
Cloudifying Source Code Repositories:
How Much Does it Cost?

Michael Siegenthaler
Dept. of Computer Science

Cornell University
msiegen@cs.cornell.edu

Hakim Weatherspoon
Dept. of Computer Science

Cornell University
hweather@cs.cornell.edu

Abstract—Cloud computing provides us with general purpose
storage and server hosting platforms at a reasonable price. We
explore the possibility of tapping these resources for the purpose
of hosting source code repositories for individual projects as well
as entire open source communities. An analysis of storage costs is
presented, and a complete hosting solution is built and evaluated
as a proof-of-concept.

I. INTRODUCTION

The advent of cloud computing has brought us a dazzling
array of public computing services that can be instantly tapped
by anyone with a credit card number. Users are spared from
having to invest in expensive infrastructure such as servers,
disks, and cooling equipment because the service provider
takes care of these and amortizes the cost across many clients,
achieving efficiency through economies of scale. Companies
are realizing that it no longer makes sense to build and manage
all of their own infrastructure, and services “in the cloud” are
quickly becoming popular.

It seems inevitable, then, that software development projects
will turn to cloud computing to store their master code
repositories, either on a project-by-project basis or as part of a
larger migration of a SourceForge-like community. Even small
code repositories represent a huge investment of developer-
hours, so the need to store this data durably and reliably
is obvious. Less obvious are the shortcomings of traditional
storage systems: RAID arrays, off-site replicas, and tape
backup, properly managed, protect against data loss, but they
are neither cheap nor simple, especially when developers and
server administrators are geographically spread thin.

In this paper, we focus on the costs of moving source code
repositories to the cloud as an example of moving services
in general to the cloud, especially collaborative open source
projects. Such an endeavor includes many costs, the most
critical of which is storage since that is the simplest and
likely first component to be moved. We set an agenda for
demonstrating the financial storage and computing costs of
moving source code repositories to the cloud.

In section II we explain what it means to store a code
repository in the cloud and why there are cost advantages to
doing so. Section III is a case study on using Amazon’s S3
to host some popular open source communities, and includes
a cost analysis. In section IV we present an implementation
that ties Subversion to S3, with front-end servers running on

Amazon’s EC2 and using Yahoo’s ZooKeeper for consistency.
In section V we evaluate the performance of this solution, and
in section VI we address related work.

II. CLOUDIFYING SOURCE REPOSITORIES

In a revision control system, a master copy of the source
code (or other data) is stored in a logically centralized reposi-
tory. Each developer checks out and then keeps a working copy
on his machine that mirrors the repository. The developer edits
files in his working copy and periodically commits the changes
back to the repository, and updates his working copy to
reflect the changes made by other developers. Each commit is
assigned a unique, sequential version number. The repository
maintains complete history so at any point in time it is possible
to check out a working copy for any specified version number.

Storing a repository in the cloud eliminates worries of data
loss due to hardware failure, but issues of access control and
consistency must still be addressed. Authorized users should
be able to commit new versions of files to the repository, but
not edit existing history. Users expect the repository to be
consistent and for any changes they make not to be pre-empted
later on, even in the face of cloud services that offer lesser
guarantees. For these reasons we do not expect that clients
will be directly using the cloud storage API anytime soon, but
that they will contact one of a set of front-end servers that are
responsible for enforcing access control, ensuring consistency,
and pushing the data into the cloud. These might consist of
virtualized server instances in the cloud, or traditional physical
machines owned by the community, but in either case their
local storage systems are allowed to be cheap and unresilient
against hardware failure.

Another consideration with any hosting solution is resource
provisioning. Open source communities with limited budgets
and private enterprises that are increasingly cost-sensitive may
well prefer to pay just for the resources they use, rather than
trying to budget in advance what they are going to need. Cloud
computing makes this a possibility, and increased competition
among providers of commodity services will ensure that prices
are reasonable.

III. CASE STUDY: S3/EC2

By far the most popular general purpose cloud storage
service today is Amazon’s S3. We chose to use this as a basis

for cost studies and for the implementation of our system.
S3 is an appealing choice because Amazon also offers the
EC2 virtualized computing service, so it is possible to use
their services as a complete hosting solution with low latency
access to storage.

