
Cloud-TM: Harnessing the Cloud with Distributed
Transactional Memories

Paolo Romano
INESC-ID

romanop@gsd.inesc-id.pt

Luis Rodrigues
INESC-ID/IST

ler@ist.utl.pt

Nuno Carvalho
INESC-ID/IST

nonius@gsd.inesc-id.pt

João Cachopo
INESC-ID/IST

Joao.Cachopo@ist.utl.pt

ABSTRACT
One of the main challenges to harness the potential of Cloud
computing is the design of programming models that sim-
plify the development of large-scale parallel applications and
that allow ordinary programmers to take full advantage of
the computing power and the storage provided by the Cloud,
both of which made available, on demand, in a pay-only-for-
what-you-use pricing model.

In this paper, we discuss the use of the Transactional
Memory programming model in the context of the cloud
computing paradigm, which we refer to as Cloud-TM. We
identify where existing Distributed Transactional Memory
platforms still fail to meet the requirements of the cloud
and of its users, and we point several open research prob-
lems whose solution we deem as essential to materialize the
Cloud-TM vision.

1. INTRODUCTION
The cloud computing paradigm has been receiving in-

creasing attention in the recent years. The cloud computing
vision encompasses a general shift of computer processing,
storage, and software delivery away from the desktop and
local servers, across the network, and into next generation
data centers hosted by large infrastructure companies such
as Amazon, Google, Yahoo, Microsoft, or Sun. Just as the
electric grid revolutionized access to electricity one hundred
years ago, freeing corporations from having to generate their
own power and enabling them to concentrate on their busi-
ness differentiators, cloud computing is hailed as revolution-
izing IT, freeing corporations from large IT capital invest-
ments and enabling them to plug into extremely powerful
computing resources over the network [1].

In practice, cloud computing platforms, such as those of-
fered by Amazon Web Services, AT&T’s Synaptic Host-
ing, the HP/Yahoo/Intel Cloud Computing Testbed, and
the IBM/Google cloud initiative, work differently than con-
ventional Application Service Providers (ASP). Instead of
owning, installing, and maintaining the software for their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

customers, cloud computing vendors typically maintain a
hardware and middleware infrastructure, and provide to cus-
tomers a virtual environment in which they can install their
own software.

One of the main challenges that we, as a community, have
to face to bring about the potential of cloud computing is the
development of programming models and tools that simplify
the design and implementation of applications for the cloud;
without them, programmers targeting the cloud will not be
able to take full advantage of the vast amount of comput-
ing power and storage available on demand, in a pay-only-
for-what-you-use pricing model. This is a relevant research
area and several novel programming models for simplify-
ing large scale computations across shared-nothing clusters
(e.g., MapReduce [12], Sinfonia [3], Scope [9], and Pig [24])
have been recently proposed by different research communi-
ties. Each of these models was designed with different goals
in mind, and has its own weaknesses and strengths.

Another relevant research area that is currently garner-
ing a wide interest from several communities proposes the
adoption of Transactional Memories (TMs) to simplify the
development of shared-memory concurrent programs [17, 30,
21]. Motivated by the recent trend that made multi-core
and many-core CPUs the architecture-of-choice for main-
stream computing, TMs represent an attractive solution to
free programmers from the pitfalls of conventional explicit
lock-based thread synchronization. Instead, TMs rely on
the proven notion of atomic transactions to simplify concur-
rent programming [2]. By relishing the programmer from
the burden of managing locks or other error-prone low-level
concurrency control mechanisms, TMs have been shown to
enable a significant boost in productivity, shortening de-
velopment times, and increasing code reliability in complex
concurrent applications [8].

Clearly, there are similarities and complementarities be-
tween the goals of the TM model and the MapReduce-like
large scale parallel computing paradigms. The latter ulti-
mately aims at bringing the power of parallel computing into
the hands of ordinary users, whereas TMs permit to simplify
the development of concurrent (though not distributed) ap-
plications by hiding the complexity of lock-based synchro-
nization.

