
CLOUD9:
A SOFTWARE TESTING SERVICE

Liviu Ciortea, Cristian Zam!r,
Stefan Bucur, Vitaly Chipounov, George Candea

SOFTWARE TESTING

• Software testing is laborious and expensive

• Bugs are still very common

• Human testing is prone to errors

• Current automatic test case generation is limited

2

GOALS

• Autonomy: Minimize intervention in test generation

• Usability: Minimize con!guration effort

• Performance: Maximize results relevance

3

OVERVIEW

• System Interface

• Parallel Symbolic Execution

• Cloud9 Design

• Preliminary Results

4

WHAT IS CLOUD9?

• Web service for automated testing

• Easy to use interface

• Relies on thorough testing technique

• Can operate autonomously

• Massive parallelization in the cloud

• Brings scalable performance
5

6

SERVICE INTERFACE

7

8

OVERVIEW

• System Interface

• Parallel Symbolic Execution

• Cloud9 Design

• Preliminary Results

9

SYMBOLIC EXECUTION
void read(int x) {

}

if (x < 0) {

} else {
if (x < 5)
bar(x);

else {
...

}
}

if (x > -3)
foo(x);

else {
...

} x = -2

Concrete value:

10

SYMBOLIC EXECUTION
void read(int x) {

}

if (x < 0) {

} else {

}

if (x > -3)
foo(x);

else {
...

} x = 3

Concrete value:

if (x < 5)
bar(x);

 else {
...

}

11

SYMBOLIC EXECUTION
void read(int x) {

}

if (x < 0) {

} else {

}

if (x > -3)
foo(x);

else {
...

}

Symbolic execution tree:

if (x < 5)
bar(x);

 else {
...

}

λ

λ<0 λ>=0

λ<0&&
λ>-3

λ>=0&&
λ<5

Symbolic value

Constraint

λ<0 && λ>-3 Constraint
solver λ=-2 (a solution)

12

PATH EXPLOSION

Large memory consumption
CPU Intensive

Large memory consumption
CPU Intensive

We massively parallelize in the cloud

CHALLENGES

• Tree structure is not known
a priori

15

CHALLENGES

• Tree structure is not known
a priori

• Naive approach: pre-allocate
workers equally on the tree

15

CHALLENGES

• Tree structure is not known
a priori

• Naive approach: pre-allocate
workers equally on the tree

• Slightly better: examine the
!rst h levels, then decide
work allocation

h levels

15

CHALLENGES

• State transfer

• Avoid work and memory redundancy

• Coordination

16

OVERVIEW

• System Interface

• Parallel Symbolic Execution

• Cloud9 Design

• Preliminary Results

17

TREE EXPLORATION

Exploration
frontier

Exploration strategy = which node to expand next?

w1

w2

18

TREE EXPLORATION

Exploration
frontier

Exploration strategy = which node to expand next?

w1

w2

18

LOAD BALANCING

w1 w2

LB

19

LOAD BALANCING

w1 w2

LB

19

negotiate

LOAD BALANCING

w1 w2

LB

19

STATE TRANSFER DECISIONS
• State copying vs. state reconstruction

• Reconstruction optimizations

Copying
(Network intensive)

Reconstruction
(CPU intensive)

c1&&(c2||
c3)&&...

w1 w2 c1&&(c2||
c3)&&...

w1 w2

10010...

1

0
0

1

0

20

STRATEGY PORTFOLIO

• No “one size !ts all” exploration strategy

• Different workers with different strategies

• Invest in few workers, then select successful methods

21

OVERVIEW

• System Interface

• Parallel Symbolic Execution

• Cloud9 Design

• Preliminary Results

22

CLOUD9 PROTOTYPE

• We built Cloud9 on KLEE

• State-of-the art sequential symbolic execution engine

• Tested real programs and found bugs

• Use Amazon EC2 as cloud computing platform

23

TESTING METHODOLOGY

• We compare with KLEE for testing Coreutils

• ls, cat, chmod, cp, mv, etc.

• Cloud9 and KLEE run for 1 hour

• 16 workers for Cloud9

24

CLOUD9 SPEEDUP
Fix code coverage
and measure time

(Linear) 16
 50

 100

 150

 200

 250

echo
join
head
ln cp ptx

du chgrp

cut
date
cksum

ls pr comm
csplit

fmt
od factor

chmod

printf

basename

chown

expand

mv cat
nl dircolors

readlink

paste

chcon

rm mktemp

fold

Speedup
(tKLEE/tCloud9)

Tool
25

CODE COVERAGE

26

Fix resources (CPU time)
and measure code coverage

 0

 20

 40

 60

 80

 100

ptx
ls chcon

cp head
date

join
pr fmt

du cat
fold

dircolors

csplit

echo
od chmod

expand

mv ln nl paste

cut
cksum

chgrp

comm
rm chown

factor

basename

printf

mktemp

readlink

Co
ve

ra
ge

 (%
)

Tool

Cloud9 (1h x 16w)
KLEE (16h)

CONCLUSIONS
Autonomy:

• Symbolic execution

Usability:

• Web service interface

• No local setup overhead

Performance: up to 250x speedup

• Parallel symbolic execution

• Dynamic load balancing

• Adaptive state transfer

• Strategy portfolio

✓

✓

✓

27

