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Rigid objects:  vibrations approximated 
well by linear dynamics
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Figure 9: Number of multipole sources per mode computed using the 3-level placement algorithm (L= 3, P= 256) at two approximation tolerances
(TOL = 0.05 and 0.20). Output-sensitivity is illustrated by the fact that the number of dipoles needed to approximate each mode are far fewer than the
thousands of triangles on the radiating surface. All examples exhibit erratic variations with mode index, e.g., due to greedy placement and varied mode
structures, but have a gradual increase in dipole counts at increasing frequency (dragon, bell, chair). The rabbit’s simple dipole approximations are an
exception that illustrates that it is in the low-frequency regime (small kR) and nearly a dipole source itself.

L= 1 L= 2 L= 3 L= 4
<M> PLACEMULTIPOLES SVD <M> PLACEMULTIPOLES SVD <M> PLACEMULTIPOLES SVD <M> PLACEMULTIPOLES SVD

P= 16 78 0.55m 0.42m 80 0.49m 0.91m 79 0.47m 1.2m – – –
P= 64 73 0.92m 0.32m 71 0.63m 0.29m 74 0.49m 0.41m 75 0.49m 0.53m
P= 256 71 2.5m 0.27m 68 1.4m 0.27m 69 0.84m 0.31m 70 0.47m 0.35m
P= 1024 67 7.9m 0.24m 66 4.6m 0.26m 69 2.0m 0.31m 66 0.89m 0.30m
P= 2048 67 17m 0.29m 66 8.7m 0.24m 67 3.5m 0.31m 66 1.4m 0.32m

Table 2: Multilevel source placement compared for a range of levels L, and candidate source positions, P, for the plastic chair at modest approximation
accuracy (10% error). Values for number of dipoles per mode M, and timings of PLACEMULTIPOLES() and computation of equivalent source coefficients (SVD)
are averaged over 3 modes (1, 100, 200). The SVD-based solve for source coefficients is based on Intel’s MKL library implementation of LAPACK double-
precision complex SVD driver. Note that the subspace generated during placement could be reused to reduce SVD solve costs in an optimized implementation.
All timings are on a single Opteron 280 core, with PLACEMULTIPOLE() implemented in Java (dipole evaluation cost ≈ 0.39µsec/dipole).

Model 5% Error 20% Error
Dipoles Precomp Eval Rate Dipoles Precomp Eval Rate

Dragon 2056 0.23 hr 1818 Hz 822 0.14 hr 4053 Hz
Rabbit 450 0.27 hr 5899 Hz 149 0.23 hr 20413 Hz
Bell 4979 3.8 hr 799 Hz 2380 1.6 hr 1632 Hz
Chair 20864 19 hr 190 Hz 5958 1.8 hr 574 Hz
Table 3: PAT precomputation and real-time evaluation rates for high
(5%) and low (20%) accuracy equivalent source approximations. Total di-
pole counts (Dipoles), precomputation times for all modes (Precomp), and
real-time evaluation rates (Eval Rate) are given (using Pentium IV 3.0GHz).
Note that in practice, PAT need only be evaluated at a few hundred Hz, e.g.,
250 Hz, and not at the audio sample rate (44100 Hz). All models were con-
structed with the same multilevel source placement settings (L=3, P=256).

contacts were resolved using a simple damped linear spring penalty
model, with contact forces driving the vibration model. Real-time
evaluation performance is easily achieved for our examples. Ta-
ble 4 gives animation statistics. Comparisons to other sound ren-
derers were also made via careful implementations of the Rayleigh
renderer of [O’Brien et al. 2001], ground truth absolute values of
acoustic transfer pressure using BEM, and the unscaled sum !i qi
of [van den Doel and Pai 1996]. We also provide a comparison to
the traditional far-field (‖x‖#R), low-frequency (kR$ 1) mono-
pole approximation [Cremer et al. 1990]

|p| = "#|Q|/(4$r), r# R, kR$ 1, (15)
whereQ=

∫

S v dS is the so-called volume velocity (compare to sim-
ilar model in [O’Brien et al. 2002]), and this model sounds nearly
identical to the rabbit PAT approximation. Note that (15) yields zero
values for open double-sided models due to the definition of Q; we
provide a single-sided monopole approximation for the thin-shell
dragon model using only the outer surface. Sound interactions with
the ground were ignored in all renderers. Please see accompanying
video. Comparisons show that the modal renderer clearly suffers
from a lack of directionality phenomena, especially for highly di-
rection examples such as the swinging bell. One exception is the
rabbit model, which is in the low-frequency regime (kR≈1) thereby

making it nearly a monopole source.

Swaying tin bell Plastic rabbit

Figure 10: Rigid body animations
were generated of the dragon and
rabbit models falling on the ground,
and the bell swaying back and forth.
Dynamics and penalty-based contact
forces were integrated at audio rates
(44100 Hz). See the video for com-
parisons to other rendering tech-
niques.

Hollow bronze dragon

6 Conclusions and Discussion
We have described a fast method for synthesizing sound radiation
from geometrically complex vibrating objects. Our Precomputed
Acoustic Transfer (PAT) functions are based on accurate approx-
imations to Helmholtz equation solutions generated by standard
numerical methods. We introduced an algorithm for constructing
equivalent source approximations that enable real-time sound syn-
thesis in physically based animation. Since the number of low-order
multipoles required to approximate each vibration mode’s acoustic
transfer function is independent of the model’s geometric complex-
ity, our method exhibits output-sensitive evaluation costs, and is
suitable for interactive applications.
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Rigid objects:  vibrations approximated 
well by linear dynamics

Shell structures:  exhibit noisy nonlinear 
behavior (even under modest forcing) 
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Figure 9: Number of multipole sources per mode computed using the 3-level placement algorithm (L= 3, P= 256) at two approximation tolerances
(TOL = 0.05 and 0.20). Output-sensitivity is illustrated by the fact that the number of dipoles needed to approximate each mode are far fewer than the
thousands of triangles on the radiating surface. All examples exhibit erratic variations with mode index, e.g., due to greedy placement and varied mode
structures, but have a gradual increase in dipole counts at increasing frequency (dragon, bell, chair). The rabbit’s simple dipole approximations are an
exception that illustrates that it is in the low-frequency regime (small kR) and nearly a dipole source itself.