In this position paper we advocate a convergence be-
tween the TM programming model and the cloud comput-
ing paradigm, which we refer to as Cloud-TM. Like some re-
cent Distributed Transactional Memory (DTM) approaches,
e.g. [20, 7, 28, 11], the Cloud-TM paradigm enriches the
traditional TM model to breach the boundaries of a single

machine and to use transparently the resources available in
a distributed environment. On the other hand, as we shall
discuss, none of the existing DTM solutions is capable of tak-
ing full benefit from the existing and future cloud comput-
ing platforms’ infrastructures (e.g., very large clusters built
on top of cheap, failure-prone commodity hardware). Fur-
thermore, even if existing DTM solutions free programmers
from the burden of dealing with distributed lock-based syn-
chronization, they still require that programmers design and
code explicitly parallel applications, thus failing to meet one
of the primary requirements of cloud programmers: simplic-
ity. In fact, rather than expert architects of robust and scal-
able distributed applications, typical programmers of cloud
computing applications are used to develop sequential code.
So, approaches such as MapReduce, which automate the
parallelization and fault-management in a distributed pro-
gram but that require the developer to master an unfamiliar
programming model and to redesign pre-existing programs
to benefit from cloud features, are not the final solution.

In the remainder of this paper, we first critically ana-
lyze the current mainstream programming models for large
scale parallel systems, highlighting their main strengths and
weaknesses. Next, we outline several open research chal-
lenges that need to be addressed to materialize our vision of
Cloud-TM. Finally, we overview some of our recent results
towards the achievement of this ambitious goal.

2. PROGRAMMING MODELS FOR THE
CLOUD

In this section we overview some of the most popular
models for programming parallel and concurrent sys-
tems, critically highlighting their main pros and cons when
adopted in the context of a cloud computing infrastructure.

MapReduce-like approaches: MapReduce [12] is a func-
tional programming model that permits automatic paral-
lelization and execution on large scale clusters. By forcing
developers to adhere to a restricted, although neatly defined,
programming model, the MapReduce’s runtime system is
able to take care automatically of issues such as input data
partitioning, scheduling the program’s execution across mul-
tiple machines, and handling of nodes’ failures. Inspired in
the map and reduce primitives present in Lisp, MapReduce
computations are structured into two sequential phases. A
first mapping phase, which operates over each “record” in
the input and outputs a set of intermediate key/value pairs.
Then, a reducing phase, where all the values that share the
same key are processed and combined based on some appli-
cation level logic.

MapReduce is being extensively used in large scale
Google data centers to analyze in parallel huge data sets in
domains such as web log and graph analysis. Its automatic
parallelization and fault-tolerance features have attracted
the attention of a growing community of enthusiastic users
that have developed a complete open source porting of the
original proprietary system—the Apache Hadoop project.
Nevertheless, it is nowadays widely recognized that, de-
pending on the nature of the problem to be addressed,
casting a known solution algorithm into the functional
MapReduce programming model might be far from being
trivial, possibly forcing to fragment the computation into
a sequence of MapReduce tasks or inducing unnatural

additional steps that can lead to significant performance
drawbacks with respect to a conventional explicit parallel
scheme [26]. So, more recently, a number of MapReduce
extensions, e.g. Cascading, Pig [24] or DryadLINQ [34],
have been proposed in the form of additional APIs that
expose simpler SQL-like programming interfaces (hence not
forcing developers to ”think” in MapReduce), which are
then automatically mapped to an underlying MapReduce
implementation. On the other hand, the actual efficiency
of MapReduce is currently a matter of a controversial
debate [1, 13], with several well-known scientists critically
highlighting several performance issues of MapReduce
and its derivatives, based both on a comparison with the
mechanisms supported by modern parallel databases, as
well as on benchmarking results showing MapReduce to
be about an order of magnitude slower than alternative
systems[33].

PGAS approaches: Another alternative programming
paradigm that has recently emerged as an attractive way to
program large parallel systems is the so-called Partitioned
Global Address Space (PGAS), e.g. [6], embodied in lan-
guages such as Unified Parallel C (UPC), Co-Array Fortran,
and Titanium.

PGAS is considered as a sweet spot between a pure
shared-memory style emulated in software, such as soft-
ware distributed shared memory (DSM) [4], and an explicit
message-passing style, such as MPI. Like shared memory
programming, and unlike MPI, PGAS languages provide a
global address space, allowing threads to refer to remote
memory directly, instead of via message-passing calls.

