
A Unified Execution Model for Cloud Computing

Eric Van Hensbergen
IBM Austin Research Lab

bergevan@us.ibm.com

Noah Paul Evans
Alcatel-Lucent Bell-Labs

npe@plan9.bell-labs.com

Phillip Stanley-Marbell
IBM Zürich Research Lab
pst@zurich.ibm.com

ABSTRACT
This article presents the design goals and architecture for
a unified execution model (UEM) for cloud computing and
clusters. The UEM combines interfaces for logical provi-
sioning and distributed command execution with integrated
mechanisms for establishing and maintaining communica-
tion, synchronization, and control. In this paper, the UEM
architecture is described, and an existing application which
could benefit from its facilities is used to illustrate its value.

1. MOTIVATION
The term cloud computing is often used to describe clus-

ter computing configurations which permit fluid allocation,
provisioning, and configuration of services. In such sys-
tems, end-users can easily request and provision comput-
ing resources (typically a complete server instance with
a chosen operating system installation) as needed, typi-
cally through well-defined application programming inter-
faces (APIs). These computing resources may also be dy-
namically connected to virtualized storage or virtualized
networks, which may also be requested and provisioned dy-
namically.

Services such as Amazon’s EC2 allow end-users to dynam-
ically acquire and provision new resources programmatically,
with the new systems brought online in the time span of
minutes versus the hours (or days) it would typically take
to order, build and configure a physical server. Services
may be released at a similar pace, allowing users to scale
back the expense of hosting a service when demand is low.
Within such a fluid environment, with resources commonly
appearing and disappearing at nondeterministic intervals, a
static configuration is no longer viable, and mechanisms for
dynamic organization of available compute, communication
and storage resources into a single logical view are desirable.

Flexibility from an administrative standpoint is only one
part of the story. With many different and dynamically
varying resources spread out across clusters, users and ap-
plications require a new set of systems software interfaces
to take maximum advantage of the added dynamism. It is
our belief that the first step towards these new interfaces
is to unify the logical node and resource provisioning inter-
faces with a system-provided remote application execution
mechanism. This new unified interface should be directly
accessible by the applications in an operating system-, pro-
gramming language-, and runtime-neutral fashion.

In this article, we present an approach to providing such a
unified execution model. The next section details related ef-
forts to provide such interfaces in the high-performance com-

puting community as well as other cloud-based solutions.
Section 3 details the key design elements of our approach.
In Section 4, we walk through an example of using these in-
terfaces to implement a cloud-based distributed full-system
simulator and we conclude with a discussion in Section 5.

2. RELATED WORK
There have been numerous research efforts in the area

of distributed execution models and computing systems,
such as the Cambridge Distributed Computing System [11],
Amoeba [10], V [3], and Eden operating systems [2]. Among
the prevalent contemporary approaches employed in high
performance computing (HPC) and commercial datacen-
ter/cloud applications, the two most prominent paradigms
are MapReduce [4] and MPI [5]—both of which were de-
signed with a particular application structure in mind. We
seek a more general-purpose execution model based on sys-
tem software primitives versus those provided by a language-
specific library or runtime system.

The Plan 9 distributed operating system [12] established
a cohesive model for accessing resources across a cluster, but
it employed only a rudimentary methodology for initiating
and controlling remote execution. Its cpu facility provided
a mechanism to initiate remote execution while providing
seamless access to certain aspects of the initiating termi-
nal’s resources, using Plan 9’s dynamic private (per-process)
namespace facilities [13]. While the cpu facility provided an
elegant mechanism for remote execution, it was limited to a
single remote node, which was explicitly selected either by
the user or via DNS configuration. This worked well enough
for small clusters of terminals with a few large servers whose
performance is upgraded over time (i.e., scale-up), but is
less appropriate for today’s clouds, where increased com-
puting resources are added not to a single server, but rather
achieved by adding more servers to a cluster (i.e., scale-out).

