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Building Volumetric Appearance Models of Fabric using Micro CT Imaging
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Figure 1: We build volumetric appearance models of complex materials like velvet using CT imaging: (left) CT data gives scalar density
over a small volume; (center) we extract fiber orientation (shown in false color) and tile larger surfaces; and (right) we match appearance
parameters to photographs to create a complete appearance model. Both fine detail and the characteristic highlights of velvet are reproduced.

Abstract

The appearance of complex, thick materials like textiles is deter-
mined by their 3D structure, and they are incompletely described by
surface reflection models alone. While volume scattering can pro-
duce highly realistic images of such materials, creating the required
volume density models is difficult. Procedural approaches re-
quire significant programmer effort and intuition to design special-
purpose algorithms for each material. Further, the resulting models
lack the visual complexity of real materials with their naturally-
arising irregularities.

This paper proposes a new approach to acquiring volume models,
based on density data from X-ray computed tomography (CT) scans
and appearance data from photographs under uncontrolled illumi-
nation. To model a material, a CT scan is made, resulting in a scalar
density volume. This 3D data is processed to extract orientation
information and remove noise. The resulting density and orienta-
tion fields are used in an appearance matching procedure to define
scattering properties in the volume that, when rendered, produce
images with texture statistics that match the photographs. As our
results show, this approach can easily produce volume appearance
models with extreme detail, and at larger scales the distinctive tex-
tures and highlights of a range of very different fabrics like satin and
velvet emerge automatically—all based simply on having accurate
mesoscale geometry.
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1 Introduction

The appearance of materials like cloth is determined by 3D struc-
ture. Volume rendering has been explored for decades as an ap-
proach for rendering such materials, for which the usual surface-
based models are inappropriate [Kajiya and Kay 1989; Perlin and
Hoffert 1989; Xu et al. 2001]. Recent developments [Jakob et al.
2010] have brought enough generality to volume scattering that we
can begin to render fully physically-based volumetric appearance
models for cloth, fur, and other thick, non-surface-like materials.
However, a fundamental problem remains: creating these volumet-
ric models themselves. For surfaces, texture maps derived from
photographs are simple and effective, but volumes are not so easy.
Previous work has primarily relied on procedural methods for mod-
eling volume density, but this has limited generality: significant
creative effort is needed to design special algorithms for each new
material. Further, these models often miss the subtle irregularities
that appear in real materials.

This paper explores an entirely different approach to building vol-
ume appearance models, focusing particularly on cloth. Since
cloth’s detailed geometric structure is so difficult to model well, we
use volume imaging to measure structure directly, then fill in opti-
cal properties using a reference photograph. We do this by solving
an inverse problem that statistically matches the texture between
photographs and physically based renderings (which include global
illumination and multiple scattering). We focus on textiles because
they exhibit a wide range of appearance, but share a common basic
structure of long, shiny fibers. Textile rendering is important for
many applications, but is challenging because cloth is structured,
causing complicated textures and reflectance functions, yet irregu-
lar, causing difficult-to-model randomness. The thick, fuzzy nature
of cloth makes volume models a good fit, if only there were a gen-
eral solution for constructing them.

Many volume imaging technologies have been developed, includ-
ing computed tomography (CT), magnetic resonance, ultrasound,
and others, but unlike photographs, the resulting data does not di-
rectly relate to the optical appearance of the material; only to its
structure. As a result, volume renderings of these images are useful
for illustrating hidden internal geometry, but not directly for ren-
dering realistic images. For instance, a micro CT scan of woven
cotton cloth gives a detailed view of the interlaced yarns and their
component fibers, showing exactly how the fibers are oriented and
how the yarns are positioned, but no information about how they in-
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Figure 2: Our volume appearance modeling pipeline. (a) CT images are acquired, (b) the density field and orientation field of the volume
are created, and (c) optical parameters of the volumetric model are assigned by matching statistics of photographs with rendered images. (d)
Larger models are rendered using our acquired volumetric appearance and geometry models.

teract with light: there is no way to tell whether the fabric is black
or white or any color in between.

We show in this paper that remarkably little additional information
is required to extend CT data to a realistic appearance model. The
value of knowing 3D structure is obvious for rendering close-up
views where these details are visible. But equally importantly, the
shape and arrangement of fibers in the material also determines the
overall appearance of the material—the shape and quality of spec-
ular highlights, and how the visual texture varies with illumination
and view. When coupled with the right rendering technology, a sim-
ple local model of reflection from fibers automatically predicts the
characteristic appearance of very different materials like velvet and
satin, simply by knowing the 3D structure of the material.