By letting the programmer explicitly control data locality
and communication, the PGAS model permits to achieve
better performance and scalability than classical software
DSM. Yet, this comes at the cost of a lower-level, more
complex, programming interface. This makes PGAS
approaches mainly targeted towards high-performance
computing applications, rather than the reference paradigm
for general purpose cloud computing platforms.

DTM approaches: Whereas TMs have garnered a huge re-
search interest over the last 6 years, most of the research ef-
forts in this area have been in the context of non-distributed,
cache coherent, shared-memory systems, e.g. multi-cores
and SMPs architectures. By contrast, the problem of how
to extend the TM abstraction across the boundaries of a
single machine and to employ transactions as a first class
abstraction for large scale distributed programming has only
very recently started to be addressed; we are aware of the
existence of a handful of DTM platforms only [20, 7, 23, 11,
3].

One may argue that this may be, in some sense, due to the
skepticism of the research community towards distributed
shared memory (DSM) approaches. In fact, two decades of
research on DSMs have clearly highlighted that DSMs are
capable of achieving good performances only if programmers
embrace relaxed consistency models [19]. Unfortunately, re-
laxed consistency models are typically challenging for ordi-
nary programmers, because they are forced to understand
all the subtleties of complicated consistency properties to
avoid endangering correctness. As highlighted by the exper-
imental evaluation of several of the aforementioned DTM
platforms [3, 11, 7], DTMs use the transaction’s abstrac-

tion not only as way to simplify parallel programming but
also as a natural means to aggregate communication effi-
ciently, avoiding the performance pitfalls proper of DSM
systems without sacrificing programming simplicity. In fact,
unlike strongly consistent DSMs, which require expensive re-
mote synchronizations at each single memory access, atomic
transactions allow for optimistic implementations that per-
mit to batch any consistency action within a single synchro-
nization phase taking place at commit time [3, 20, 11]. This
approach amortizes communication overheads across a (pos-
sibly large) number of memory accesses, with clear benefits
in terms of performance.

Taking a closer look at existing DTM platforms, it is rel-
atively easy to draw a line between solutions, such as those
in [20, 23, 11], which were designed for being deployed in
small scale clusters, and those, such as Cluster-STM [7] and
Sinfonia [3], which were architected to scale up to several
hundreds of nodes.

In the former group of solutions, all are based on full
replication schemes and, when fault-tolerance is addressed
(which is actually the case only for [11]), this is done by us-
ing Group Communication Systems that provide support for
Virtual Synchrony and Atomic Broadcast. These strategies
have shown encouraging performance results when employed
in clusters of at most 10 nodes, but it is very unlikely that
they sustain the scalability challenges of the largest cloud
computing environments.

Cluster-STM [7] and Sinfonia [3], on the other hand, were
shown to achieve impressive scalability levels when deployed
in typical data centers’ settings. Even though these two
solutions are affected by a number of rather constraining
limitations (e.g., in Sinfonia (mini-)transactions need to pre-
declare statically the sequence of memory accesses to be per-
formed, and Cluster-STM supports at most one thread per
machine and provides no fault-tolerant guarantees), they are
characterized by a common trait. They both expose an ex-
plicitly partitioned address space to the programmers and
delegate to the application level the role of implementing
any form of caching.

This has the main advantage of enabling expert developers
to use deep knowledge of the application domain to define
highly optimized memory layouts and introduce carefully-
thought optimizations. Unsurprisingly, the (excellent) per-
formances of both these platforms were demonstrated con-
sidering applications that were carefully designed and op-
timized to maximize access locality and minimize remote
memory accesses. For instance, the cluster file system built
on top of Sinfonia places, whenever possible, an inode, its
chaining list, and its file data in the same memory node.
Likewise, the implementation of the SSCA2 Kernel 4 graph
analysis algorithm in Cluster-STM retrieves the adjacency
lists of multiple vertexes stored by remote nodes via a single
message, rather than by sending out one message per vertex.

On the other hand, it is natural to wonder how likely it
would be for an ordinary developer, not so experienced with
distributed programming, to end up coding applications that
deliver poor performance in such a “minimalistic” system,
or whether it would be, instead, desirable to demand some
additional assistance from the runtime environment.