The XCPU runtime infrastructure [7] was an attempt at
bringing the power of Plan 9’s cpu facility to HPC systems
running mainstream operating systems such as Linux. It
improves upon the basic cpu application design by incor-
porating facilities for starting large numbers of threads on
a large number of nodes. It optimizes binary deployment
using a treespawn mechanism which allows it to task clients
as servers to aggregate the deployment of the application
executable, required libraries, and associated data and con-
figuration files. The XCPU client also includes provisions
for supporting multi-architecture hosts. A significant limi-
tation to deploying XCPU in a cloud context is that it re-
lies on static configuration of member nodes and utilizes an

ad-hoc authentication mechanism which isn’t persistent and
ends up being rather difficult to use. It also doesn’t incorpo-
rate workload scheduling or resource balancing itself, relying
instead on external tools. XCPU also makes no provisions
for interconnecting the processes it starts, relying instead on
MPI or other infrastructure to facilitate communication.

The Snowflock [9] logical partition fork mechanism pro-
vides an interesting approach to unifying applications and
virtual machines via an extension of traditional UNIX fork
semantics to entire virtual machine instances. This creates
a very powerful and natural method for spawning new vir-
tual machines to complete tasks. Our proposed UEM model
could be used as an underlying implementation for this fork
model, but also provides broader applicability by being able
to utilize heterogeneous resources as well as deploy fan-out
style distributed computations.

3. APPROACH
The interface to the proposed unified execution model

(UEM) is structured as a synthetic filesystem similar to the
proc filesystem pioneered by UNIX and later extended by
Plan 9 and adopted by Linux. Within these systems, every
process on the system is represented by a synthetic file (in
the case of historical UNIX), or a directory (in the case of
Plan 9 and Linux); synthetic files and directories are entries
visible in the filesystem with no corresponding data store
on disk. When processes are represented by synthetic di-
rectories, there are a number of synthetic files within each
process’ directory serving as interfaces to process informa-
tion, events and enabling process control. The XCPU sys-
tem built upon this simple abstraction in two ways: it al-
lowed nodes to mount each other’s proc filesystem interfaces
and provided the ability to instantiate new processes via a
filesystem interface. UEM takes the control of processes via
a synthetic filesystem one step further, enabling process cre-
ation, control, and inter-application pipelining (in the spirit
of Unix pipes), across multiple compute system instances.
Importantly, this interface is distributed, eliding the need
for a central control or coordination point, and facilitating
scalability.

Physical resources (and logical multiplexors such as hy-
pervisors) publish their services using the Zeroconf proto-
col. Distributed registries at key aggregation points rou-
tinely scan for changes in service availability and publish
consolidated lists to registries higher in the hierarchy. In-
teractions with the UEM happen with local interfaces, and
propagate to different levels of the hierarchy as user spec-
ified requests and resource constraints dictate. While our
current implementations mostly deal with local hierarchies
of clustered resources, nothing implicit in the mechanisms
prevent us from cross-connecting multiple hierarchies rep-
resenting physically or logically distant resources. In other
words, nothing prevents a hierarchy from one data center
from leveraging resources from a distinct hierarchy at a data
center across the globe—the root registries merely need to
be aware of one another.

3.1 Namespace organization
The cloud computing systems at which UEM is targeted

contain on the order of tens of thousands of computing
nodes. The size of these systems necessitates careful consid-
eration of scalability with regards to a synthetic filesystem
interface; a single flat organizational structure will simply

 rack01

ctl
info

0/

/proc/phys/

stderr
stdin
stdout

n/

 chassis01

 chassis02

 blade01

 lpar04
 clone

 clone

(a) Match physi-
cal organization.

 ibm.com

ctl
info

0/

/proc/net/

stderr
stdin
stdout

n/

research

 www

 www-01

 www-02

clone

(b) Mimic net-
work topology.

 ericvh

ctl
info

worker00/

/proc/logical/

stderr
stdin
stdout

workerxx/

 clone

 map-reduce

 node01
 node02

 clone

clone

(c) Based on re-
source user.

Figure 1: Three examples of organizational views
for UEM synthetic filesystem interfaces.

not scale. A viable approach is the use of a hierarchical
structure matching the physical organization of the nodes
(Figure 1(a)). A related model would be to use network
topology in order to address resources (Figure 1(b)). The
nature of either of these hierarchical organizations provides
natural points for aggregation, allowing deployment of UEM
“concentrators” which offset scalability issues in monitoring
and provisioning infrastructures [17]. Yet another model
would be to use a logical topology based on characteristics
such as the account using the resources, task names, etc.
(Figure 1(c)).