The contribution of this paper is to show how to enhance the struc-
tural information from a CT scan of a small sample of fabric by
combining it with appearance information from a photograph of
the material to construct plausible and consistent optical properties
that produce realistic appearance when rendered using a physically
based volume renderer. We describe our end-to-end volume ap-
pearance modeling pipeline and demonstrate it by acquiring mod-
els of cloth with very different appearance, ranging from matte to
shiny and textured to smooth, capturing their characteristic high-
lights, textures, and fuzziness.

2 Related Work

We categorize realistic volumetric rendering and modeling research
in the related areas of surface appearance modeling, cloth re-
flectance modeling, and cloth structure modeling.

Appearance modeling: Because standard surface-oriented mod-
els are inadequate for complex thick materials, researchers and
practitioners have had to fall back on image-based rendering meth-
ods like Bidirectional Texture Functions (BTF), which essentially
consist of an exhaustive set of photographs of the surface under all
possible illumination and viewing directions [Dana et al. 1999; Fu-
rukawa et al. 2002; Wang et al. 2005]. Although BTFs produce real-
istic results for many otherwise difficult materials, the image-based
approach requires a significant amount of storage, and is often not
of high enough resolution for sharp BRDF features, and generally
fails to capture or predict grazing angles, making silhouettes and
edges unrealistic.

Two prominent early volume appearance models are Kajiya and
Kay’s [1989] fur rendering, and Perlin and Hoffert’s [1989] “hyper-
texture.” Although it has since become more common to render hair
and fur using discrete curves, their results demonstrate the value of
volumetric models for complex, barely resolved detail. A similar
approach is the Lumislice representation [Xu et al. 2001; Chen et al.

2003] which focused on modeling and rendering knitwear. Magda
and Kriegman [2006] describe a method for acquiring volumetric
textures which combine a volumetric normal field, local reflectance
functions, and occupancy information. All these approaches need
significant modeling effort. Recently Jakob et al. [2010] introduced
a principled formulation for rendering anisotropic, oriented volu-
metric media, which opens possibilities for more physically based
volume appearance models.

Cloth reflectance models: Cloth has perennially appeared in
graphics as a source of difficult BRDFs. Westin et al. [1992] com-
puted cloth BRDFs by raytracing mesostructure models, which
is related to the way cloth highlights emerge in our system.
Ashikhmin et al. [2000] rendered velvet and satin using hand-
designed microfacet distributions. Adabala et al. [2003] proposed a
rendering method for woven cloth based on microfacet models, and
Irawan [2008] presented an elaborate model, based on the analysis
of fiber tangent directions in a range of woven fabrics, and validated
it against BRDF measurements. Each of these methods achieved
good appearance relative to the then-current state of the art, but they
are all specially hand-designed models for individual materials or
specific classes. Lu et al. [1998] measured and analyzed reflections
from velvet, and Ngan et al. [2005] measured some fabrics, includ-
ing satins, but neither proposed models suitable for rendering.

Since our approach is based on a completely general system that
only has a volume with fibers as its underlying assumption, we have
few fundamental limitations on what textile or textile-like materi-
als can be handled. Further, by importing volumetric detail from
the real world, we can achieve good appearance in closeups, and at
silhouettes, edges, and corners, where surface models appear unre-
alistically smooth and flat.

Cloth structure: The geometry of cloth structure has been stud-
ied for decades [Pierce 1937; Kawabata et al. 1973]. More recently
X-ray tomography, using synchrotron facilities [Thibault and Bloch
2002; Gong et al. 2009] or the rapidly improving micro-CT scan-
ners [Lomov et al. 2002; Shinohara et al. 2010], has been used
to examine the structure of textiles in several applications. These
studies focus on extracting geometric information related to the
material’s mechanical properties, but have produced some analysis
tools [Shinohara et al. 2010] that we use.

3 Overview

The goal of our system is to create realistic volumetric appearance
models of cloth. We need to generate a sampled 3D volume that de-
scribes the optical properties of the material at each voxel so that,
when rendered with a physically based rendering system, it realis-
tically reproduces the appearance of real cloth.
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Because cloth is made of fibers, we need a volume scattering model
that can handle the anisotropy of fibers; we chose a modified ver-
sion of the model proposed by Jakob et al. [2010] (detailed in Sec-
tion 4) for this purpose. This model requires an optical density, an
albedo, and two phase function parameters: an orientation vector
and a specular lobe width.

Our technique begins with a micro CT scan of a small area of ma-
terial, showing detail at the level of individual fibers over a fraction
of a square centimeter. Such scans can readily be ordered at moder-
ate cost (a few hundred US dollars) from a number of facilities, and
suitable desktop CT scanners are becoming available. In a sequence
of three stages (Figure 2) we process and augment this data, ending
with a volume that defines the required scattering model parameters
using density and orientation fields derived from the CT data, plus
three global parameters: the albedo, the lobe width, and a density
multiplier that scales the density field.