L= 1 L= 2 L= 3 L= 4
<M> PLACEMULTIPOLES SVD <M> PLACEMULTIPOLES SVD <M> PLACEMULTIPOLES SVD <M> PLACEMULTIPOLES SVD

P= 16 78 0.55m 0.42m 80 0.49m 0.91m 79 0.47m 1.2m – – –
P= 64 73 0.92m 0.32m 71 0.63m 0.29m 74 0.49m 0.41m 75 0.49m 0.53m
P= 256 71 2.5m 0.27m 68 1.4m 0.27m 69 0.84m 0.31m 70 0.47m 0.35m
P= 1024 67 7.9m 0.24m 66 4.6m 0.26m 69 2.0m 0.31m 66 0.89m 0.30m
P= 2048 67 17m 0.29m 66 8.7m 0.24m 67 3.5m 0.31m 66 1.4m 0.32m

Table 2: Multilevel source placement compared for a range of levels L, and candidate source positions, P, for the plastic chair at modest approximation
accuracy (10% error). Values for number of dipoles per mode M, and timings of PLACEMULTIPOLES() and computation of equivalent source coefficients (SVD)
are averaged over 3 modes (1, 100, 200). The SVD-based solve for source coefficients is based on Intel’s MKL library implementation of LAPACK double-
precision complex SVD driver. Note that the subspace generated during placement could be reused to reduce SVD solve costs in an optimized implementation.
All timings are on a single Opteron 280 core, with PLACEMULTIPOLE() implemented in Java (dipole evaluation cost ≈ 0.39µsec/dipole).

Model 5% Error 20% Error
Dipoles Precomp Eval Rate Dipoles Precomp Eval Rate

Dragon 2056 0.23 hr 1818 Hz 822 0.14 hr 4053 Hz
Rabbit 450 0.27 hr 5899 Hz 149 0.23 hr 20413 Hz
Bell 4979 3.8 hr 799 Hz 2380 1.6 hr 1632 Hz
Chair 20864 19 hr 190 Hz 5958 1.8 hr 574 Hz
Table 3: PAT precomputation and real-time evaluation rates for high
(5%) and low (20%) accuracy equivalent source approximations. Total di-
pole counts (Dipoles), precomputation times for all modes (Precomp), and
real-time evaluation rates (Eval Rate) are given (using Pentium IV 3.0GHz).
Note that in practice, PAT need only be evaluated at a few hundred Hz, e.g.,
250 Hz, and not at the audio sample rate (44100 Hz). All models were con-
structed with the same multilevel source placement settings (L=3, P=256).

contacts were resolved using a simple damped linear spring penalty
model, with contact forces driving the vibration model. Real-time
evaluation performance is easily achieved for our examples. Ta-
ble 4 gives animation statistics. Comparisons to other sound ren-
derers were also made via careful implementations of the Rayleigh
renderer of [O’Brien et al. 2001], ground truth absolute values of
acoustic transfer pressure using BEM, and the unscaled sum !i qi
of [van den Doel and Pai 1996]. We also provide a comparison to
the traditional far-field (‖x‖#R), low-frequency (kR$ 1) mono-
pole approximation [Cremer et al. 1990]

|p| = "#|Q|/(4$r), r# R, kR$ 1, (15)
whereQ=

∫

S v dS is the so-called volume velocity (compare to sim-
ilar model in [O’Brien et al. 2002]), and this model sounds nearly
identical to the rabbit PAT approximation. Note that (15) yields zero
values for open double-sided models due to the definition of Q; we
provide a single-sided monopole approximation for the thin-shell
dragon model using only the outer surface. Sound interactions with
the ground were ignored in all renderers. Please see accompanying
video. Comparisons show that the modal renderer clearly suffers
from a lack of directionality phenomena, especially for highly di-
rection examples such as the swinging bell. One exception is the
rabbit model, which is in the low-frequency regime (kR≈1) thereby

making it nearly a monopole source.
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Figure 10: Rigid body animations
were generated of the dragon and
rabbit models falling on the ground,
and the bell swaying back and forth.
Dynamics and penalty-based contact
forces were integrated at audio rates
(44100 Hz). See the video for com-
parisons to other rendering tech-
niques.
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6 Conclusions and Discussion
We have described a fast method for synthesizing sound radiation
from geometrically complex vibrating objects. Our Precomputed
Acoustic Transfer (PAT) functions are based on accurate approx-
imations to Helmholtz equation solutions generated by standard
numerical methods. We introduced an algorithm for constructing
equivalent source approximations that enable real-time sound syn-
thesis in physically based animation. Since the number of low-order
multipoles required to approximate each vibration mode’s acoustic
transfer function is independent of the model’s geometric complex-
ity, our method exhibits output-sensitive evaluation costs, and is
suitable for interactive applications.
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(... but this took about 19 days to synthesize)

Sunday, December 13, 2009



Harmonic Shells

Sunday, December 13, 2009



Harmonic Shells

• A practical approach to computing nonlinear 
vibrations for thin shells

Sunday, December 13, 2009



Harmonic Shells

• A practical approach to computing nonlinear 
vibrations for thin shells

• Extend standard linear modal sounds by introducing 
nonlinear mode coupling and force response

Sunday, December 13, 2009



Harmonic Shells

• A practical approach to computing nonlinear 
vibrations for thin shells

• Extend standard linear modal sounds by introducing 
nonlinear mode coupling and force response

• Richer sounds than linear models 

Sunday, December 13, 2009



Harmonic Shells

• A practical approach to computing nonlinear 
vibrations for thin shells

• Extend standard linear modal sounds by introducing 
nonlinear mode coupling and force response