In practice, any chosen organizational structure will not
be optimal for every type of access. To support dynamic
and user-defined organizations, the UEM architecture is
based on a multi-dimensional semantic filesystem hierar-
chical structure. Instead of a single hierarchy, UEM pro-
vides access to as many different hierarchical organizations
as make sense for the end user, supporting physical, logical,
network, or other user-defined views. This multiple-view
facility is enabled through a key/value tagging mechanism
for individual leaf nodes. In the synthetic subdirectory cor-
responding to each process managed by the UEM are five
entries—ctl, info, stdin, stdout and stderr. Tags are ap-
plied or modified via messages written to a node’s ctl file
and are reported as part of the info file. These generic tags
can then be used by organization and policy modules to pro-
vide structured views into the resources based on relevant
attributes. This solution works with both physical resources
as well as user-defined tasks and logical resources.

3.2 Dynamic namespace views
Synthetic filesystems may also enable more dynamic uses

of a path to access resources. For example, the act of ac-
cessing a path might be used to initiate (and determine the
search terms of) a search, in a manner similar to a RESTful
web queries. A top level query-view may thus be provided
by a module, allowing end-users and applications to embed
attribute regular expressions into the filesystem paths. This
would permit searching for resources with certain capabil-
ities, possibly with partial matches. It would also permit
searches based on the current state of resources, as captured,
e.g., in the info entries of processes managed via UEM.

If the path in a query corresponds to a directory, a read
will return a directory listing composed of leaf nodes match-

% ls /proc/query/x86/gpus=1/mem=4G

will return a list of physical systems matching

0/

1/

2/

% echo kill > /proc/query/user=ericvh/ctl

will terminal all LPARs and/or threads belonging

to user ericvh

% echo cat /proc/query/os=linux/status

returns status of all Linux logical partitions

node01 up 10:35, 4 users, load average: 1.08

node02 up 05:23, 1 users, load average: 0.50

node03 down

...

Figure 2: Semantic query hierarchy example.

 ericvh

ctl
info

worker00/

/proc/logical/

stderr
stdin
stdout

workerxx/

 clone

 map-reduce

 node01
 node02

 rack01

ctl
info

0/

/proc/phys/

stderr
stdin
stdout

n/

 chassis01

 chassis02

 blade01

 lpar04

 clone

clone

 clone

 clone

% pwd
/proc/logical/ericvh/map-reduce/
node02/worker00/
% cd .../phys
% pwd
/proc/phys/rack01/chassis02/blade01/
lpar04/0/

Figure 3: Using dot-dot-dot to shortcut from one
hierarchy to another.

ing the query. When a query-path no longer matches any
nodes, a file-not-found-error will be returned. An alternate
top-level hierarchy will be provided for users who wish to
block on traversing a query-path until a resource becomes
available. Examples can be seen in Figure 2.

In addition to switching between views of a hierarchy (as
seen from the hierarchy’s root), it is also useful to be able
to change views while at a navigation point within the hier-
archy, without losing the implicit state associated with the
current position in a synthetic filesystem hierarchy.

One possible approach is to define a semantic filesystem
shortcut, henceforth referred to as dot-dot-dot (Figure 3),
which allows users to switch semantic views while maintain-
ing context of their existing location. In Figure 3, the dot-
dot-dot shortcut is used to switch between the logical view
and the physical view while maintaining the context of the
current process. This mechanism could also be used to allo-
cate a new thread (or even a logical partition) on the same
physical machine of an existing thread.

Given the presence of many different views of the organi-
zational hierarchy of a system, it will be necessary to have a
single canonical view of the hierarchy in which all nodes see
the same leaf nodes at the same location. This is necessary
both for use by administrative tools which might require a
more static view of the resources as well as to be able to
communicate path-based references to particular resources.

This will be particularly important in order to establish an
abstract addressing model for I/O and communication. De-
vising a meaningful canonical view that meets these criteria
is one of our ongoing efforts.

3.3 Policy
The allocation of resources is controlled by policy mod-

ules. Physical allocation policy modules are by far the most
simple, providing reservation based access to physical re-
sources. The logical policy modules are built on top of the
physical policy modules, allocating virtual machines and/or
tasks on top of pre-allocated physical or logical resources.
The default policy modules provide a space-based partition-
ing model which allows for simple logical node allocation
and task deployment with each task getting its own logical
node.