The first stage (Section 5) processes the density volume to augment
it with orientation information and to remove noise by convolv-
ing the data with 3D oriented filters to detect oriented structures,
and thresholding to separate meaningful structure from noise. This
stage produces the density and orientation fields.

This volume can be rendered only after the global optical parame-
ters are determined. The second stage (Section 6) makes use of a
single photograph of the material under known (but not controlled)
lighting, and associates optical properties with the oriented volume
from the first stage by matching the texture of the rendered volume
to the texture of the photograph.

The resulting volume model is good for rendering small samples;
the third stage takes this small patch and maps it over a large surface
of cloth, using randomized tiling to replicate the material and shell
mapping [Porumbescu et al. 2005] to warp it.

The resulting renderings (Sections 7 and 8) show that this unique
approach to appearance modeling, leveraging direct information
about mesoscale geometry, produces excellent appearance from the
small scale, where the geometry itself is visible, to the large scale,
where the directional scattering properties naturally emerge from
the measured 3D structure. The characteristic appearance of diffi-
cult materials like velvet and satin is predicted by our rather min-
imal volume scattering model, even though we use no light scat-
tering measurements that could tell these materials apart, because
accurate geometric information is available.

4 Fiber Scattering Model

We model light transport using the anisotropic radiative transfer
equation (RTE) from Jakob et al. [2010]

(ω · ∇)L(ω) + σt(ω)L(ω) =

σs(ω)

∫
S2

fp(ω
′→ ω)L(ω′) dω′ +Q(ω) (1)

where σs and σt : S2 → R are the anisotropic scattering and ex-
tinction coefficients, fp is the phase function, and Q is the source
term. Spatial dependence has been omitted for readability.

This equation can be understood as a generalization of the isotropic
RTE that adds support for a directionally varying amount of “inter-
action” with a medium. For instance, the directional dependence of
σt(ω) is necessary to model the effect that light traveling parallel to
coherently aligned fibers faces less obstruction than light traveling
perpendicular to the fibers.

To specify the problem to be solved, we must choose a compatible
scattering model that will supply internally consistent definitions
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Figure 3: Comparison between the sinpθ-type distribution with
exponent p (blue) and our Gaussian-type distribution (red) with
standard deviation γ.

of σt, σs, and fp. For this purpose, we use the micro-flake model
proposed in the same work. This volume analogue of microfacet
models represents different kinds of volume scattering interactions
using a directional flake distribution D(m) that describes the ori-
entation m of (unresolved) idealized mirror flakes at every point
in space. Similar to microfacet models, the phase function then
involves evaluating D(m) at the half-way direction between the in-
cident and outgoing direction. For completeness, we reproduce the
model’s definition below:

σt(ω) = a ρ

∫
S2

|ω ·m|D(m) dm

σs(ω) = ασt(ω)

fp(ω
′ → ω) =

a ρα

4σs(ω)

(
D(h(ω,−ω′)) +D(−h(ω,−ω′))

)

Here, ρ denotes the particle density, a is the area of a single flake, α
is the associated albedo, and h(ω, ω′) := (ω+ω′)/‖ω+ω′‖. Note
that the above expressions are simplified by assuming the flakes
have albedo independent of the scattering angle. This reduces our
search space considerably and still leads to a model that can repre-
sent scattering interactions with a variety of fibrous materials rea-
sonably well.

To simulate scattering from a rough fiber with direction ωf , Jakob
et al. propose the flake distribution D(ω) = c0 sin

p(ωf , ω), where
higher values of p correspond to smoother fibers and c0 is a normal-
ization constant. This model leads to flake normals concentrated
near the plane perpendicular to ωf ; the underlying motivation is
to represent the normal directions observed on the original fiber’s
surface, which predominantly point in these directions.

4.1 Alternative flake distribution

One serious drawback of the sinp-type distribution is that most inte-
grals over it do not have a closed form. This is problematic, since it
effectively prevents the use of the inversion method for generating
random samples distributed according to D. Since our rendering
pipeline crucially depends on this ability (see Section 7), we pro-
pose an alternative flake distribution that is convenient to integrate,
while capturing the same key feature of the sinp model, namely that
it is primarily concentrated perpendicular to the fiber direction.

We use the following density function, which specifies a truncated
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filter q(d; ·)
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Figure 4: Computing function J in 2D: (a) shape of the filter q; (b)
when q is aligned to the fiber; (c) when q is unaligned.

Gaussian centered around the great circle perpendicular to ωf :

D(ω) =
1

(2π)3/2 γ erf
(

1√
2γ

) exp

(
− (ωf · ω)2

2γ2

)

where the standard deviation γ determines the roughness of the
fiber and ωf denotes the fiber direction. The model captures the
same qualitative behavior as the sinp model over a large range of
parameter values (Figure 3).