• Richer sounds than linear models 

• A texture-based method for fast (O(1) per mode) 
acoustic transfer computation
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Linear Modal Sounds:
eg. [van den Doel et al. 1996]

From the 2002 ACM SIGGRAPH Symposium on Computer Animation

Synthesizing Sounds from Rigid-Body Simulations
James F. O’Brien Chen Shen Christine M. Gatchalian

EECS, Computer Science Division
University of California, Berkeley

Abstract
This paper describes a real-time technique for generating realistic
and compelling sounds that correspond to the motions of rigid ob-
jects. By numerically precomputing the shape and frequencies of an
object’s deformation modes, audio can be synthesized interactively
directly from the force data generated by a standard rigid-body sim-
ulation. Using sparse-matrix eigen-decomposition methods, the de-
formation modes can be computed efficiently even for large meshes.
This approach allows us to accurately model the sounds generated
by arbitrarily shaped objects based only on a geometric description
of the objects and a handful of material parameters. We validate our
method by comparing results from a simulated set of wind chimes
to audio measurements taken from a real set.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation; I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation; H.5.5 [Information Interfaces and Presen-
tation]: Sound and Music Computing—Signal analysis, synthesis,
and processing

Keywords: Sound modeling, physically based modeling, sim-
ulation, surface vibrations, dynamics, animation techniques, finite
element method, modal synthesis, modal analysis.

1 Introduction
One of the central goals for the field of computer graphics is the
compelling portrayal of realistic synthetic environments. However,
generating convincing animations of scenes such as that shown in
figure 1 requires depicting not only the visual aspects of the scene,
but its audio components as well. While constructing a soundtrack
by hand often provides a feasible option for animations that are gen-
erated off line, interactive applications increasingly rely on physi-
cally based simulation techniques to generate animated motions in
real-time and these applications require methods for generating the
corresponding audio in real-time as well.
One class of simulation method that has found widespread use

in real-time applications is rigid-body simulations. Because rigid
bodies are made up of incompliant materials, they experience only

job@cs.berkeley.edu, csh@cs.berkeley.edu, tine@cs.berkeley.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGGRAPH Symposium on Computer Animation 2002
© Copyright ACM 2002

Figure 1: A synthetic environment containing a set of simulated
wind chimes. Both the motion of the chimes and the corresponding
audio can be computed at interactive speeds.

small-amplitude deformations during interactions with their envi-
ronment. Explicitly discarding these small deformations allows
rigid-body simulators to model a system’s remaining degrees of
freedom efficiently. However, although visually insignificant, it is
the vibration of these small-amplitude deformations that generates
the sounds heard from these objects.
This paper describes a real-time technique for generating real-

istic and compelling sounds that correspond to the motions gener-
ated by rigid-body simulation methods. Precomputing the shape
and frequencies of an object’s deformation modes allows that ob-
ject’s vibrational response to contact forces to be efficiently com-
puted at runtime. The vibrational response is then used directly
to compute the corresponding audio. Our technique computes an
object’s deformation modes numerically by performing an eigen-
decomposition of the system matrices from a finite element model
of the object. This approach allows us to accurately model the
sounds generated by arbitrarily shaped objects based on a geomet-
ric description of the object and a handful of material parameters.
The diagram in figure 2 provides an overview of this process.

2 Background
The technique presented in this paper is closely related to previous
methods developed by van den Doel, Kry, and Pai. The concept of
using the vibrational modes of an object for generating sound was
originally introduced to the graphics community in [van den Doel

1

Related Work
Linear Modal Sounds

Frequently used in graphics, eg:

“FoleyAutomatic”
[van den Doel et al. 2001]

“Synthesizing Sounds from Rigid-Body 
Simulations”
[O’Brien et al. 2002]

[Boneel et al. 2008]

[O’Brien et al. 2002]

Sunday, December 13, 2009



Related Work
Linear Modal Sounds

Sunday, December 13, 2009



• Fails to capture a lot of interesting sound behavior

Related Work
Linear Modal Sounds

Sunday, December 13, 2009



• Fails to capture a lot of interesting sound behavior

• Simple example: sound characteristics (not just 
volume) change with impact magnitude

Related Work
Linear Modal Sounds

Sunday, December 13, 2009



• Fails to capture a lot of interesting sound behavior

• Simple example: sound characteristics (not just 
volume) change with impact magnitude

Related Work
Linear Modal Sounds

Sunday, December 13, 2009



• Fails to capture a lot of interesting sound behavior

• Simple example: sound characteristics (not just 
volume) change with impact magnitude

Related Work
Linear Modal Sounds

Sunday, December 13, 2009



• Fails to capture a lot of interesting sound behavior

• Simple example: sound characteristics (not just 
volume) change with impact magnitude

Related Work
Linear Modal Sounds

Sunday, December 13, 2009



• Fails to capture a lot of interesting sound behavior

• Simple example: sound characteristics (not just 
volume) change with impact magnitude

Related Work
Linear Modal Sounds

Sunday, December 13, 2009



• Fails to capture a lot of interesting sound behavior

• Simple example: sound characteristics (not just 
volume) change with impact magnitude

• Linear model does not capture this

Related Work
Linear Modal Sounds
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“Synthesizing Sounds from Physically Based 
Motion”
[O’Brien et al. 2001]

ACM SIGGRAPH 2001, Los Angeles, California, August 12–17, 2001

Current Time

l  l  ll  l  l

Pressure Impulse

Time Delay

{

+

Figure 4: One-dimensional accumulation buffer used to account
for travel time delay.

frequencies will not cause aliasing problems, but they will interact
with later computations to create other difficulties. For example,
an object moving at a constant rate will generate a large, constant
pressure in front of it. The corresponding constant term will show
up as an inconvenient offset in the final audio samples. More im-
portantly, it may interact with latter visibility computations to create
unpleasant artifacts. To remove undesirable frequency components,
we make use of two filters that are applied to the pressure variable
at each triangle in Ω∗.
First, a low-pass filter is applied to p̄ to remove high frequencies.