While we provide default allocation policy modules, the
UEM is not limited to a single policy. Users and/or ad-
ministrators may define their own policy modules which can
make provisioning decisions based on machine constraints,
resource load, quality of service contracts, or external quan-
titative influences such as who is willing to pay more for the
service. These user-defined policy modules can govern any
subset of resources and may be deployed at different levels
of the organizational hierarchy.

Beyond allocation based policies, users or administrators
may deploy monitoring agents and runtime policy mod-
ules throughout the infrastructure using the same execution
methodology they would use to deploy tasks. Policy agents
may also operate directly on the UEM synthetic file hierar-
chy, gathering and aggregating monitoring information and
(infrastructure permitting) reorganize resources and task ex-
ecution location to optimize for power efficiency, bandwidth,
cost or other factors.

3.4 Execution
The mechanism behind initiating execution is based on

XCPU’s example of using a synthetic file (conventionally
named clone,) with special semantics, to allocate new re-
sources. Clone files are used in the Plan 9 operating sys-
tem’s synthetic file servers to atomically allocate and access
an underlying resource.

An open() system call on a clone file doesn’t return a
file descriptor to the (synthetic) clone file itself. Instead,
a new synthetic subdirectory is created to represent the re-
source containing control/status files for that instantiated
resource. The file descriptor returned from opening the
clone file points to a control file (conventionally named ctl,)
within the newly allocated subdirectory so that the appli-
cation/user can directly interact with the resource they just
allocated. All the resources allocated by the initial opening
of the clone file are released and garbage-collected when the
user/application closes the ctl file.

For example, a new task can be initiated by opening the
clone file in the UEM /proc filesystem, using a path, as
described in Section 3.1, to describe the required resources.
Such an operation will initiate interaction with relevant pol-
icy modules to reserve the required resources, if available,
and return a handle to a ctl file. In a fashion similar to
Plan 9’s cpu command, it will also export local resources
such as the filesystem, standard input, output, and the user’s
current shell environment, to the newly allocated resources.
Following the convention of Inferno’s devcmd [1] and XCPU,

we initiate execution by writing a command to the open
ctl file handle detailing the (local) path to the executable
and command line arguments. Other configurations, such as
alternate namespace configuration, environment variables,
etc., can be specified either through direct interaction with
the control file or through other filesystem interfaces. The
remote node will then setup the namespace and environ-
ment and initiate execution of the application, redirecting
standard I/O to the originating user context (unless oth-
erwise specified as mentioned later in Section 3.6). Since
this same interface is available on every node of the system,
subsequent task executions can be triggered from within the
cluster providing a much more dynamic environment than is
available in many of today’s cluster workload management
systems.

3.5 Configuration
The same approach as taken for initiating execution can

be used to provision a logical node or other resource within
a cluster. Instead of an application binary, a disk image or
an XML virtual machine specification may be passed in the
commands being sent to a ctl interface in the UEM names-
pace. In the case of logical nodes, standard I/O handles in
the file system are hooked to the console of the virtualized
system. Simply allocating a logical node on a particular
piece of physical hardware is somewhat less compelling. In-
stead we take advantage of the dynamic aspects of the query
hierarchy to help allocate machines with specific attributes
(i.e., /cloud/x86/gpus=1/mem=4G/clone) without having to
specify a physical node. The same technique could be a
general mechanism to find hardware capable of supporting
the objtype for a given application (or allocating new logical
nodes on demand as necessary if none are currently avail-
able).

A variation of this attribute specification can
be used to allocate a cluster of nodes (i.e.,
/cloud/x86/gpus=1/mem=4G/num=16/clone). In the
case that insufficient physical resources are available to
satisfy a logical (or physical) node request a file not found
error message will be provided back to the provisioning user
or application. As mentioned earlier, doing directory list-
ings at any level of the attribute query semantic hierarchy
will detail available nodes matching the classification and
the user can use the blocking query hierarchy to wait for
resources to become available.

In the case of a group allocation, opening the clone file
allocates a new node subdirectory which actually represents
the set of nodes allocated. In addition to control and sta-
tus files which provide aggregated access to the individual
logical nodes, it will provide subdirectories for each of the
logical nodes allocated providing individual access and con-
trol. Commands sent to the top level control file will be
broadcast to the individual nodes (allowing, for instance,
them to all boot the same disk image). We are refining the
syntax of the control commands on these meta files to allow
for certain keywords which enable necessary differentiation
(specifying for instance individual copy-on-write disk images
and network MAC addresses). This same approach can be
used to launch a set of processes on many remote nodes to
perform a scale-out operation such as MapReduce workloads
or Monte Carlo simulations.