A. How much does it cost?

The cost analysis is based on real-world traces taken from
the Subversion repositories of popular open source projects.
Subversion represents each revision in a repository’s history,
regardless of how many changes it contains, as two files, the
first for data, as a diff against previous revisions, and the
second for meta-data such as the author, timestamp, and other
revision properties. Our cost analysis is based on the sizes of
these files and the time at which each revision was committed.

Looking up the size of these special files is only possible
if one has filesystem level access to the disk on which the
repository is stored, so we had to use Subversion’s mirror-
ing capability to fetch revisions from the network-accessible
repository and replay them against a local copy. Doing this
also implicitly gives us the log of timestamps indicating when
each revision was committed. Thus it is possible to calculate
the bandwidth, storage, and per-transaction costs of pushing
the two files for each revision into S3 over time, based on
Amazon’s current pricing structure, shown in table I.

TABLE I
AMAZON’S S3 PRICING STRUCTURE

Description Price
Monthly storage $0.15 per GiB

Bandwidth in $0.10 per GiB
Bandwidth out $0.17 per GiB
Per 1000 writes $0.01
Per 10,000 reads $0.01

Not included in the analysis is the cost of fetching data out
of S3 to be served to clients. This cost will vary depending
on how much caching is done on the front-end servers, but
with EC2 providing well over 100 GiB of per-instance storage,
and dedicated servers potentially having much more due to
inexpensive SATA disks, it is not unreasonable to assume
that a cache hit rate of close to 100% is possible. As an
example, the 506 public Subversion repositories of the Debian
Linux community amount to a total of only 33 GiB. The only
outgoing bandwidth costs are then to to replace failed front-
end servers or to synchronize replicas if more than one is
in use. In the case of EC2, the bandwidth costs are actually
waived and the user then pays only for the traffic between the
front-end servers and their clients.

Table II shows the cost of using S3 for a number of
individual open source projects, as well as an aggregate for
the 506 repositories of the Debian community. Also shown is
an estimate for the Apache Software Foundation. Apache has
taken the unusual approach of using a single repository for all
of its projects, both public and restricted; due to access control
restrictions on some paths, Subversion’s mirroring tool was
unable to create local copy. The complete log of timestamps,

2004-11 2005-09 2006-07 2007-05 2008-03 2009-01
Month

0

5

10

15

20

25

30

S
iz

e
 [

G
iB

]

Apache Software Foundation
Debian Linux Community

Fig. 1. Size of repository stored in S3

however, was available, so we based our analysis on that
along with the assumption each revision data file would be
37031 KiB and each revision property file 185 B, the averages
observed for the other repositories in table II.

TABLE II
MOST RECENT MONTHLY COST OF STORING REPOSITORIES IN S3 FOR

INDIVIDUAL PROJECTS AND ENTIRE COMMUNITIES

Software Project Monthly Cost
SquirrelMail $0.03

phpMyAdmin $0.04
Subversion $0.08

Mono $0.57
KDE $7.35

Hosting Community Monthly Cost
Debian Linux Community $3.89

Apache Software Foundation $4.58

Even for the fairly large Apache Software Foundation, the
current cost of using S3 for storage is less than $5 per
month. It is very unlikely that any vendor could provide a
traditional storage solution consisting of SCSI disks and tape
backup at this price. The amount of S3 storage required of
course increases each month as the repository grows, but as
shown in figure 1, the increase is roughly linear, as developer
productivity remains constant. The cost of storage is declining
exponentially [1], so if Amazon’s pricing stays competitive,
the long-term trend is towards lower costs.

Additional costs will be incurred for front-end servers. For
the case of EC2, a standard machine instance is billed at $0.10
per hour, plus data transfer of $0.10 per GiB in and $0.17
per GiB out. Discounts are available if data transfer exceeds
10 TiB per month, and the instance cost may be reduced
to $0.03 per hour by paying a $500 three-year reservation
fee in advance. This gives an amortized monthly cost of
$35.80 plus bandwidth. As we show in the next section, one
instance should be enough for almost any individual project
or moderately sized community.

B. Usage Patterns

In addition to getting a grasp of the costs involved in moving
a repository to S3, it is important to understand the usage
patterns, especially the rate at which commits take place. Since
achieving the consistency properties that developers expect
will require a consistency layer to be built in front of S3,
it is crucial that any such layer be able to handle the load of
commits.