The low-pass filter is implemented using a normalized kernel, K,
built from a windowed sinc function given by

Ki = sinc(i∆t) · win(i/w) , i ∈ [−w, . . . , w] (6)

sinc(t) =
sin(2πfmaxt)

πt
(7)

win(u) =

{
1/2 + cos(πu)/2 : |u| ≤ 1

0 : |u| > 1 , (8)

where fmax is the highest frequency to be retained, ∆t is the sim-
ulation time-step, and w is the kernel’s half-width. The low-pass
filtered pressure, g, is obtained by convolving p̄ with K and sub-
sampling the result down to audio rate.
The second filter is a DC-blocking filter that will remove any

constant component and greatly attenuate low-frequency ones. It
works by differentiating a signal and then re-integrating the signal
using a “lossy integrator.” The final filtered pressure, p̃, after appli-
cation of the DC-blocking filter is given by

p̃i = (1 − α)p̃i−1 + (gi − gi−1), (9)

where α is a loss constant between zero and one, g is the low-pass
filtered pressure, and the subscripts index time at audio rate.
For the examples presented in this paper, fmax was 22,050 Hz

and we sub-sampled to an audio rate of 44,100 Hz. The low-pass
filter kernel’s half-width was three times the wavelength of fmax

(w = $3/(fmax∆t)%). The value of α was selected by trial and
error with α = 0.1 yielding good results.

3.3 Wave Radiation and Propagation
Once we know the pressure distribution over the surface of the
objects we must compute how the resulting wave propagates out-
ward towards the listener. The most direct way of accomplishing
this task would involve modeling the region surrounding the ob-
jects with Equation (1), and using the pressure field over Ω as pre-
scribed boundary conditions. This approach would lead to a cou-
pled solid/fluid simulation. Unfortunately, the additional cost of
the fluid simulation would not be trivial. Instead, we can make a
few simplifying assumptions and use a much more efficient solu-
tion method.
Huygen’s principle states that the behavior of a wavefront may

be modeled by treating every point on the wavefront as the origin
of a spherical wave, which is equivalent to stating that the behavior
of a complex wavefront can be separated into the behavior of a set
of simpler ones [17]. Using this principle, we can approximate the
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Figure 5: Spectrum generated by plucking the free end of a
clamped bar. Predicted values are taken from [19].

result of propagating a single pressure wave outward from Ω by
summing the results of a many simpler waves, each propagating
from one of the triangles in Ω∗.
If we assume that the environment is anechoic (no reflections)

and we ignore the effect of diffraction around obstacles, then a rea-
sonable approximation for the effect on a distant receiver of the
pressure wave generated by a triangle in Ω∗ is given by

s =
p̃ a δx̄→r

||¯ − || cos(θ), (10)

where is the location of the receiver, ¯ is the center of the triangle,
θ is the angle between the triangle’s surface normal and the vector
− ¯, and δx̄→r is a visibility term that is one if an unobstructed

ray can be traced from ¯ to and zero otherwise.2 The cos(θ) is
a rough approximation to the first lobe of the frequency-dependent
beam function for a flat plate [19].
Equation (10) is nearly identical to similar equations that are

used in image rendering with local lighting models, and the de-
cision to ignore reflected and diffracted sound waves is equivalent
to ignoring secondary illumination. A minor difference is that the
falloff term is inversely proportional to distance, not to distance
squared. The sound intensity, measured in energy per unit time and
area, does falloff with distance squared, but eardrums and micro-
phones react to pressure which is proportional to the square-root of
intensity [32].

2The center of a triangle is computed by averaging the locations of its
vertices and low-pass filtering the result using the sinc kernel from Equa-
tion (6). Likewise, the normal is obtained from low-pass filtered vertex lo-
cations. The filtering is necessary because the propagation computations are
performed at audio rate, not simulation rate, and incorrectly sub-sampling
the triangle centers or normals will result in audible aliasing artifacts.

532

Related Work
Nonlinear vibrations and sound

Efficient, conservative numerical schemes 
for nonlinear plates and strings
[Bilbao 2005, 2008]

“Nonlinear vibrations and chaos in gongs 
and cymbals”
[Chaigne et al. 2005]

No efficient nonlinear synthesis methods 
for sound in animation

[O’Brien et al. 2001]