3.6 Communication

proc102 | proc56 | proc256

usage: splice <proc_path> <src_fd> <local_fd>

% echo splice /proc/net/remote.com/102 1 0 \

> /proc/net/mybox.com/56/ctl

% echo splice /proc/net/mybox.com/56 1 0 \

> /proc/net/farther.com/256/ctl

Figure 4: Creating a three-way distributed pipe us-
ing UEM.

push -c ’{

ORS=./blm.dis

du -an files |< xargs os \\

chasen | awk ’{print \$1}’ | sort | uniq -c \\

>| sort -rn

Figure 5: Examples of fan-out and fan-in with the
PUSH shell.

The UEM takes the UNIX idea of linking processes to-
gether with local pipelines and generalizes it to distributed
systems by allowing file descriptors to be managed from
within the synthetic filesystem control interfaces. This al-
lows the composition of distributed workflows out of sim-
ple sets of tools designed to do one thing well. Establish-
ing a UNIX-style pipe between a local and remote task is
straightforward, since the local standard I/O context (the
stdout synthetic file) is exported to the remote task which
accesses it directly. Attempting to establish a deep multi-
stage pipeline is however more complex, as it is undesirable
for all I/O between stages to flow through the initiating
node. To avoid this, file descriptors in UEM can be redi-
rected directly between nodes executing the stages of the
pipeline, with the redirection initiated through the UEM
control interface (ctl files). This is particularly important
for long pipelines and for fan-out workflows.

This approach is best illustrated by an example. Assume
that we want to run a three-stage pipeline with each pro-
cess (process IDs 102, 56 and 256) residing on a separate
system (remote.com, mybox.com and farther.com). We as-
sume that the processes have already been instantiated via
the UEM interface. The operation of splicing the I/O can
be seen in Figure 4. The splice command takes three ar-
guments: the canonical path to the source process, the file
descriptor number within the source process, and the target
file descriptor within the local process we wish to stream the
source into.

Tying all this together is a new shell, named PUSH [6],
which uses the facilities of the UEM to allow pipelining of
distributed computation. The central goal of PUSH is to
provide shell abstractions for the capabilities of UEM that
provide a language-independent, terse, and simple way of in-
stantiating large distributed jobs that are traditionally per-
formed by middleware in modern data intensive supercom-
puting (DISC) systems. PUSH provides fan-out, fan-in, and
hash-pipe operators providing map, reduce, and all-to-all
communication mechanisms between pipeline stages. User-
defined modules can be specified to decompose and recon-
stitute byte streams into records and back into byte streams
again, allowing output from one process to go to many and
vice versa.

fileserver
main()

 new

ctl
data

0/

/appfs/
In
te
rf
a
c
e

(fi
le
s
y
s
te
m
)

Im
p
le
m
e
n
ta
ti
o
n

(fi
le
s
e
rv
e
r
p
ro
c
e
s
s
e
s
)

Fileserver

Process

GPU
accelerator
main()

fileserver
main()

Fileserver

Process

function call or
new process to

stream data to GPU
for processing

 new

ctl
data

0/

/appfs/

write

(a)

fileserver
main()

 new

ctl
data

0/

/appfs/

In
te
rf
a
c
e

(fi
le
s
y
s
te
m
)

Im
p
le
m
e
n
ta
ti
o
n

(fi
le
s
e
rv
e
r
p
ro
c
e
s
s
e
s
)

Fileserver

Process

fileserver
main()

Fileserver

Process

 new

ctl
data

n/

/gpufs/

write

 new

ctl

data

0/

/appfs/

call to UEM

system to splice

gpufs/n/data with
appfs/0/data

UEM

(b)

Figure 6: Illustration of time-evolving dynamic syn-
thesized filesystems.

4. CASE STUDY
One example application of the UEM is in systems that

themselves use synthetic filesystems for representing inter-
faces to compute or communication resources. If, in such
systems, new entries in the served namespace may be dy-
namically created, or if new interactions between existing
entries may occur (Figure 6), static approaches to interfac-
ing and interconnection will be insufficient.