3. TOWARDS A CLOUD-TM
At the light of our previous analysis, in this section we

characterize a novel programming model, named Cloud-TM,

which is explicitly tailored to match the requirements of
cloud computing applications. Cloud-TM aims at extending
the imperative programming model of DTM systems with a
set of additional mechanisms ultimately aimed at simplify-
ing the life of cloud programmers, by masking most of the
complexity associated with the design and implementation
of large scale parallel application.

Rather than presenting a set of complete solutions, in
the following we highlight a number of gaps in existing
DTM platforms and outline several research challenges
whose addressing we deem as essential to materialize the
Cloud-TM model.

C.1) Hide Complexity: As already discussed, one the
main drawbacks of MapReduce-inspired systems is that
their functional programming paradigm may force the pro-
grammers to structure their applications in an unnatural
and/or inefficient way. Conversely, imperative programming
paradigms, such as those supported by the DTM model,
typically lend themselves to tackle problems that do not fit
nicely in the MapReduce model [26].

On the down-side, however, the (D)TM model requires
that programmers explicitly design and develop parallel al-
gorithms, because it has none of the auto-parallelization fea-
tures that are one of the strengths of MapReduce-inspired
systems.

Motivated by MapReduce’s success in achieving auto-
matic code parallelization, we argue that a Cloud-TM plat-
form should be able to achieve automatic parallelization of
sequential TM programs. This is clearly a very ambitious
goal, given that automatic parallelization of generic sequen-
tial programs by compilers remains a grand challenge after
decades of research. On the other hand, (D)TM environ-
ments, thanks to the built-in availability of isolated, atomic
transactions, are particularly well suited to support thread-
level speculation (TLS) techniques [16, 31, 22]. In a (D)TM
environment, in fact, TLS can be simply and efficiently im-
plemented by transactifying the portions of (sequential) code
to be executed speculatively, and by exploiting the trans-
actions’ atomicity and isolation semantics to detect code
dependencies and rollback to consistent states invalid (and
possibly unbounded) computations.

Transparent fault-masking is another highly-valued fea-
ture of MapReduce that, unfortunately, is not satisfactorily
supported by most of the existing DTM platforms. The
solutions in [20, 23, 7], for instance, do not provide any
fault-tolerance mechanism at all. This is clearly a major lack
in a platform for large scale distributed computing where
node failures represent the norm rather than the exception.

C.2) Coping with Workload Heterogeneity: Despite
the vast body of literature developed in the area of (cache-
coherent) TMs, the search for a TM solution capable to
perform optimally in presence of any arbitrary workload
has turned out to be inconclusive, motivating recent efforts
aimed at developing polymorphic schemes that are able to
self-tune to match the actual workload characteristics [15,
27]. This problem is even more exacerbated in a DTM envi-
ronment, where additional complex mechanisms need to be
used to ensure global consistency. In fact, it is well known
(see [10]) that the performance of transactional data replica-
tion schemes is strongly affected by the workload character-
istics (e.g. probability of conflict among remote/local trans-

actions, access locality, average size of transactions’ read set
and write set, etc.). Manually identifying the optimal con-
figuration in the huge design space of a DTM is at least
impractical and time-consuming, or even impossible in the
case of dynamic workloads.

On the other hand, the problem of adjusting auto-
matically the policies used for, e.g. enforcing replica
consistency, regulating local and remote transactional
conflicts, or governing the local caching strategies, remains
an open research question that demands gaining further
insights on the modelling of the performance impacts of the
workload characteristics on these mechanisms, as well as on
their mutual correlations. We believe that a first and fun-
damental step in this direction is the development of novel
workload monitoring and characterization methodologies
aimed at automatically constructing probabilistic models
of the transactions’ data access patterns. Finally, an open
challenge to enable the adoption of these self-tuning mech-
anisms is to conceive dynamic self-reconfiguration schemes
that permit to switch efficiently between heterogeneous
distributed management strategies, while preserving cor-
rectness during transitions or even despite the simultaneous
coexistence of different schemes.