Sunday, December 13, 2009



Algorithm Overview

Sunday, December 13, 2009



Geometry

Algorithm Overview

Sunday, December 13, 2009



Vibration
basis UGeometry

Algorithm Overview

Sunday, December 13, 2009



Training
poses

Vibration
basis UGeometry

Algorithm Overview

Sunday, December 13, 2009



Cubature
scheme

Training
poses

Vibration
basis UGeometry

Algorithm Overview

Sunday, December 13, 2009



Cubature
scheme

Training
poses

Vibration
basis UGeometry

Algorithm Overview

Sunday, December 13, 2009



Acoustic
pressure

Cubature
scheme

Training
poses

Vibration
basis UGeometry

Algorithm Overview

Sunday, December 13, 2009



Acoustic
pressure

Far-field
acoustic
transfer
maps

Cubature
scheme

Training
poses

Vibration
basis UGeometry

Algorithm Overview

Sunday, December 13, 2009



Acoustic
pressure

Far-field
acoustic
transfer
maps

Cubature
scheme

Training
poses

Vibration
basis UGeometry

Algorithm Overview

Sunday, December 13, 2009



Acoustic
pressure

Far-field
acoustic
transfer
maps

Cubature
scheme

Training
poses

Vibration
basis UGeometry

Algorithm Overview

Rigid body
simulation

Sunday, December 13, 2009



Acoustic
pressure

Far-field
acoustic
transfer
maps

Cubature
scheme

Training
poses

Vibration
basis UGeometry

Algorithm Overview

Project
impulse
forcesRigid body

simulation

Sunday, December 13, 2009



Acoustic
pressure

Far-field
acoustic
transfer
maps

Cubature
scheme

Training
poses

Vibration
basis UGeometry

Algorithm Overview

Project
impulse
forcesRigid body

simulation

Sunday, December 13, 2009



Acoustic
pressure

Far-field
acoustic
transfer
maps

Cubature
scheme

Training
poses

Vibration
basis UGeometry

Algorithm Overview

Simulate
vibrations

Project
impulse
forcesRigid body

simulation

Sunday, December 13, 2009



Acoustic
pressure

Far-field
acoustic
transfer
maps

Cubature
scheme

Training
poses

Vibration
basis UGeometry

Algorithm Overview

Simulate
vibrations

Project
impulse
forcesRigid body

simulation

Sunday, December 13, 2009



Acoustic
pressure

Far-field
acoustic
transfer
maps

Synthesize
sound

Cubature
scheme

Training
poses

Vibration
basis UGeometry

Algorithm Overview

Simulate
vibrations

Project
impulse
forcesRigid body

simulation

Sunday, December 13, 2009



Model Reduction
Precompute

exterior
acoustic
pressure

Far-field
acoustic
transfer
maps

Synthesize
sound

Train
cubature
scheme

Training
poses

Vibration
basis U

Geometry,
physical

parameters
Simulate

vibrations

Project
impulse
forces

Rigid body
simulation

Sunday, December 13, 2009



Classical subspace integration, eg. [Bathe, 1996]

Model Reduction
Related Work

[Krysl et al. 2001] - Dimensional model reduction in 
non-linear finite element dynamics;  “POD”/PCA

[Barbič et al. 2005] - Accelerated reduced force 
computation for St. Venant-Kirchhoff deformable 
models

[An et al. 2008] - Accelerated reduced force 
computation for general nonlinear materials
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Strain energy density (constant over triangle)
[Gingold et al. 2004]:

Model Reduction

W (X,x) = +

Force density
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Strain energy density (constant over triangle)
[Gingold et al. 2004]:

Model Reduction

E(x) =
�

S
W (X,x)dS(X)

W (X,x) = +

Force density

Strain Energy:
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Strain energy density (constant over triangle)
[Gingold et al. 2004]:

Model Reduction

E(x) =
�

S
W (X,x)dS(X)

f(x) = ∇xE(x) =
�

S
∇xW (X,x)dS(X) =

�

S
G(X,x)dS(X)

W (X,x) = +

Force density

Strain Energy:

Internal forces:
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Strain energy density (constant over triangle)
[Gingold et al. 2004]:

Model Reduction

E(x) =
�

S
W (X,x)dS(X)

f(x) = ∇xE(x) =
�

S
∇xW (X,x)dS(X) =

�

S
G(X,x)dS(X)

W (X,x) = +

Force density

Strain Energy:

Internal forces:
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Model Reduction
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Nonlinear system of equations in displacements u

Model Reduction

Mü + f(u) = fexternal
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Nonlinear system of equations in displacements u

Model Reduction

Mü + f(u) = fexternal
Internal forces
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Nonlinear system of equations in displacements u

Suppose some displacement basis given:

Model Reduction

Mü + f(u) = fexternal

u = Uq U ∈ R3N×r U = displacement basis
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Nonlinear system of equations in displacements u

Suppose some displacement basis given:

Model Reduction

Mü + f(u) = fexternal

u = Uq U ∈ R3N×r

r � 3Nq ∈ Rr

U = displacement basis

q = modal coordinates

3N ~ 100K            q ~ hundreds
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Model Reduction

Eigen-modes and frequencies from linear modal analysis

Mü + f(u) = fexternal u = Uq
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Model Reduction

Eigen-modes and frequencies from linear modal analysis

Mü + f(u) = fexternal u = Uq

U:,1 U:,2 U:,3

U:,4 U:,5 U:,6

U:,7 U:,8 U:,9
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Model Reduction
Mü + f(u) = fexternal u = Uq
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Model Reduction

Mü + f(u) = fexternal

u = Uq
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Model Reduction

Mü + f(u) = fexternal

UT MUq̈ + UT f(Uq) = UT fexternal

u = Uq
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Model Reduction

Mü + f(u) = fexternal

UT MUq̈ + UT f(Uq) = UT fexternal

M̃q̈ + f̃(q) = f̃external

u = Uq
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Model Reduction

Mü + f(u) = fexternal

UT MUq̈ + UT f(Uq) = UT fexternal

M̃q̈ + f̃(q) = f̃external

u = Uq

Reduced internal forces
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Model Reduction

Mü + f(u) = fexternal

UT MUq̈ + UT f(Uq) = UT fexternal

M̃q̈ + f̃(q) = f̃external

u = Uq

Question: How to compute         ?f̃(q)
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Model Reduction
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Recall: Internal forces

Model Reduction

f(x) =
�

S
G(X,x)dS(X)

Force density
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Recall: Internal forces

Model Reduction

f(x) =
�

S
G(X,x)dS(X)

f̃(q) =
�

S
UT G(X,Uq)dS(X) =

�

S
g(X,q)dS(X)

Reduced force density

Force density

Sunday, December 13, 2009



Recall: Internal forces

Model Reduction

f(x) =
�

S
G(X,x)dS(X)

f̃(q) =
�

S
UT G(X,Uq)dS(X) =

�

S
g(X,q)dS(X)

Reduced force density

Problem: Matrix multiplies are O(rN)

Force density
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Recall: Internal forces

Model Reduction

f(x) =
�

S
G(X,x)dS(X)

f̃(q) =
�

S
UT G(X,Uq)dS(X) =

�

S
g(X,q)dS(X)

Reduced force density

Problem: Matrix multiplies are O(rN)

Want: Reduced force evaluation independent of N 
(dependent only on r)

Force density
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Classical model reduction approach, eg. [Bathe 1996]