The critical statistic to consider is the number of simulta-
neous commits. For centralized revision control system such
as Subversion, each commit is assigned a unique, sequential
number, and any change to a versioned file is stored as a diff
against its previous version. A commit must be rejected if any
of the versioned files that it touches have been changed in an
earlier revision that the developer performing the commit was
unaware of. This ensures that every conflict gets resolved by
a human before becoming part of the repository’s state. Thus,
exclusive locking is required on commits.

Taking a loose definition of simultaneous to be “within
one minute”, the Apache repository had a maximum of 7
simultaneous commits and the Debian community, ignoring for
now that their use of 506 separate repositories allows for finer-
grained locking, an aggregate maximum of 6. In determining
these numbers we filtered out any sequences of multiple
commits by the same author during a one minute period since
those were likely sequential rather than simultaneous and do
nor represent the common case. The average rates were 1.10
and 1.12, respectively, so exclusive locking for commits should
not pose any scalability problems in a typical environment.

We did not consider the rate of read operations because
clients updating their working copies, or reading from the
repository, do not require a lock. The Debian community today
uses only a single Subversion server, and the Apache founda-
tion has a master server plus a European mirror, primarily for
latency reasons. As such, we expect that most communities
will have at most a handful of front-end servers.

C. Achieving Consistency

Amazon’s infrastructure is built on the principle of eventual
consistency [2], and does not directly support the locking
required for revision control. Originally developed to run the
company’s own online store, the system preferred availability
over consistency because downtime translated directly into lost
revenue. Customers may opt to shop elsewhere or to simply
forgo impulse purchases that they didn’t really need anyway.
An inconsistent shopping cart, however, could be resolved by
heuristics or user-intervention at checkout time.

It is well known that consistency and availability cannot
both be achieved simultaneously in any real network where
hosts or entire subnetworks are sometimes unreachable due
to connectivity losses [3]. If a cloud service is designed to
provide high availability but an application instead requires
perfect consistency, additional software infrastructure is re-
quired to bridge the gap.

For revision control it makes sense to adopt eventual consis-
tency for read operations, since at worst an earlier revision will

Fig. 2. System architecture

be returned. If the user is aware, through some other channel,
that a newer version should exist, s/he can retry and expect that
version to be available within a short timeframe. For commits,
as detailed earlier, perfect consistency is required and a locking
layer must be built to support this. This may result in a commit
being rejected if consensus cannot be reached, but shouldn’t
be a problem because code changes are usually not impulse
decisions and the commit can be retried later.

IV. DESIGN

As a proof-of-concept, we built s3vn, a tool for integrating
Subversion with S3. s3vn is colocated with Subversion and
inserts a layer between Subversion and S3, as shown in
figure 2. For simplicity we did not modify the Subversion
server in any way; s3vn is responsible for receiving event
notifications from Subversion and transferring data between
the local disk on the EC2 instance and S3. Subversion calls
s3vn at the start and end of each commit, and s3vn acquires
and releases locks using Yahoo’s open source ZooKeeper lock
service.

The difficulty achieving consistency with a service such as
Amazon’s S3 stems from the fact that files pushed into the
storage cloud do not simultaneously become available on all
service endpoints. If a file is overwritten, different clients may
read back different versions, and even the same client may
see the old version if it suddenly switches to speaking with
a different S3 endpoint. The file will always be internally
consistent, since put and get operations are atomic, but its
contents may not reflect expectations that the client formed
based on other files and out of band communication.

s3vn works around the consistency problem by storing the
number of the latest revision into ZooKeeper. A revision, even
if multiple files were changed by the client, is represented by
Subversion has a single file containing binary diffs against
earlier revisions. A revision is never changed after the fact,
so a front-end server attempting to fetch a revision i from
S3 will receive either the one true, consistent revision i, or a
missing file error if i was posted so recently that it has not

Fig. 3. System overview, showing that front-end servers are equivalent and
clients may interact with any of them

yet propagated through S3. In the latter case, the server retries
indefinitely until the file is available.