C.3) Maximize Locality: Unlike a non-distributed cache-
coherent TM system, the cost of executing a transaction in
a cloud computing environment depends on the location of
the datasets to be accessed: Whether they reside on the
same local node, on a remote node attached to the same
network switch, on a remote node within a different network
branch of the same cluster, or on a remote node belonging
to some geographically distributed cluster (large cloud com-
puting providers, such as Amazon S3 cloud storage service,
own data centers spread throughout the world).

Hence, in cloud computing environments, the effectiveness
of any parallel programming platform, and in particular of
a DTM system, is strictly dependent on the ability to keep
these cost factors into account and to tune its internal con-
sistency mechanisms in such a way that they minimize the
cost of interprocess communications.

At the light of these considerations, we argue that
a Cloud-TM platform should not only offer self-tuning
mechanisms for dynamically rearranging the data and code
placement policies, but also first-class language constructs
to guide these self-optimizing schemes and, whether re-
quired, to permit applications to control exactly the actual
physical memory layout and caching policies to be adopted.

C.4) Automatic Resource Provisioning: Given that
the processing power and storage available on demand in
a cloud are provided according to a pay-only-for-what-you-
use pricing model, the main dilemma that a customer of a
cloud computing infrastructure is constantly faced with is:
“What costs should I sustain to meet my performance and,
more in general, Quality of Service criteria?”. Providing ef-
fective tools and methodologies for guiding, and ideally au-
tomatizing, the provisioning of the computing resources to
be hired represents a key enabling factor to materialize the
cloud computing promise of elasticity in the face of chang-
ing conditions, and, ultimately, to consolidate its business
model.

Even though a number of approaches have been recently
proposed to compute dynamically the resource’s demand

of applications deployed in virtualized data centers, see
e.g. [18, 32], existing solutions are not designed to keep into
account relevant aspects of DTM platforms, such as the
relation between the number of involved replicas, the data
caching strategy, or the probability of logical contention.
To take into account these aspects, we need novel ad hoc
cost/performance forecasting models.

C.5) ACI vs ACID: Unlike classic ACID transactions of
the database world, existing TM solutions normally do not
provide the durability property for their transactions, be-
cause they are meant to synchronize accesses to the shared-
memory of a single machine only while the machine is run-
ning. So, most TMs do not need to persist their data either
to disk or to external systems. In a cloud computing en-
vironment, however, an application may be running over a
cluster of several machines, and, so, its data must be sent
among those machines.

Furthermore, the unitary computing resources that are
made available on demand in a cloud computing environ-
ment normally include an attached persistent storage. In the
Amazon’s Elastic Compute Cloud (EC2), for instance, com-
puting resources are normally apportioned in small, large,
and extra large virtual private server instances, where even
the smaller server instance is equipped with 160GB of stor-
age. Hence, not taking advantage of the local disk storage
for recovery, performance (e.g. to store larger local caches
and reduce network bandwidth consumption), and scala-
bility purposes (i.e. to implement a classical, though dis-
tributed, hierarchical memory system) would represent not
only a missed opportunity, but also a wasted cost.

Thus, we argue that a Cloud-TM platform must deal with
the issues of data serialization/deserialization, typically at
the transactional boundaries. Even though this is a well-
studied topic in the database world, it is largely unaddressed
in the TM world.

4. SOME PRELIMINARY RESULTS
Even though there is a long road ahead before the Cloud-

TM model is fully materialized, at INESC-ID/IST we have
a number of research lines addressing some of the research
challenges outlined in the previous section.

On the front of the design and development of DTM plat-
forms, our recent work in developing D2STM [11] has al-
lowed us to gain valuable insights on DTM systems providing
not only strong consistency guarantees, but also transpar-
ently ensuring failure resilience (see challenge C.1). Target-
ing relatively small scale clusters, and supporting exclusively
full data replication, the D2STM (Dependable Distributed
STM) system is designed to operate in environments that are
certainly less challenging than large scale cloud computing
infrastructures. Nevertheless, our experimentation with the
D2STM system has allowed us to highlight both encourag-
ing signals as well as potential performance pitfalls. On the
positive side, we could observe that the replica coordination
overhead can be significantly amortized, at the middleware
layer, through the usage of optimistic certification-based ap-
proaches and of efficient message encoding techniques. Our
experimental results show in fact that, in clusters of a ten
of nodes, D2STM can achieve linear speed-ups and signifi-
cantly outperform a non-replicated TM. On the other hand,
we could also verify how hard it is in practice to achieve satis-
factory performance unless two conditions are met: (1) that

the application-level code is adequately designed to reduce
the sources of contention and to batch significant portions of
computation within the same transaction, and (2) that the
runtime environment is able to adapt in a timely manner its
data replication strategies to cope with heterogeneous and
dynamically varying workloads.