Individual explicit time steps more expensive
(O(rN) instead of O(N))

Has potential to significantly improve stability in 
explicit integration (larger time steps)

Model Reduction

M̃q̈ + f̃(q) = f̃external

f̃(q) =
�

S
UT G(X,Uq)dS(X) =

�

S
g(X,q)dS(X)
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Optimized Cubature
Previous work
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Optimized Cubature
Previous work

• Introduced in [An et al. 2008];  tetrahedral models
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Optimized Cubature
Previous work

• Introduced in [An et al. 2008];  tetrahedral models

• Approximate integral:

f̃(q) =
�

S
g(X,q)dS(X) ≈

M�

i=1

wig(Xi,q)
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Optimized Cubature
Previous work

• Introduced in [An et al. 2008];  tetrahedral models

• Approximate integral:

• Input:  Training poses and forces

q1,q2, . . . ,qNT

f̃(q) =
�

S
g(X,q)dS(X) ≈

M�

i=1

wig(Xi,q)

f̃(q1), f̃(q2), . . . , f̃(qNT)
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Optimized Cubature
Previous work

• Introduced in [An et al. 2008];  tetrahedral models

• Approximate integral:

• Input:  Training poses and forces

• Output: points      and optimized weights        Xi wi

q1,q2, . . . ,qNT

f̃(q) =
�

S
g(X,q)dS(X) ≈

M�

i=1

wig(Xi,q)

f̃(q1), f̃(q2), . . . , f̃(qNT)
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Optimized Cubature
Previous work

f̃(q) =
�

S
g(X,q)dS(X) ≈

M�

i=1

wig(Xi,q)
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Result:          approximation of

Optimized Cubature
Previous work

O(r2)

f̃(q) =
�

S
g(X,q)dS(X) ≈

M�

i=1

wig(Xi,q)

f̃(q)
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Result:          approximation of

        explicit time steps for system - reduced from 

Optimized Cubature
Previous work

O(r2)

O(r2)

M̃q̈ + f̃(q) = f̃external

f̃(q) =
�

S
g(X,q)dS(X) ≈

M�

i=1

wig(Xi,q)

f̃(q)

O(rN)
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Optimized Cubature
Applying Cubature to Thin Shells

f̃(q) =
�

S
g(X,q)dS(X)
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Strain energy density: constant over each triangle
(same is true for reduced force density)

Optimized Cubature
Applying Cubature to Thin Shells

W (X,x) = +

f̃(q) =
�

S
g(X,q)dS(X)
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Internal forces: sum over triangles

Optimized Cubature
Applying Cubature to Thin Shells

f̃(q) =
�

S
g(X,q)dS(X) =

NT�

i=1

Aig(XTi ,q)

g(XTi ,q) = +
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Optimized Cubature
Applying Cubature to Thin Shells

f̃(q) =
NT�

i=1

Aig(XTi ,q)

g(XTi ,q) = +
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Internal forces: sum over triangles

Optimized Cubature
Applying Cubature to Thin Shells

f̃(q) =
NT�

i=1

Aig(XTi ,q)

g(XTi ,q) = +
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Internal forces: sum over triangles

Choose subset and weights:

Optimized Cubature
Applying Cubature to Thin Shells

f̃(q) =
NT�

i=1

Aig(XTi ,q)

{t1, . . . , tC} ⊂ {T1, . . . , TNT }
{w1, . . . , wC}

�
C � NT

g(XTi ,q) = +
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Internal forces: sum over triangles

Choose subset and weights:

Optimized Cubature
Applying Cubature to Thin Shells

f̃(q) =
NT�

i=1

Aig(XTi ,q)

{t1, . . . , tC} ⊂ {T1, . . . , TNT }
{w1, . . . , wC}

�
C � NT

NT�

i=1

Aig(XTi ,q) ≈
C�

i=1

wiAig(Xti ,q)

g(XTi ,q) = +
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Internal forces: sum over triangles

Choose subset and weights:

Use cubature training to choose subset/weights

Optimized Cubature
Applying Cubature to Thin Shells

f̃(q) =
NT�

i=1

Aig(XTi ,q)

{t1, . . . , tC} ⊂ {T1, . . . , TNT }
{w1, . . . , wC}

�
C � NT

NT�

i=1

Aig(XTi ,q) ≈
C�

i=1

wiAig(Xti ,q)

g(XTi ,q) = +
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800 element cubature scheme (78K triangles)

Optimized Cubature
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Model Reduction
Summary
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• What we keep from linear modal sound synthesis:

Model Reduction
Summary
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• What we keep from linear modal sound synthesis:

• Small displacement assumption

Model Reduction
Summary
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• What we keep from linear modal sound synthesis:

• Small displacement assumption

• Linear shape model

Model Reduction
Summary

u = Uq
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• What we keep from linear modal sound synthesis:

• Small displacement assumption

• Linear shape model

• Differences from linear modal synthesis

Model Reduction
Summary

u = Uq

M̃q̈ + K̃q = UT fext
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• What we keep from linear modal sound synthesis:

• Small displacement assumption

• Linear shape model

• Differences from linear modal synthesis

Model Reduction
Summary

u = Uq

M̃q̈ + f̃int(q) = UT fext
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Model Reduction
Summary

M̃q̈ + f̃int(q) = UT fext
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Dimensional model reduction:
Significantly increases stable time step size

Model Reduction
Summary

M̃q̈ + f̃int(q) = UT fext
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Dimensional model reduction:
Significantly increases stable time step size

Model Reduction
Summary

Full simulation:  ~11M time 
steps per second

Reduced simulation:  44100 
time steps per second

M̃q̈ + f̃int(q) = UT fext
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Dimensional model reduction:
Significantly increases stable time step size

19 days vs. 15 hours for 5s of audio

Model Reduction
Summary

Full simulation:  ~11M time 
steps per second

Reduced simulation:  44100 
time steps per second

M̃q̈ + f̃int(q) = UT fext
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Model Reduction
Summary