To summarize, the parameters required to create renderings are:

• ωf , the local fiber orientation,

• γ, the standard deviation of the flake distribution,

• α, the single scattering albedo of the flakes,

• a and ρ, the area and density of micro-flakes. Their product
roughly corresponds to the interaction coefficient σt in tradi-
tional isotropic volume rendering, and we therefore set them
to a multiple of the processed CT densities, i.e. aρ(x) :=
d · CT(x), where d is a constant of proportionality.

Section 5 discusses the steps needed to obtain CT(x) and ωf (x).
In Section 6, we describe how to find α, γ, and d, and Section 7
explains how to use our scattering model in Monte Carlo rendering.

5 CT Image Processing

Micro CT (computed tomography) devices, which use X-ray CT
methods to examine small to microscopic structures, are increasing
in availability, and this imaging modality is suited to a wide range of
materials from which a small sample can be extracted for scanning.

In this section we describe the process of extracting fiber orientation
from the CT density volume using a special fiber-detecting filter.
Following this, we explain the processing steps needed to obtain
orientation and density fields suitable for rendering.

5.1 Recovering the Orientation Field

CT images provide a voxelized density field with no direction in-
formation. Since our optical model requires an orientation for the
phase function, it is necessary to reconstruct an orientation for ev-
ery non-empty voxel. Our approach uses oriented filters to detect
fibers, based on similar filters used by Shinohara et al. [2010] to
locate fibers in CT data. We chose this approach because of its
demonstrated application to fiber detection in CT data, though al-
ternatives [Axelsson 2008] are possible.

To detect a fiber with orientation d at location p, Shinohara pro-
poses a cylindrically symmetric filter oriented with the axis d, con-

Figure 5: Computed orientation field for a piece of gabardine with
each direction (x, y, z) mapped to RGB color (|x|, |y|, |z|). Left:
without thresholding on J; right: with thresholding on J .

sisting of a difference of Gaussians in distance from the axis:

q(d;p) := −2 exp(−sr2) + exp(−tr2)

where r = ‖p− (p · d)d‖ is the distance from the filter’s axis and
the parameters s and t (normally s < t) are empirically adjusted
based on the size of the fibers present in the sample (see Figure 4).

The raw CT volume is thresholded at a value εd, resulting in a bi-
nary volume f :

f(x) :=

{
0 CTraw(x) ≥ εd
1 CTraw(x) < εd

Then f is convolved with the filter q for each of a fixed set of ori-
entations:

J(x,d) :=
∑
p∈V

q(d;p)f(x+ p) (2)

where V is a cubic volume of edge length h. For parameter values,
refer to Table 1.

As shown in Figure 4, the function J reaches a maximum value
when d equals the fiber’s orientation. So the orientation field is
computed by finding, for each voxel x, the d′ that maximizes
J(x,d′) and setting ωf (x) = d′. In our implementation, we pre-
compute q on a set of directions {di} picked from a 32 × 32 × 6
cubemap. Then for each non-empty voxel x, we set ωf (x) = dj

where j = argmaxi J(x,di).

5.2 Denoising CT Images

The CT images usually contain considerable amounts of noise, par-
ticularly for low-density materials like our cloth samples, and re-
moving the noise is critical for obtaining good quality data for ren-
dering. Since cloth structure is always oriented, and the noise is
generally fairly isotropic, the value of J is useful in noise removal.

In our system we use two thresholds to remove noise. The first
threshold εd is on the voxel values themselves, and is used to re-
move faint background noise that would otherwise cloud the model.
This thresholding creates the binary volume f . The second thresh-
old εJ is on the value of J and is used to remove isotropic noise that
has density values that are too high to remove by the first threshold.
We set

CT(x) :=

{
CTraw(x) CTraw(x) ≥ εd and J(x, ωf (x)) ≥ εJ ;

0 otherwise.

Figure 5 shows the significance of adding this second threshold.



Appears in the SIGGRAPH 2011 Proceedings.

5.3 Data Replication

The volume data needs to be replicated for rendering since our sam-
ples are very small. Texture synthesis methods for images provide
sophisticated tools that could be extended to do this, but are beyond
the scope of this paper, and an area of future work. Instead we used
two simple randomized tiling methods to cover the surfaces with
tiles of volume data drawn from our models without introducing
distracting regular structures. In both methods the surface is sim-
ply covered by a rectangular array of tiles copied from the volume,
without continuity at the tile boundaries.

For materials without visible regularity, such as velvet and felt, each
tile on the surface is copied from a rectangular region centered in
the volume. To provide variation in local structure, for each tile this
source rectangle is rotated by a different random angle. For materi-
als with woven structure, like silk and gabardine, we use a similar
approach, but use random translations of the source tile instead of
rotations. The weave pattern in each sample is manually identified
and a rectangular area is marked that contains an integer number
of repeats. Then each (smaller) surface tile is chosen from a sub-
rectangle that contains a matching section of the weave. The result
is a tiling that reproduces the correct weave pattern and avoids ob-
vious repeating of texture. We then map the tiled data to arbitrary
surfaces using shell mapping [Porumbescu et al. 2005].