Given that the manual identification of an optimal tun-
ing of a distributed application is a heavy burden for the
programmers, some of our latest research efforts has been
devoted at building tools aimed exactly at simplifying such
a task. On one hand, we are developing stochastic tech-
niques for identifying and predicting the data access pat-
terns of transactional applications [14]. We regard these
methodologies not only as valuable instruments to support
the developers in the applications’ optimization (see chal-
lenge C.3), but also as an essential building block of any
autonomic runtime system that adaptively tunes its inter-
nal mechanisms to better match the workload characteristics
(see challenge C.2). On the other hand, we are investigat-
ing the possibility of exploiting the transactional semantics
provided by a (Distributed) Software Transactional Memory
to support thread-level speculation techniques that achieve
automatic, performance-effective parallelization of sequen-
tial programs [5] (see challenge C.1). Our prototype, named
JaSPEx [5], albeit being currently capable of automatically
parallelizing Java code meant to be executed on a single
multi-core machine, is showing some very promising prelim-
inary results. Thus, its integration within a DTM platform
appears as a natural direction of our future work.

Finally, in [29] we have recently introduced a novel repli-
cation technique, which we call Speculative Transactional
Replication (STR), that aims at maximizing the perfor-
mance of applications characterized by “problematic” data
access patterns, i.e. exhibiting a high contention level and
very fine grained transactions, and for which there is no (or
very little) room for application-level code optimizations (see
challenge C.2). The idea underlying STR is rather simple—
to seek maximum overlap between the replica coordination
and transaction processing phases. This is accomplished
with two complementary approaches: (1) by triggering the
latter well before the former is concluded (i.e. as soon as
transactions are optimistically delivered [25]), and (2) by
speculatively exploring multiple transaction serialization or-
ders instead of waiting for the final outcome of the coordi-
nation phase. This permits to avoid underutilizing the com-
puting resources locally available at each replica, and to in-
crease the maximum parallelism level globally achievable by
the system. The work in [29] allowed us to lay the ground for
the design and implementation of STR systems by introduc-
ing a set of desirable correctness and optimality properties
for a speculatively replicated transactional system, as well
as by presenting the first optimal STR algorithm. Integrat-
ing the STR within a working DTM prototype represents an
important part of our future work.

5. CONCLUDING REMARKS
It is our belief that the success of the cloud computing

paradigm will strongly depend on whether it will be possible
to identify adequate parallel programming models that are
able to achieve two distinct, and often contrasting, goals: (1)
simplifying the development of large scale parallel applica-
tions, so as to bring the power of parallel computing into the
hands of ordinary programmers, and (2) simultaneously sus-

taining the harsh scalability challenges characterizing cloud
platforms.

In this paper, we have advocated the potential of Cloud-
TM, a programming model based on a DTM platform specif-
ically architected for large scale, elastic cloud computing en-
vironments. Based on our experience in designing and imple-
menting DTM systems, and at the light of a critical analysis
of several mainstream programming models for large scale
parallel computing, we have identified several critical gaps
in existing DTM systems, which make them not ripe for
successful cloud deployment.

Finally, we have identified several open research directions
that we deem as essential for materializing the Cloud-TM
model, and overviewed some of our most recent results to-
wards the fulfilment of this goal.

Acknowledgments
This work was partially supported by the FCT project Pas-
tramy (PTDC/EIA/72405/2006).

6. REFERENCES
[1] Abadi, D. J. Data management in the cloud:

Limitations and opportunities. IEEE Data Eng.
Bulletin, 32(1), March 2009.