M̃q̈ + f̃int(q) = UT fext
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Cubature algorithm:
Reduces time step cost from             to          

Model Reduction
Summary

O(rN) O(r2)

M̃q̈ + f̃int(q) = UT fext
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Cubature algorithm:
Reduces time step cost from             to          

15 hours vs. 1.5 hours for 5s of audio

Model Reduction
Summary

O(rN) O(r2)

M̃q̈ + f̃int(q) = UT fext

Sunday, December 13, 2009



Cubature algorithm:
Reduces time step cost from             to          

15 hours vs. 1.5 hours for 5s of audio

Overall: Larger, cheaper time steps

Model Reduction
Summary

O(rN) O(r2)

M̃q̈ + f̃int(q) = UT fext
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Approximating 
Acoustic Transfer

Precompute
exterior
acoustic
pressure

Far-field
acoustic
transfer
maps

Synthesize
sound

Train
cubature
scheme

Training
poses

Vibration
basis U

Geometry,
physical

parameters
Simulate

vibrations

Project
impulse
forces

Rigid body
simulation
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Approximating Acoustic 
Transfer
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Sum of modal amplitudes:

p(x, t) =

Approximating Acoustic 
Transfer
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Sum of modal amplitudes:

Or, weighted sum:

p(x, t) =

Approximating Acoustic 
Transfer

p(x, t) =
Nmodes�

i=1

qi(t) |pi(x)|
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Sum of modal amplitudes:

Or, weighted sum:

“Acoustic transfer function” (far-field, low 
frequency, monopole approximation)

pi(x) ∝ ki

|x|

p(x, t) =

Approximating Acoustic 
Transfer

p(x, t) =
Nmodes�

i=1

qi(t) |pi(x)|
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Sum of modal amplitudes:

Or, weighted sum:

“Acoustic transfer function” (far-field, low 
frequency, monopole approximation)

In general: 

pi(x) ∝ ki

|x|

p(x, t) =

Approximating Acoustic 
Transfer

p(x, t) =
Nmodes�

i=1

qi(t) |pi(x)|

�
∇2 + k2

i

�
pi(x) = 0
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Acoustic Transfer function:

Amplitude of unit vibration:

Modal sound contribution:

Problem: Must evaluate        for each time sample, 
mode and object

Standard solution techniques (eg. BEM) too expensive

Approximating Acoustic 
Transfer

p(x)

|p(x)|

|p(x)|q(t)

p(x)
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Approximating Acoustic 
Transfer
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• “Precomputed Acoustic Transfer”
[James et al. 2006]

• Approximate          with sum of simple source 
functions

Approximating Acoustic 
Transfer

pi(x)
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• “Precomputed Acoustic Transfer”
[James et al. 2006]

• Approximate          with sum of simple source 
functions

• Problems with this approach:

• Difficult fitting problem for high frequencies

• Increasingly costly transfer evaluations with 
higher frequencies (more sources needed)

Approximating Acoustic 
Transfer

pi(x)
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Approximating Acoustic 
Transfer
Exploiting radial structure
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Approximating Acoustic 
Transfer
Exploiting radial structure

Ignore behavior near to the object (eg. within 2-3 
bounding sphere radii)
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Approximating Acoustic 
Transfer
Exploiting radial structure

Ignore behavior near to the object (eg. within 2-3 
bounding sphere radii)

Look for structure in far field pressure behavior

Sunday, December 13, 2009



Approximating Acoustic 
Transfer
Exploiting radial structure
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Approximating Acoustic 
Transfer
Exploiting radial structure
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Approximating Acoustic 
Transfer
Exploiting radial structure
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Approximating Acoustic 
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Approximating Acoustic 
Transfer
Exploiting radial structure
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Approximating Acoustic 
Transfer
Exploiting radial structure
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Approximating Acoustic 
Transfer
Exploiting radial structure
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Approximating Acoustic 
Transfer
Exploiting radial structure

Sunday, December 13, 2009



Approximating Acoustic 
Transfer
Exploiting radial structure
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Approximating Acoustic 
Transfer

Suppose the pressure 
field surrounding 
an object is known:
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Suppose the pressure 
field surrounding 
an object is known:

Approximating Acoustic 
Transfer
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Fix radial direction:

Pre-compute estimate 
in this direction

Approximating Acoustic 
Transfer
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Consider an M-term asymptotic expansion

Approximating Acoustic 
Transfer
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Consider an M-term asymptotic expansion

Approximating Acoustic 
Transfer

Unknowns
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Approximating Acoustic 
Transfer
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Precompute pressure samples on 
concentric spherical shells using 
fast multipole BEM
[Greengard and Rokhlin 1987; Gumerov 
and Duraiswami 2005]
(FastBEM implementation [Liu 2009])

Approximating Acoustic 
Transfer
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Precompute pressure samples on 
concentric spherical shells using 
fast multipole BEM
[Greengard and Rokhlin 1987; Gumerov 
and Duraiswami 2005]
(FastBEM implementation [Liu 2009])

Approximating Acoustic 
Transfer

Θl

R1 R2 R3
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Precompute pressure samples on 
concentric spherical shells using 
fast multipole BEM
[Greengard and Rokhlin 1987; Gumerov 
and Duraiswami 2005]
(FastBEM implementation [Liu 2009])

Estimate terms           

Approximating Acoustic 
Transfer

Θl

R1 R2 R3

Ψ1(Θl), . . .ΨM (Θl)
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Precompute pressure samples on 
concentric spherical shells using 
fast multipole BEM
[Greengard and Rokhlin 1987; Gumerov 
and Duraiswami 2005]
(FastBEM implementation [Liu 2009])

Estimate terms           

Approximating Acoustic 
Transfer

Θl

R1 R2 R3

�M
j=1

h0(kRi)
(kRi)j−1 Ψj(Θl) = p(Ri,Θl)

