouds have renewed interest in flexible distributed models of interacting with computer
resources.

The true power of the cloud will only be realized by enabling cloud aware applications
and cloud aware operating systems which are able to directly leverage the power and
flexibility of the cloud as well as enabling reliability and scalability.

We believe that this is a systems problem best solved through standard interfaces and
system calls provided by the operating system in order to not couple the facility to
particular programming language or runtime middleware.

GOAL: break down the barriers between infrastructure management and traditional
operating system resource management, creating a cohesive interface to request,
manage and release resources from within the cloud.

2

PaaS

IaaS

SaaS

© 2009 IBM Corporation

A Unified Execution Model for Cloud Computing

Related Work

Distributed Operating Systems
–V, Amoeba, Eden, Cambridge Distributed Computing
System, etc.

XCPU & other HPC Distributed Middleware

Snowflock

PaaS
– Google App Engine, Microsoft Azure

3

© 2009 IBM Corporation

A Unified Execution Model for Cloud Computing

Implementation Overview

 Interfaces to provisioning, execution, monitoring and control maintained as a synthetic file
system

–UNIX proc -> Plan 9 Proc -> XCPU Proc -> UEM
Brasil Co-Operating System

–runs hosted on Linux, OSX, BSD, Windows, Plan 9
–exports interfaces into the native file system
–applications and runtimes can build library interfaces

Can use Zeroconf to locate other nodes or can be parameterized to contact a “parent”
Peer node UEM namespaces are union mounted allowing for transitive access to nodes on

separate network segments via gateway nodes
Modular Infrastructure with multiple levels of plug-ins

–Hierarchical Organization
–Policy Engines governing requests and manipulating in-flight resources
–Back-end resource providers (physical infrastructure, hypervisors, virtual machines)

4

© 2009 IBM Corporation

A Unified Execution Model for Cloud Computing

Synthetic File Systems

All interaction is through a hierarchy of synthetic file systems
–language independent & easily distributable
–natural aggregation and security models

Multiple hierarchical organizations with different scope rules are possible
–Canonical organization is typically based off network hierarchy
–Exploring task-based logical hierarchies combining logical nodes & threads

Parent levels provided aggregate interfaces for controlling children
Beyond static hierarchies - web inspired query paths can be used to perform provisioning and

aggregate control

5

% ls /proc/query/x86/gpus=1/mem=4G
will return a list of physical systems matching
0/ 1/ 2/
% echo kill > /proc/query/user=ericvh/ctl
will terminal all LPARs and/or threads belonging
to user ericvh
% echo cat /proc/query/os=linux/status
returns status of all Linux logical partitions
node01 up 10:35, 4 users, load average: 1.08
node02 up 05:23, 1 users, load average: 0.50
node03 down ...

© 2009 IBM Corporation

A Unified Execution Model for Cloud Computing

Different Organizational Models

6

 ericvh

ctl
info

worker00/

/proc/logical/

stderr
stdin
stdout

workerxx/

 clone
 map-reduce

 node01
 node02

 clone

clone

 ibm.com

ctl
info

0/

/proc/net/

stderr
stdin
stdout

n/

research

 www

 www-01
 www-02

clone

 rack01

ctl
info

0/

/proc/phys/

stderr
stdin
stdoutn/

 chassis01
 chassis02

 blade01

 lpar04
 clone

 clone

© 2009 IBM Corporation

A Unified Execution Model for Cloud Computing

Execution & Control Mechanisms

At leaf-level, the interface is very similar to the
XCPU2 [CLUSTERS 09] interface

 clone is used to establish a new instance
 ctl is a command console for controlling execution

and other provisioning operations (triggering
migration, network splicing, etc.)

ns provides fs/storage namespace definitions
env & args provide environment variables and

execution arguments
wait can be blocked upon to wait on program/

LPAR termination
debug subdirectory provides direct access to

memory, and as appropriate stack, registers, and
could be leveraged to provide direct access to
external debuggers (acid, gdb, etc.)

 stdin/stdout/stderr provide console for LPARS

7

 ctl

<pid>

 status

n/

stderr
stdin
stdout
ns
nsgroup

wait
args
debug/
env

clone

© 2009 IBM Corporation

A Unified Execution Model for Cloud Computing

Aggregation

Large Scale Distributed Systems
–Scale is principle research challenge

 Infrastructure topology best organized along natural aggregation points
–BG/P we have an I/O node for every 64 Compute Nodes
–Traditional Clusters can be organized by chassis or rack at similar density
–Modern virtualized environments typically have a Dom0 or Host as an aggregation point
–Multi-level dynamic aggregation also appealing for execution & other services [MTAGS08]

Aggregated Synthetic File System Interfaces
–Information and Control Files at all levels of the hierarchy
–Information based synthetic files provided aggregated output

• can be XML/s-rec style aggregation, or could be application/task specific
–Commands sent to control files multiplexed to lower control files

• can leverage broadcast/multicast or other interconnect optimizations
–Allows altering granularity based on workload requirement

8

!"#$%&

!"#$%&

!"#$%&'

!"#(#

!"#$%&'

!"#(#

!"#$%&'

!"#(#

!"#$%&

!"#$%&'

!"#(#

!"#$%&'