6 Appearance Matching

Processing the CT data yields the spatially varying density and ori-
entation for the volume. But the optical appearance parameters of
the model remain to be determined. Since the CT scan does not give
us the material’s optical properties, we make use of a photograph of
the material to compute the appearance parameters.

To make the problem tractable, we assume that the volume contains
the same material, with differences only in density and orientation.
This is appropriate for fabrics made from a single type of fiber,
which encompasses many important examples. Fabrics containing
yarns of different materials are future work. Thus, the appearance
parameters that must be determined are the same across the whole
volume. They are: the standard deviation of the flake distribution γ
(corresponding to fiber roughness), the scattering albedo α (corre-
sponding to material color), and the density scale d (corresponding
to opacity). Figure 6-(a) illustrates the effects of these parameters.

To match the material’s optical properties, we must use photographs
of the sample. One approach is to photograph the same sample
that was scanned, calibrating the camera to the scan and associat-
ing pixels in the image with rays in the volume. This calibration
and acquisition is non-trivial; the fine resolution of the scans poses
practical difficulties. Further, we found that this level of detail is
not required to determine the small number of parameter values
we seek. Instead, we assume that the fabric is statistically similar
across different patches. Thus, our approach is to statistically match
the texture of rendered images with a photograph of a different sec-
tion of the same cloth under uncontrolled but known lighting.

We now describe the metrics we use to match the optical parameters
to the photograph, and then describe our matching algorithm.

6.1 Metrics for matching

Appearance matching is not a straightforward process of mapping
colors from the photos into the volume, because the volume model
describes local scattering properties, but the appearance is defined
by a global volumetric multiple scattering process. Our approach
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Figure 6: (a) Renderings of a cylinder tiled with the satin volume,
with fixed albedo and varying lobe width γ and density mlutiplier
d. (b) The corresponding standard deviation of pixel values for the
satin sample: sharper lobes provide shinier appearance and result
in greater standard deviation. The role of d is more complicated.

is to repeatedly render the volume using our physically based ren-
derer, and adjust the optical parameters to match certain texture
statistics of the rendered images to statistics of the photograph.

We match two simple statistical measures: the mean pixel value and
the standard deviation of pixel values, computed over correspond-
ing regions of a photograph and a rendering of approximately sim-
ilar geometry. This approach effectively matches the image bright-
ness and texture contrast in the matching region. We tried measures
such as the CDF of intensities [Heeger and Bergen 1995] and skew-
ness [Motoyoshi et al. 2007], but found that the mean and standard
deviation measures were simpler and robust. Thus, the only infor-
mation that flows from the photograph to the volume model is the
mean and standard deviation of pixels in a single rectangle.

The appearance matching process involves choosing the geometry,
camera position, lighting, and matching region. These are inher-
ently manual choices, and we used the principle of choosing a setup
that shows the distinctive features of the cloth’s appearance. For in-
stance, we made sure to use a configuration where the highlight was
visible on the satin. Beyond this we did not take any special care
in arranging the appearance matching inputs, and the results do not
appear to be sensitive to the details.

6.2 Optimization procedure

As shown in Figure 6, the density multiplier plays a fairly compli-
cated role with respect to both measures. Given that our forward
process, which is essentially Monte Carlo path tracing, is quite ex-
pensive, we chose to pre-determine the density multiplier in our
implementation by rendering such a matrix. Fixing the density mul-
tiplier simplifies the inverse problem and leads to a practical solu-
tion. We found that the algorithm is not particularly sensitive to
the choice of density multiplier; our results use two main settings
which differ by an order of magnitude (see Table 1).

With a fixed density multiplier, we solve for the values of albedo
(α, estimated separately in red, green, and blue) and lobe width (γ,
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Figure 7: Appearance matching results for (from top to bottom) (1) silk, (2) gabardine, (3) velvet, and (4) felt. Columns (a) and (c) show
photographs of the materials, and (b) and (d) show rendered images. The left two columns form the appearance matching pair, in which the
blue boxes indicate manually selected regions for performing our matching algorithm. The right two columns, the validation pair, validate
our matches qualitatively under different configurations.

a single scalar value) using an iterative algorithm. Note that the
mean and standard deviation of pixel values change monotonically
with changes in α and γ respectively1. Thus, a binary search can
be used to significantly improve performance as follows: first, an
initial guess of γ is assumed, and we search for the α to match
the mean pixel value. Then, fixing α, we perform a search for the
γ to match the standard deviation. These iterations are repeated
until a match is found. In practice, this approach converges quickly,
usually in 2 or 3 iterations.