⇐⇒
�M

j=1 AijΨjl = pil

Ψ1(Θl), . . .ΨM (Θl)
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Precompute pressure samples on 
concentric spherical shells using 
fast multipole BEM
[Greengard and Rokhlin 1987; Gumerov 
and Duraiswami 2005]
(FastBEM implementation [Liu 2009])

Estimate terms           

Approximating Acoustic 
Transfer

Θl

R1 R2 R3

�M
j=1

h0(kRi)
(kRi)j−1 Ψj(Θl) = p(Ri,Θl)

⇐⇒
�M

j=1 AijΨjl = pil

Unknowns Precomputed
pressures

Ψ1(Θl), . . .ΨM (Θl)
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Approximating Acoustic 
Transfer
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Approximating Acoustic 
Transfer

Far Field Acoustic Transfer (FFAT) 
Maps
• Low-error transfer, e.g., M=4

• O(1) transfer evaluation cost
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Results

Sunday, December 13, 2009



Model Dimensions # of triangles # of modes Freq. range

Trash can 0.75m tall 78k triangles 200 modes 0.071-4.43 kHz

Cymbal 0.50m 
diameter 62k triangles 500 modes 0.061-9.94 kHz

Water 
bottle 0.46m tall 29k triangles 300 modes 0.116-3.59 kHz

Recycling 
bin 0.61m wide 110k triangles 300 modes 0.062-2.21 kHz

Trash can 
lid

0.55m 
diameter 34k triangles 200 modes 0.112-6.79 kHz
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Results

• 500 modes

• 1500 cubature features (10.7% error)

• Timestep: (1 / 88200)s

• Simulation cost: 3900s per second of audio
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Results

• 500 modes

• 1500 cubature features (10.7% error)

• Timestep: (1 / 88200)s

• Simulation cost: 3900s per second of audio
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Results

• 300 modes

• 1200 cubature features (15.7% error)

• Timestep: (1 / 44100)s

• Simulation cost: 1224s per second of audio
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Results

• 300 modes

• 1200 cubature features (15.7% error)

• Timestep: (1 / 44100)s

• Simulation cost: 1224s per second of audio
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Results

• 200 modes

• 800 cubature features (11.5% error)

• Timestep: (1 / 44100)s

• Simulation cost: 624s per second of audio
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Results

• 200 modes

• 800 cubature features (11.5% error)

• Timestep: (1 / 44100)s

• Simulation cost: 624s per second of audio
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Results

• 200 modes

• 800 cubature features (10.3% error)

• Timestep: (1 / 44100)s

• Simulation cost: 714s per second of audio
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Results

• 200 modes

• 800 cubature features (10.3% error)

• Timestep: (1 / 44100)s

• Simulation cost: 714s per second of audio
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Results

• 300 modes

• 900 cubature features (10.7% error)

• Timestep: (1 / 44100)s

• Simulation cost: 1026s per second of audio
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Results

• 300 modes

• 900 cubature features (10.7% error)

• Timestep: (1 / 44100)s

• Simulation cost: 1026s per second of audio

Sunday, December 13, 2009



Comparisons

Sunday, December 13, 2009



Comparisons: Linear vs. Nonlinear
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1. Nonlinear dynamics + Transfer
(“Harmonic Shells”) (~1.5-3h per 10s of audio)

Comparisons: Linear vs. Nonlinear
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1. Nonlinear dynamics + Transfer
(“Harmonic Shells”) (~1.5-3h per 10s of audio)

2. Linear dynamics + Transfer
(audio can be computed in real-time)

Comparisons: Linear vs. Nonlinear
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1. Nonlinear dynamics + Transfer
(“Harmonic Shells”) (~1.5-3h per 10s of audio)

2. Linear dynamics + Transfer
(audio can be computed in real-time)

3. Linear dynamics + Monopole

Comparisons: Linear vs. Nonlinear
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Comparisons: Linear vs. Nonlinear
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Comparisons: Linear vs. Nonlinear
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More Results
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• All-frequency sound synthesis
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• All-frequency sound synthesis

• Frequency range limited to ~4-5 kHz for 
moderately sized objects
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• All-frequency sound synthesis

• Frequency range limited to ~4-5 kHz for 
moderately sized objects

•           does not scale to thousands of modes

Limitations and Future Work

O(r2)
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• All-frequency sound synthesis

• Frequency range limited to ~4-5 kHz for 
moderately sized objects

•           does not scale to thousands of modes

• FFAT Map storage

Limitations and Future Work

O(r2)
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• All-frequency sound synthesis

• Frequency range limited to ~4-5 kHz for 
moderately sized objects

•           does not scale to thousands of modes

• FFAT Map storage

• Typically 50-100MB for single term map (500MB 
for cymbal)

Limitations and Future Work

O(r2)
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• All-frequency sound synthesis

• Frequency range limited to ~4-5 kHz for 
moderately sized objects

•           does not scale to thousands of modes

• FFAT Map storage

• Typically 50-100MB for single term map (500MB 
for cymbal)

• Better sampling of angular space (not all 
directions as complex)

Limitations and Future Work

O(r2)
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Limitations and Future Work
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Limitations and Future Work

• Nonlinear vibrations but radiation model assumes 
linear vibrations
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Limitations and Future Work

• Nonlinear vibrations but radiation model assumes 
linear vibrations

• Radiation model which takes into account mode 
coupling, etc.
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• Practical nonlinear modal sound synthesis for 
objects with hundreds of modes

• O(r2) cost per timestep

• Larger timesteps

Conclusions
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• Practical nonlinear modal sound synthesis for 
objects with hundreds of modes

• O(r2) cost per timestep

• Larger timesteps

• Richer sounds than linear modal models

Conclusions
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• Practical nonlinear modal sound synthesis for 
objects with hundreds of modes

• O(r2) cost per timestep

• Larger timesteps

• Richer sounds than linear modal models

• Data-driven technique for O(1) computation of 
pressure contribution from each mode 

• O(r) for all r modes

Conclusions
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