!"#(#

!"#$%&'

!"#(#

!"#$%&

!"#$%&'

!"#(#

!"#$%&'

!"#(#

!"#$%&'

!"#(#

!"#(#

!"#(#

!"#(#

!"#(#

© 2009 IBM Corporation

A Unified Execution Model for Cloud Computing

Abstracted Communications & Network Splicing
“This is the Unix philosophy. Write programs that do one thing and
do it well. Write programs to work together.” - Doug McIlroy

UNIX Pipelines
–cat file | sort -n -r | uniq | more

PUSH Multipipes [PODC09]
–ls |< cat | sort -n -r |#| uniq >| sort -n -r | more
–New shell operators

• |< - Fan Out Pipe (One to Many)
• |#| - Hash Pipe (Many to Many)
• >| - Fan In Pipe (Many to One)

Requires the ability to splice standard I/O between remote nodes
–need control abstractions within execution model to facilitate

Example:

9

proc102 | proc56 | proc256
usage: splice <proc_path> <src_fd> <local_fd>
% echo splice /proc/net/remote.com/102 1 0 > /proc/net/mybox.com/56/ctl
% echo splice /proc/net/mybox.com/56 1 0 > /proc/net/farther.com/256/ctl

© 2009 IBM Corporation

A Unified Execution Model for Cloud Computing

Policy Modules

Pluggable
–Can be user-defined, application-defined, and administrator defined

Protective
–keep rogue threads from allocating obnoxious number of resources

Task driven resource allocation
–eliminate double clutch (allocate node, execute task)
–probably should avoid task migration (historically hasn’t worked out)

• may be easier to migrate LPARs versus migrate tasks
–deriving resource requirements of a particular task may be difficult

Resource Management
–Consolidate LPARs from underutilized hardware
–Colocate LPARs with heavy communication

Resiliency
–spread out redundant LPARs to different availability domains

10

© 2009 IBM Corporation

A Unified Execution Model for Cloud Computing

Status & Future Work

Still undergoing rapid development/re-development
–Support for BlueGene/P both via Kittyhawk Linux & HARE Plan 9 Environments
–Preliminary support for EC2 compliant cloud APIs

Will be released as open-source once some degree of stability is achieved
–http://www.research.ibm.com/hare

Future Work
–Larger scale application deployments
–Integration with Eucalyptus environment
–Integration with a Virtual Machine as an additional level of the execution hierarchy
–Build a runtime environment on top of UEM

• Potentially combine UEM facilities with OpenCL or other language
–Integration of policy mechanisms/agents for load balancing, power aware, and migration

based optimization
–Integration of abstracted support nodes (file servers, database servers, etc.)
–Need policy models for dynamically adapting in the face of failure, resource changes
–Heterogeneous Architectures - GPU & Cell Hybrid Systems [PPAC09]

11

http://www.research.ibm.com/hare
http://www.research.ibm.com/hare

© 2009 IBM Corporation

A Unified Execution Model for Cloud Computing

Acknowledgements

This work has been supported in part by the Department of
Energy Office of Science Operating and Runtime Systems for
Extreme Scale Scientific Computation project under contract
#DE-FG02-08ER25851

Thanks! Questions?

12

© 2009 IBM Corporation

BACKUP SLIDES

© 2009 IBM Corporation

A Unified Execution Model for Cloud Computing

dot-dot-dot namespace shortcuts

14

 ericvh

ctl
info

worker00/

/proc/logical/

stderr
stdin
stdout

workerxx/

 clone
 map-reduce

 node01
 node02

 rack01

ctl
info

0/

/proc/phys/

stderr
stdin
stdoutn/

 chassis01
 chassis02

 blade01

 lpar04

 clone

clone
 clone

 clone

% pwd
/proc/logical/ericvh/map-reduce/
node02/worker00/
% cd .../phys
% pwd
/proc/phys/rack01/chassis02/blade01/
lpar04/0/

© 2009 IBM Corporation

A Unified Execution Model for Cloud Computing

15

Central Splicing

1 2

3
4

5

1 2

3
4

Distributed Splicing

5

Issues commands to
UEMs of hosts 1– 4
to initiate splices.

© 2009 IBM Corporation

A Unified Execution Model for Cloud Computing

Time Evolving File System

16

fileserver
main()

 new

ctl
data

0/

/appfs/

In
te

rf
ac

e
(fi

le
sy

st
em

)
Im

pl
em

en
ta

tio
n

(fi
le

se
rv

er
 p

ro
ce

ss
es

)

Fileserver
Process

GPU
accelerator

main()

fileserver
main()

Fileserver
Process

function call or
new process to

stream data to GPU
for processing

 new

ctl
data

0/

/appfs/

write

fileserver
main()

 new

ctl
data

0/

/appfs/

In
te

rf
ac

e
(fi

le
sy

st
em

)
Im

pl
em

en
ta

tio
n

(fi
le

se
rv

er
 p

ro
ce

ss
es

)

Fileserver
Process

fileserver
main()

Fileserver
Process

 new

ctl
data

n/

/gpufs/

write

 new

ctl
data

0/

/appfs/

call to UEM
system to splice

gpufs/n/data with
appfs/0/data

UEM