[2] Adl-Tabatabai, A.-R., Kozyrakis, C., and Saha,

B. Unlocking concurrency. ACM Queue 4, 10 (2007),
24–33.

[3] Aguilera, M. K., Merchant, A., Shah, M.,

Veitch, A., and Karamanolis, C. Sinfonia: a new
paradigm for building scalable distributed systems. In
Proc. Symposium on Operating Systems Principles
(SOSP) (New York, NY, USA, 2007), ACM,
pp. 159–174.

[4] Amza, C., Cox, A. L., Dwarkadas, S., Keleher,

P. J., Lu, H., Rajamony, R., Yu, W., and

Zwaenepoel, W. Threadmarks: Shared memory
computing on networks of workstations. IEEE
Computer 29, 2 (1996), 18–28.

[5] Anjo, I., and Cachopo, J. Jaspex: Speculative
parallel execution of java applications. In Proc. of the
Simpósio de Informática (INFORUM) (Lisbon,
Portugal, Sept. 2009).

[6] Barton, C., Casçaval, C., Almási, G., Zheng, Y.,

Farreras, M., Chatterje, S., and Amaral, J. N.

Shared memory programming for large scale machines.
In Proc. of Programming Language Design and
Implementation (PLDI) (New York, NY, USA, 2006),
ACM, pp. 108–117.

[7] Bocchino, R. L., Adve, V. S., and Chamberlain,

B. L. Software transactional memory for large scale
clusters. In Proc. of the Symposium on Principles and
Practice of Parallel Programming (PPOPP) (New
York, NY, USA, 2008), ACM, pp. 247–258.

[8] Cachopo, J. Development of Rich Domain Models
with Atomic Actions. PhD thesis, Tech. Univ. of
Lisbon, 2007.

[9] Chaiken, R., Jenkins, B., Larson, P.-A., Ramsey,

B., Shakib, D., Weaver, S., and Zhou, J. Scope:
easy and efficient parallel processing of massive data
sets. Proc. VLDB Endow. 1, 2 (2008), 1265–1276.

[10] Ciciani, B., Dias, D. M., and Yu, P. S. Analysis of
concurrency-coherency control protocols for

distributed transaction processing systems with
regional locality. IEEE Trans. Softw. Eng. 18, 10
(1992), 899–914.

[11] Couceiro, M., Romano, P., Carvalho, N., and

Rodrigues, L. D2STM: Dependable Distributed
Software Transactional Memory. In Proc. 15th Pacific
Rim International Symposium on Dependable
Computing (PRDC) (2009), IEEE Computer Society
Press.

[12] Dean, J., and Ghemawat, S. Mapreduce: simplified
data processing on large clusters. Comm. ACM 51, 1
(2008), 107–113.

[13] DeWitt, D., and Stonebraker, M. Mapreduce: A
major step backwards,
http://www.databasecolumn.com/2008/01/mapreduce-

a-major-step-back.html.

[14] Garbatov, S., Cachopo, J., and Pereira, J. Data
access pattern analysis based on bayesian updating. In
Proc. of the Simpósio de Informática (INFORUM)
(Lisbon, Portugal, Sept. 2009).

[15] Guerraoui, R., Herlihy, M., and Pochon, B.

Polymorphic Contention Management. In Proc. of the
International Symposium on Distributed Computing
(DISC) (2005), pp. 303–323.

[16] Hammond, L., Willey, M., and Olukotun, K.

Data speculation support for a chip multiprocessor.
SIGOPS Operating Systems Review 32, 5 (1998),
58–69.

[17] Herlihy, M., Eliot, J., and Moss, B. Transactional
memory: Architectural support for lock-free data
structures. In Proc. of the International Symposium on
Computer Architecture (ISCA) (1993), pp. 289–300.

[18] Kalyvianaki, E., Charalambous, T., and Hand,

S. Self-adaptive and self-configured cpu resource
provisioning for virtualized servers using kalman
filters. In Proc. of the 6th International Conference on
Autonomic Computing (ICAC) (New York, NY, USA,
2009), ACM, pp. 117–126.

[19] Keleher, P., Cox, A. L., and Zwaenepoel, W.

Lazy release consistency for software distributed
shared memory. In Proc. of the Int. Symposium on
Computer architecture (ISCA) (New York, NY, USA,
1992), ACM, pp. 13–21.