Finally, we take another photo under a different setup and render
a corresponding image as a qualitative validation (see Section 8).
Figure 7 shows the appearance matching results for four different
materials.

7 Rendering

We render all our scenes using a basic Monte Carlo path tracer,
which handles the directionally varying properties of the medium
described in Section 4. One important part of this process entails
generating samples from the phase function fp(ω

′ → ω). In this
section, we adopt the notation of the integral form of the RTE, i.e.
ω is held fixed, and we are interested in sampling the direction ω′,
from which to gather illumination.

In prior work, [Jakob et al. 2010] used a spherical harmonics rep-
resentation for this purpose. However, this approach has several
undesirable properties. First, a sample weight is needed to account
for the fact that the sampling routine is only approximate, which

1This holds as long as γ exceeds a minimum value (γ = 0.01 for all

our experiments); below this value the variance of fiber orientations limits

glossiness.

increases variance. Second, computing the spherical harmonics co-
efficients is a time-consuming process, which needs to be repeated
for any change in the model parameters. This is problematic, since
our fitting stage explores many different parameter sets. Most im-
portantly, the spherical harmonics approach suffers from ringing
and therefore cannot handle some of the highly specular material
configurations in our parameter space.

In the following section, we first propose a naı̈ve sampling method,
which is not directly usable due to its high variance. We then
demonstrate how rejection sampling can be used to turn the naı̈ve
method into an exact sampling scheme.

7.1 Alternative sampling strategy

In the surface case, importance sampling for microfacet models of-
ten takes the approach of sampling a microfacet normal, then using
it to compute an outgoing direction [Walter et al. 2007]. Additional
factors, such as the Fresnel reflectance and the Jacobian of the di-
rection mapping must be accounted for in a weight associated with
the sample. If we apply this approach to the micro-flake model, we
obtain a sampling strategy with the following density:

f1(ω
′ → ω) =

D(h(ω,−ω′))
2 |ω′ · h(ω,−ω′)|

where the denominator is the aforementioned Jacobian (an extra
factor of 2 is required in comparison to the surface case, since
micro-flakes reflect from both sides). The sample must be assigned
the weight:

w1(ω
′ → ω) =

fp(ω
′ → ω)

f1(ω′ → ω)
=

aρ

σt(ω)

∣∣ω′ · h(ω,−ω′)
∣∣ (3)
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Material Data Size s t h εd εJ d γ α
Gabardine 992× 1012× 181 1 2 16 0.45 –10 5000 0.1 (0.892, 0.063, 0.048)
Silk 992× 1013× 46 3 4 12 0.4 –6 5000 0.01 (0.699, 0.030, 0.080)
Velvet 992× 1012× 311 3 4 12 0.4 –1 500 0.1 (0.555, 0.040, 0.074)
Felt 992× 1012× 485 1 2 16 0.4 –30 500 0.125 (0.518, 0.915, 0.365)

Table 1: Fiber filter and scattering model parameter values for our material samples: s and t are the shape parameters, and h is the volume
size of the filter (Section 5); εd and εJ are the noise thresholds. The optical parameters include d, the density multiplier, and the parameters
found by our appearance matching algorithm: γ, the standard deviation of the flake distribution, and α, the single-scattering albedo.

where we have assumed without loss of generality that D(ω) =
D(−ω). Equation 3 indicates a fundamental problem of this ap-
proach, namely that w1 can become large when σt(ω) ≈ 0. This
becomes a fundamental limitation as specularity increases, particu-
larly when there are many long transport paths (weights are multi-
plicative along paths and can build up).

To deal with this problem, we use rejection sampling to derive a
sampling strategy that generates samples exactly according to fp.
Since aρ/σt(ω) is an upper bound on fp/f1, the following algo-
rithm produces samples of the desired density:

SAMPLE-fp(ω)

1 repeat
2 m = SAMPLE-FLAKE-DISTRIBUTION()
3 ξ = UNIFORM-RANDOM(0, 1)
4 if ξ < |ω ·m|
5 return 2(ω ·m)m− ω

The added cost of rejection sampling is very small — in our ex-
ample scenes, only 2-3 iterations were required on average. The
approach described in this section is general and might also be use-
ful to improve sampling techniques that are traditionally used for
microfacet reflectance models.

7.2 Sampling the flake distribution

The algorithm above assumes the availability of a routine
SAMPLE-FLAKE-DISTRIBUTION that can draw samples dis-
tributed according to D(ω). We apply the inversion method in
spherical coordinates to the distribution described in Section 4, and
find that the latitude (θ) component integrates to:

F (θ) :=
1

2

(
1− erf

(
cos θ√
2γ

)/
erf

(
1√
2γ

))

where, F (0) = 0, F (π) = 1, and we have temporarily assumed

that ωf = (0, 0, 1)T . To sample θ, we find F−1(ξ1) numerically
using Brent’s method, where ξ1 is uniformly distributed on [0, 1].
About 10-18 iterations are required to arrive at machine precision.
For the longitude (ϕ) component, we set ϕ = 2πξ2 (where ξ2 is
another uniform variate). To handle general fiber directions, we
rely on the same sampling code and simply apply the appropriate
rotations to the incident and outgoing directions.

