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SOFTWARE TESTING

• Software testing is laborious and expensive

• Bugs are still very common

• Human testing is prone to errors

• Current automatic test case generation is limited
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GOALS

• Autonomy: Minimize intervention in test generation

• Usability: Minimize con!guration effort

• Performance: Maximize results relevance
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OVERVIEW

• System Interface

• Parallel Symbolic Execution

• Cloud9 Design

• Preliminary Results
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WHAT IS CLOUD9?

• Web service for automated testing

• Easy to use interface

• Relies on thorough testing technique

• Can operate autonomously

• Massive parallelization in the cloud

• Brings scalable performance
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SERVICE INTERFACE
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SYMBOLIC EXECUTION
void read(int x) {

}

if (x < 0) {

}  else {
if (x < 5)
bar(x);

else {
...

}
}

if (x > -3)
foo(x);

else {
...

} x = -2

Concrete value:
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SYMBOLIC EXECUTION
void read(int x) {

}

if (x < 0) {

}  else {

}

if (x > -3)
foo(x);

else {
...

} x = 3

Concrete value:

if (x < 5)
bar(x);

  else {
...

}
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SYMBOLIC EXECUTION
void read(int x) {

}

if (x < 0) {

}  else {

}

if (x > -3)
foo(x);

else {
...

}

Symbolic execution tree:

if (x < 5)
bar(x);

  else {
...

}

λ

λ<0 λ>=0

λ<0&& 
λ>-3

λ>=0&& 
λ<5

Symbolic value

Constraint

λ<0 && λ>-3 Constraint
solver λ=-2 (a solution)
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PATH EXPLOSION

Large memory consumption
CPU Intensive



Large memory consumption
CPU Intensive



We massively parallelize in the cloud



CHALLENGES

• Tree structure is not known 
a priori
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workers equally on the tree

15



CHALLENGES

• Tree structure is not known 
a priori

• Naive approach: pre-allocate 
workers equally on the tree

• Slightly better: examine the 
!rst h levels, then decide 
work allocation

h levels
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CHALLENGES

• State transfer

• Avoid work and memory redundancy

• Coordination
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OVERVIEW

• System Interface
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• Cloud9 Design

• Preliminary Results
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TREE EXPLORATION

Exploration
frontier

Exploration strategy = which node to expand next?

w1

w2
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TREE EXPLORATION

Exploration
frontier

Exploration strategy = which node to expand next?

w1

w2
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LOAD BALANCING

w1 w2

LB
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LOAD BALANCING

w1 w2

LB
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LOAD BALANCING

w1 w2

LB
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STATE TRANSFER DECISIONS
• State copying vs. state reconstruction

• Reconstruction optimizations

Copying
(Network intensive)

Reconstruction
(CPU intensive)

c1&&(c2||
c3)&&...

w1 w2 c1&&(c2||
c3)&&...

w1 w2

10010...

1

0
0

1

0
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STRATEGY PORTFOLIO

• No “one size !ts all” exploration strategy

• Different workers with different strategies

• Invest in few workers, then select successful methods
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OVERVIEW
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• Preliminary Results
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CLOUD9 PROTOTYPE

• We built Cloud9 on KLEE

• State-of-the art sequential symbolic execution engine

• Tested real programs and found bugs

• Use Amazon EC2 as cloud computing platform
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TESTING METHODOLOGY

• We compare with KLEE for testing Coreutils

• ls, cat, chmod, cp, mv, etc.

• Cloud9 and KLEE run for 1 hour

• 16 workers for Cloud9
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CLOUD9 SPEEDUP
Fix code coverage
and measure time

(Linear) 16
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CODE COVERAGE
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Fix resources (CPU time)
and measure code coverage
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CONCLUSIONS
Autonomy: 

• Symbolic execution

Usability: 

• Web service interface

• No local setup overhead

Performance:  up to 250x speedup

• Parallel symbolic execution

• Dynamic load balancing

• Adaptive state transfer

• Strategy portfolio

✓  

✓  

✓  
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