[20] Kotselidis, C., Ansari, M., Jarvis, K., Lujan,

M., Kirkham, C., and Watson, I. Distm: A
software transactional memory framework for clusters.
In Proc. 37th International Conference on Parallel
Processing (ICPP) (Sept. 2008), pp. 51–58.

[21] Kumar, S., Chu, M., Hughes, C. J., Kundu, P.,

and Nguyen, A. Hybrid transactional memory. In
PPoPP ’06: Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of
parallel programming (New York, NY, USA, 2006),
ACM Press, pp. 209–220.

[22] Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss,

K., Renau, J., and Torrellas, J. POSH: a TLS
compiler that exploits program structure. In Proc. of
the Symposium on Principles and Practice of Parallel
Programming (PPOPP) (New York, NY, USA, 2006),
ACM, pp. 158–167.

[23] Manassiev, K., Mihailescu, M., and Amza, C.

Exploiting distributed version concurrency in a

transactional memory cluster. In Proceedings of the
Symposium on Principles and practice of parallel
programming (New York, NY, USA, 2006), ACM,
pp. 198–208.

[24] Olston, C., Reed, B., Srivastava, U., Kumar, R.,

and Tomkins, A. Pig latin: a not-so-foreign language
for data processing. In Proc. of the Int. Conference on
the Management of Data (SIGMOD) (New York, NY,
USA, 2008), ACM, pp. 1099–1110.

[25] Pedone, F., and Schiper, A. Optimistic atomic
broadcast: a pragmatic viewpoint. Theor. Comput.
Sci. 291, 1 (2003), 79–101.

[26] Ranger, C., Raghuraman, R., Penmetsa, A.,

Bradski, G., and Kozyrakis, C. Evaluating
mapreduce for multi-core and multiprocessor systems.
In Proc. of the International Symposium on
High-Performance Computer Architecture (HPCA)
(Washington, DC, USA, 2007), IEEE Computer
Society, pp. 13–24.

[27] Riegel, T., Fetzer, C., and Felber, P. Automatic
data partitioning in software transactional memories.
In Proc. of the Symposium on Parallelism in
Algorithms and Architectures (SPAA) (New York, NY,
USA, 2008), ACM, pp. 152–159.

[28] Romano, P., Carvalho, N., and Rodrigues, L.

Towards distributed software transactional memory
systems. In Proc. of the WShop on Large-Scale
Distributed Systems and Middleware (LADIS 2008)
(Watson Research Labs, Yorktown Heights (NY),
USA, Sept. 2008). (invited paper).

[29] Romano, P., Palmieri, R., Quaglia, F.,

Carvalho, N., and Rodrigues, L. On speculative
replication of transactional systems. Tech. Rep.
38/2009, INESC-ID, July 2009.

[30] Shavit, N., and Touitou, D. Software transactional
memory. In Proc. of the Symposium on Principles of
Distributed Computing (PODC) (Ottawa, 1995), ACM
Press.

[31] Steffan, J. G., Colohan, C. B., Zhai, A., and

Mowry, T. C. A scalable approach to thread-level
speculation. In Proc. of the International Symposium
on Computer Architecture (ISCA) (New York, NY,
USA, 2000), ACM, pp. 1–12.

[32] Xu, J., Zhao, M., Fortes, J., Carpenter, R., and

Yousif, M. On the use of fuzzy modeling in
virtualized data center management. In Proc. of the
International Conference on Autonomic Computing
(ICAC) (2007), IEEE Computer Society, p. 25.

[33] Yoon, E. Hadoop Map/Reduce Data Processing
Benchmarks. Hadoop Wiki.,
http://wiki.apache.org/hadoop/DataProcessingBench-
marks.

[34] Yu, Y., Isard, M., Fetterly, D., Budiu, M.,

Erlingsson, U., Gunda, P. K., and Currey, J.

DryadLINQ: A System for General-Purpose
Distributed Data-Parallel Computing Using a
High-Level Language. In Proc. of the Symposium on
Operating System Design and Implementation (OSDI)
(2008).

	Introduction
	Programming models for the cloud
	Towards a Cloud-TM
	Some Preliminary Results
	Concluding Remarks
	References