The Sunflower full-system simulator for networked embed-
ded systems [15] provides one illustration of such a system.
Sunflower is a microarchitectural simulator intended for use
in modeling large networks of embedded systems. Due to
the tension between the computation requirements of the
instruction-level hardware emulation it performs, and the
desire to emulate hardware systems comprising thousands
of complete embedded systems, it implements facilities for
distributing simulation across multiple simulation hosts. To
facilitate distributed simulation, Sunflower includes built-in
support for launching simulation engines on Amazon’s EC2.
Each of these individual simulation engine instances exe-
cutes as a filesystem server [14], serving a small hierarchy
of synthetic interface files for interacting with the simula-
tion engine instance and the resources simulated within the
engine instance.

4.1 Distributed simulation in Sunflower
Each simulation host taking part in a distributed simu-

lation in Sunflower exposes its modeled resources and con-
trol interfaces as a dynamically synthesized filesystem (Fig-
ure 7(a)). Through this interface, it is possible to access all
the state (processor state, network packets, modeled analog
signals, etc.) within components of the system modeled at
a given host. When executing a distributed simulation, a
central interface host connects to each host filesystem, and
launches multiple concurrent threads to cross-connect the
exposed interfaces to achieve a single system (Figure 7(b)).
For example, by cross-connecting (by continually reading
from one and writing to the other) the netin and netout

of multiple simulation engines (on possibly-different simu-
lation hosts, e.g., hosts 1–4 in Figure 7(b)), the simulated
interconnects in the systems are unified. The central host
also ensures the coherent evolution of time across these dif-
ferent simulation hosts, by implementing algorithms from
the domain of parallel discrete-event simulation.

4.2 Distributed splicing with UEM

 ctl

ctl
info

0/

/sfengine/

 info
 netin
 netout

stderr
stdin
stdout

n/

(a)

Central Splicing

�
2

3
4

5

(b)

� 2

3

4

Distributed Splicing

5

Issues commands to

UEMs of hosts 1– 4

to initiate splices.

(c)

Figure 7: Illustration of potential for removal of the
central inter-interface splicing facilitated by the uni-
fied execution model’s in-network streaming. The
filesystem interface at each of the five hosts (four
simulation hosts and one control interface), is shown
in (a).

In-network splicing in UEM, as described in Section 3.6,
provides a way for cross-connection of file descriptors within
a hierarchy of files, with the cross-connection (splicing) oc-
curring on one of the nodes involved in the splice, and with
the splicing facilitated transparently by the system. Thus, for
example, rather than having to execute processes to stream
data between the file interfaces to the modeled interconnect
between the node pairs (1, 4), (2, 4) and (2, 3) (by cross-
connecting the netin and netout interfaces with processes
that continually stream data), the central control interface
only needs to initiate the cross connection between these
pairs (Figure 7(c)). This can be done using the mechanism
described in Section 3.6, Figure 4.

4.3 Dynamic call chains with UEM
The interaction between multiple hosts’ simulation en-

gines may go beyond static interconnections such as those
described thus far. Per-host statistics tracers may, for ex-
ample, be triggered to commence detailed logging of net-
work traces or architectural state based on time or machine-
state information. This could lead to fileservers within
a UEM filesystem triggering the instantiation of new file-
servers. Thus, although a simulation of a particular system
will typically involve the creation of an initial static dis-
tributed filesystem of simulation state, further work may be
triggered by this filesystem at runtime.

5. DISCUSSION
This article presented the architecture for a unified exe-

cution model (UEM) for structuring the provisioning, and
runtime usage of large dynamically changing collections of
computing systems, as is typical of so-called cloud comput-
ing systems.

By leveraging user- and system-provided policy, monitor-
ing and organizational modules that interface to the UEM,
the UEM is extensible, allowing exploration of alternate or-
ganizational models, scheduling and resource allocation poli-
cies. This will hopefully facilitate new ways of interacting
with the dynamic distributed resources which today’s cloud
computing infrastructures provide.

In addition to the topics covered in this article, we are
also actively investigating the application of the UEM to hy-

brid computing environments with GPU and Cell Processor
based accelerators [8]. We are also investigating its applica-
tion on extreme scale high performance computing systems
such as BlueGene and Roadrunner [16]. At extreme scale, we
are exploring methods of aggregating monitoring, command,
and control of the resources providing logical grouping mod-
els for system services and automated workload rebalancing
and optimization. Another area of active investigation is
determining mechanisms for providing fault-tolerance both
within our infrastructure and for application tasks which are
deployed by it.