8 Results

Our results are based on samples of silk satin, velvet, felt, and wool
gabardine, which were sent to the High-Resolution X-ray Com-
puted Tomography Facility at The University of Texas at Austin.
All fabrics were scanned in an XRadia MicroXCT scanner using
10243 volumes with a 5 μm voxel size, which observed circular
areas of approximately 5 mm diameter.

As necessary, our initial data cleanup included corrections to equal-
ize density and contrast between the center and edge of the volume

(vignetting). Further, we straightened the slightly non-planar cloth
samples using geometric warping, by fitting a second-order poly-
nomial p(x, y) to points distributed proportional to the CT den-
sities and then resampling the whole volume using the mapping
f(x, y, z) = (x, y, z − p(x, y)). We then ran the CT image pro-
cessing pipeline (see Section 5), with the parameters reported in
Table 1. Depending on the thickness of the sample, processing took
between 1 and 8 hours on a QSSC-S4R Intel Server with 4 Xeon
X7560 8-core processors and 32 GB of memory.

Our rendering implementation is based on the open source render-
ing system Mitsuba [Jakob 2010], which was extended to handle
the new micro-flake distribution (Section 4). The rendering itself
was done on the Amazon Elastic Compute Cloud (EC2), where we
used between 8 and 32 c1.xlarge instances (each having 8 cores
and 7GB of memory) to jointly render the individual images at a
resolution of 2.6 megapixels. With 32 instances, rendering times
range between 3.7 (velvet) and 7.4 (satin) hours per image. The
supplementary material has 10M-pixel images and the video.

Figure 7 shows results obtained by our appearance matching
scheme; the left two columns, the appearance matching pair, show
the image pairs used for appearance matching (the blue rectangle is
used for matching), and the right two columns, the validation pair,
show a different image pair, also with known and matched lighting,
to test how well the model generalizes to other configurations. The
sizes of all samples we used for appearance matching are roughly
10× 10 cm.

Figure 8 shows the resulting models shell-mapped onto draped fab-
ric geometry and rendered under environment lighting.

The silk satin (charmeuse) has a structure of mainly parallel fibers
on the surface, resulting in a strong anisotropic highlight. In Fig-
ure 7-(1), the appearance matching pair uses a cylindrically curved
piece of material, and the matching region was chosen to include
a highlight to allow the matching process to tune γ appropriately.
Good results are obtained despite the mismatch between the ideal
cylinder in the rendering and the flatter shape of the real material,
illustrating that a casual setup suffices. Using the parameters ob-
tained from this view, the validation pair shows the fabric rotated
90 degrees and draped over the same cylinder. At this angle the
fabric exhibits almost no highlight; this anisotropic appearance is
correctly predicted by our model.

The satin is shown in a draped configuration in Figure 8-(a) and in
the accompanying video and supplementary images. No reflectance
model, BRDF, BTF, or other multi-view image data is used for these
renderings—the orientation information in the volume automati-
cally causes the characteristic appearance of this fabric to emerge
when the model is rendered.

For gabardine, a wool twill fabric, the variation in texture with
illumination direction is an important appearance characteristic.
In Figure 7-(2), the appearance matching pair is lit with a low-
frequency environment map. The validation pair accurately predicts
the texture under a different lighting condition, which involves a
strong luminaire at the top. In the draped configuration in Figure 8-
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Figure 8: Fabrics in draped configurations with our volumetric appearance model (a) silk satin, (b) gabardine, (c) velvet, and (d) felt.

(b), the volume model captures subtle foreshortening effects and
the silhouette appearance, as well as the subtle variations in texture
across the surface. The appearance at the cut edge gives the proper
impression of the thickness of the fabric (compare to the very thin
satin material), which is a perennial difficulty with surface models.

Velvet, a material with a cut pile (like a carpet), has a visible sur-
face composed of fibers that stick up from the base material. It has
a very distinctive appearance, with a characteristic grazing-angle
highlight. Appearance matching for velvet (see Figure 7-(3)) was
done using a curved configuration and the same harsh lighting as
used for gabardine’s validation, producing distinct highlights on
both sides of the cylinder. The validation pair shows a different,
softer lighting, which results in a less distinct highlight; our model
agrees qualitatively with the photograph. The appearance of velvet
depends on how the fibers are brushed, and our random tile rotation
method produces randomly brushed velvet. In Figure 8-(c) and in
the video, we demonstrate how our model reproduces the charac-
teristic velvet highlights. Further, the edges and silhouettes convey
the considerable thickness and weight of this material.