ZooKeeper ensures that the latest revision number is in-
cremented atomically. ZooKeeper maintains a simple file-
system like tree of nodes; nodes may store a small amount
of data and can have children. s3vn stores the latest revision
number in /s3vn/<repo>/current, supporting multiple named
repositories in a single ZooKeeper tree. Before pushing a
new revision, a front-end server must acquire a lock by
creating a sequence node /s3vn/<repo>/lock/lock-, to which
ZooKeeper will append a unique, monotonically increasing
sequence number. The front-end server then lists the children
of /s3vn/<repo>/lock; if its own lock node has the lowest
number, it may proceed with the commit. Otherwise it watches
the node with the next lower number in order to be notified
when that node and its associated lock go away. After comit-
ting the revision to S3 and updating /s3vn/<repo>/current,
it releases its lock by deleting the lock node. Lock nodes are
marked with ZooKeeper’s ephemeral flag to ensure that the
lock is forcibly released if the front-end server fails.

ZooKeeper runs as a replicated service, so it remains avail-
able as long as a majority of the hosts are up and reachable.
A client only speaks to one ZooKeeper server at a time
(though it may fail-over to another server if necessary), but
the server ensures that the relevant state has been replicated
before responding to a client’s request.

In general multiple front-end servers may be run, each on
its own EC2 instance. The system is organized as in figure 3.
Unlike the traditional replicated Subversion setups that are
used today, no single server acts as a master; with s3vn all
are equivalent.

V. EVALUATION

We observe that running multiple front-end servers, which
cloud computing makes easy to do, increases the throughput
of read operations. We tested s3vn by running a fixed number
of clients, each repeatedly checking out about 14 MiB of

1 2 3 4 5
Number of Servers

0

20

40

60

80

100

120

140

C
h
e
ck

o
u
t

T
im

e
 [

s]

10 clients
20 clients
30 clients

Fig. 4. Performance of simultaneous checkouts

1 2 3 4 5
Number of Servers

2

3

4

5

6

7

8

9

C
o
m

m
it

 T
im

e
 [

s]

60 clients
80 clients
100 clients

Fig. 5. Performance of simultaneous commits

source code from an EC2/S3-hosted repository, and varying
the number of servers over which the load was distributed.
Figure 4 shows the results.

Write performance was measured by observing the latency
of simultaneous commits from different clients. Since si-
multaneous commits to a single repository would not be a
typical case, 1000 individual s3vn repositories were used, all
sharing the same set of front-end servers and same set of
three ZooKeeper servers. Each client checked out a random
repository from a random front-end server, and then repeatedly
committed small amounts of data. Changes were propgated in
the background to the other front-end servers, via S3. Fig-
ure 5 shows that adding front-end servers can indeed alleviate
latency problems caused by high load, and that the overhead
of propagating data in the backgound is not significant enough
to negatively affect performance.

VI. RELATED WORKS

Moving services to the cloud has been published on in other
contexts. Cumulus [4] is a backup application that implements
a custom block-based file system to store multiple versions of
backup data on S3. The authors make the distinction between
thin-clouds that provide a low-level API and thick-clouds
that are designed for a specific application. Thick clouds
for a variety of purposes, including backup and source code
repository hosting, already exist, with SourceForge and Google
Code being examples of the latter. The authors of Cumulus
and we show that thin-cloud solutions can be a cost-effective
alternative.

Another example of moving a service to the cloud is
MetaCDN [5], a content distribution network. The work evalu-
ates the latency of various cloud storage services from several
locations and provides an abstraction to integrate the different
offerings into a single system.

ElasTraS [6] provides a database-like transactional data
store backed by S3, and faced similar issues as s3vn due to its
need for high consistency. ElasTraS assigns update priviledges
for different areas of the data store to individual front-end
servers, using the lock service to elect an owner for each
partition, much in the style described by Google’s Chubby
[7]. Chubby, a lock service based on Paxos [8], defers fine-
grained locking to the application in order not to burden the
global lock service with high traffic. For s3vn we opted to use
the lock service, ZooKeeper, for fine-grained locking instead
of just leader election, since the latter would have required
duplicating much of ZooKeeper’s functionality to replicate the
leader’s state. Scalability is not an obstacle because there is
no need for global locking across multiple repositories; the
load can be partitioned across as many ZooKeeper instances
as necessary.