The true potential of cloud computing systems will only
be realized when cloud interfaces and management mecha-
nisms are integrated into end-user environments as well as
the applications themselves. The importance of the consol-
idated interface that the UEM embodies is that it permits
the organization and orchestration of computing resources
in a logical manner, maintaining a holistic view of the dis-
tributed system. The use of synthetic semantic filesystems
enables the creation of a co-operating environment which
isn’t tightly bound to a particular operating system, pro-
gramming language, or runtime system; this facilitates its
use on legacy and heterogeneous systems, such as those
containing computing accelerators (e.g., GPUs or dedicated
hardware such as cryptographic encoder/decoders). Provid-
ing interfaces for allocating new resources as well as inte-
grated mechanisms to deploy and connect tasks on those re-
sources is the first step towards cloud enabling applications
and workflows providing new degrees of flexibility, efficiency,
reliability, and productivity.

6. ACKNOWLEDGEMENTS
This work has been supported in part by the Department

of Energy Office of Science Operating and Runtime Systems
for Extreme Scale Scientific Computation project under con-
tract #DE-FG02-08ER25851.

7. REFERENCES
[1] Inferno Man Pages. Inferno 3rd Edition Programmers

Manual, 2.

[2] G. T. Almes, A. P. Black, E. D. Lazowska, and J. D.
Noe. The eden system: a technical review. IEEE
Transactions on Software Engineering, 11(1):43–59,
1985.

[3] D. R. Cheriton. The V distributed system.
Communications of the Association of Computing
Machinery, 31(3):314–333, Mar. 1988.

[4] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[5] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker. A
message passing standard for mpp and workstations.
Commun. ACM, 39(7):84–90, 1996.

[6] N. P. Evans and E. Van Hensbergen. Push, a disc
shell. In PODC ’09: Proceedings of the 28th ACM
symposium on Principles of distributed computing,
pages 306–307, New York, NY, USA, 2009. ACM.

[7] L. Ionkov, R. Minnich, and A. Mirtchovski. The xcpu
cluster management framework. In First International
Workshop on Plan9, 2006.

[8] D. Jamsek and E. Van Hensbergen. Experiences with
Cluster GPU Acceleration for Circuit Design. Proc. of

Workshop on Parallel Programming on Accelerator
Clusters (PPAC), 2009.

[9] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno,
and M. Satyanarayanan. Snowflock: rapid virtual
machine cloning for cloud computing. In EuroSys ’09:
Proceedings of the fourth ACM european conference on
Computer systems, pages 1–12, New York, NY, USA,
2009. ACM.

[10] S. J. Mullender, C. van Rossum, A. S. Tanenbaum,
R. van Renesse, and H. van Stavern. Amoeba: a
distributed operating system for the 1990s.
23(5):44–53, May 1990.

[11] R. M. Needham and A. J. Herbert. The Cambridge
Distributed Computing System. Addison-Wesley
Publishers Limited, London, 1982.

[12] R. Pike, D. Presotto, S. Dorward, B. Flandrena,
K. Thompson, H. Trickey, and P. Winterbottom. Plan
9 from Bell Labs. Computing Systems, 8(3):221–254,
Summer 1995.

[13] R. Pike, D. Presotto, K. Thompson, H. Trickey, and
P. Winterbottom. The use of name spaces in plan 9.
SIGOPS Oper. Syst. Rev., 27(2):72–76, 1993.

[14] P. Stanley-Marbell. Implementation of a distributed
full-system simulation framework as a filesystem
server. In Proceedings of the First International
Workshop on Plan 9, 2006.

[15] P. Stanley-Marbell and D. Marculescu. Sunflower:
Full-System, Embedded Microarchitecture Evaluation.
2nd European conference on High Performance
Embedded Architectures and Computers (HiPEAC
2007) / Lecture Notes on Computer Science,
4367:168–182, 2007.

[16] E. Van Hensbergen, C. Forsyth, J. McKie, and
R. Minnich. Holistic aggregate resource environment.
SIGOPS Oper. Syst. Rev., 42(1):85–91, 2008.

[17] E. Van Hensbergen and R. Minnich. System Support
for Many Task Computing. Proc. of Workshop on
Many-Task Computing on Grids and Supercomputers,
2008.