Replication is not without its dangers [9], and it has been
shown that replicating too eagerly leads quickly to degraded
performance. The solution proposed is to use master copy
replication, where a transaction does not immediately update
all replicas. s3vn treats S3 as the master copy, and only
the lock service, which deals with simple, low-bandwidth
operations that may be concentrated on a small number of
servers, must be eagerly replicated.

Also relevant is SUNDR, the Secure Untrusted Data Repos-
itory [10]. This file system allows clients to detect against
malicious or compromised storage servers or hosting platforms
by providing fork consistency, a property which ensures that
clients can detect integrity failures as long as they see each
other’s file modifications. Similar techniques could be used
to recover data from client working copies in the event of a
catastrophic cloud failure.

Once code repositories are stored in the cloud, one might
imagine enabling mashups in ways not previously possible.
For example, web based code viewers, search tools, and
cross reference viewers might be built by third-parties, pulling
data from the repositories of several distinct communities.
CloudViews [11] seeks to enable such applications by granting

direct access of cloud storage to third parties, subject to the
data owner’s security requirements.

A question that may naturally arise is, why not use a
general purpose file system interface to S3, such as s3fs, and
store a repository on that? This is indeed possible to do, but
would entail pushing temporary files such as transactions-in-
process into S3 and incurring additional monetary costs due
to the increased number of S3 requests. There would also
likely be performance problems, since file append and rename
operations do not map efficiently to S3’s simple get/put API.
A specialized s3fs that is aware of Subversion’s file naming
and use scenario could of course overcome these limitations
by pushing only what is actually required into S3, but we
believe that such specialized tools are better built on top of a
file system abstraction than pushed underneath it.

VII. CONCLUSION

We have shown that the cost of using a cloud computing
storage service for source code repository hosting is low, both
for individual projects and moderately sized communities.
Considering the costs of a resilient local storage system of
SCSI disks and tape backup, cloud computing is a very
attractive solution for this application. Our implementation of
s3vn brings this concept a step closer to becoming reality,
and provides evidence that performance will be acceptable for
typical use scenarios.

REFERENCES

[1] E. Grochowski and R. D. Halem, “Technological impact of magnetic
hard disk drives on storage systems,” IBM Syst. J., vol. 42, no. 2, pp.
338–346, 2003.

[2] W. Vogels, “Eventually consistent,” ACM Queue, 2009. [Online].
Available: http://queue.acm.org/detail.cfm?id=1466448

[3] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent available partition-tolerant web services,” in In ACM SIGACT
News, 2002, p. 2002.

[4] M. Vrable, S. Savage, and G. M. Voelker, “Cumulus: Filesystem backup
to the cloud.” in FAST, M. I. Seltzer and R. Wheeler, Eds. USENIX,
2009, pp. 225–238.

[5] J. Broberg and Z. Tari, “Metacdn: Harnessing storage clouds for high
performance content delivery,” in ICSOC ’08: Proceedings of the 6th
International Conference on Service-Oriented Computing. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 730–731.

[6] S. Das, D. Agrawal, and A. E. Abbadi, “Elastras: An elastic transactional
data store in the cloud,” in HotCloud. USENIX, 2009.

[7] M. Burrows, “The chubby lock service for loosely-coupled distributed
systems,” in USENIX’06: Proceedings of the 7th conference on
USENIX Symposium on Operating Systems Design and Implementation.
Berkeley, CA, USA: USENIX Association, 2006, p. 24. [Online].
Available: http://portal.acm.org/citation.cfm?id=1267308.1267332

[8] L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4,
pp. 18–25, December 2001.

[9] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of
replication and a solution,” in SIGMOD ’96: Proceedings of the
1996 ACM SIGMOD international conference on Management of data,
vol. 25, no. 2. New York, NY, USA: ACM Press, June 1996, pp.
173–182. [Online]. Available: http://dx.doi.org/10.1145/233269.233330

[10] J. Li, M. Krohn, D. Mazières, and D. Shasha, “Secure untrusted data
repository (sundr),” in OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation. Berkeley,
CA, USA: USENIX Association, 2004, pp. 9–9.

[11] R. Geambasu, S. D. Gribble, and H. M. Levy, “Cloudviews: Communal
data sharing in public clouds,” in HotCloud. USENIX, 2009.