Felt is a nonwoven textile consisting of a disorganized layer of mat-
ted fibers. The thickness and fuzziness of this material are impor-
tant appearance attributes that are generally difficult to model and
render. Since felt does not exhibit an overall specular highlight, we
used a flat patch for appearance matching; because of limited depth
of field we limited the matching region to a thin rectangle where
the photograph is in good focus. The illumination conditions for
the appearance matching and the validation are the same as those
for the gabardine. The color and the contrast due to self-shadowing
attributes are matched nicely and generalize well to the second il-
lumination condition. One limitation for this material is that it has
substantial low-frequency content in its texture, which our small

sample area did not capture in the CT imaging, leading to a slightly
more uniform appearance in our tiled material. Figure 8-(d) demon-
strates the ability of our volumetric appearance model to capture the
material’s thick, fuzzy appearance.

A 3D, physically based model also allows more meaningful edit-
ing than image-based methods. Figure 9 shows renderings created
after performing simple edits to the underlying volume representa-
tion. In the top row, we reflect lookups into the satin volume data
across the central plane of the fabric, conditioned on a binary tex-
ture map that covers the surface. This edit reveals the back face
of the satin weave, which exhibits softer reflections due to less co-
herent fiber directions, much as these weaves are interchanged in
jacquard-woven satin. Two different lighting conditions are shown.

In the bottom row of Figure 9, we extend the gabardine model with
a spatially varying albedo value. The albedo is computed as a func-
tion of orientation, so that fibers in the warp and weft are assigned
different colors. With blue warp and white weft a fabric similar to
denim is produced, though made of wool rather than cotton.

Finally, we compare our method to the surface-based BRDF and
texture model introduced by Irawan [2008] (Figure 10). For these
two examples, Irawan fit his model to BRDF measurements of ex-
actly the same materials we measured. The renderings for Irawan’s
and our methods took roughly 8 and 64 core hours, respectively.

At the large scale, the BRDFs of the fabrics match reasonably well.
Irawan showed that his model matches the measured BRDFs of
these materials to a similar degree of fidelity, so this confirms that
our method predicts large-scale reflectance from the structure and a
single image. For yarn-scale texture, the two models produce gen-
erally similar results, though Irawan’s model is lower in contrast
for the gabardine because it does not account for shadowing. It also
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Figure 9: Renderings obtained by editing the volumetric represen-
tation; Top row: the material is flipped using a binary texture map
(two lighting conditions are shown). Bottom row: the gabardine
sample is rendered with a blue hue (left); we then detect weft fibers
based on their orientation and color them white, which produces a
material resembling denim (right).

produces a more uniform appearance. At the small scale, as seen
in the insets, and at silhouettes and edges, our detailed volumetric
model produces dramatically more realistic results.

9 Conclusions

We have demonstrated a new, multimodal approach to making real-
istic volume models of cloth that capture both the 3D structure ev-
ident in close-up renderings and the BRDF evident in farther-away
views. Unlike previous methods for capturing cloth appearance us-
ing BTFs, our method explicitly models the 3D structure of the ma-
terial and, interestingly, is able to capture the directional reflectance
of the material automatically because of this structure.

Our modeling approach uses CT imaging where it is strongest, in
measuring 3D structure, and it uses photographs where they are
strongest, in measuring color and texture. By matching texture
statistics we merge these two sources of information, resulting in
a volume model that can produce both close-up views with rich de-
tail of fuzz and fiber structure and the characteristic BRDFs (high-
lights) of these materials that emerge naturally from rendering the
measured structure. No BRDF measurements are made, and only a
few parameters are adjusted in the optical model. The appearance
of the cloth is created by a simple anisotropic phase function model
together with the occlusion and orientation information extracted
from the volume. This paper shows that since geometric structure
is what creates the complex appearance of textiles, once we acquire
the structure, we are most of the way to modeling the appearance.

Aside from its implications regarding how material appearance can
be modeled from structure, this is also quite a practical method for
appearance modeling. All that is required to model a material is a
CT scan, which can be obtained at reasonable cost from a number of
facilities (or in the future from the rapidly improving technology of
desktop CT scanning) and a few photographs under known illumi-
nation, which takes only a few minutes with a camera and a mirror
sphere. The resulting models are volumetric in nature, and physi-
cally based, which makes them easier to edit than image-based data.
It is easy to adjust color, glossiness, opacity, and material thick-

Figure 10: Silk satin (1) and gabardine (2) rendered with Irawan’s
surface-based representation (a) and with our model (b).

ness by scaling parameters of the volume geometry; and a range of
more fundamental changes to the material’s structure can be made
by editing the volume data.

This paper has demonstrated the usefulness of the CT modeling ap-
proach for textiles, but the approach does have some limitations.
Particularly, it requires that changes in optical properties correlate
with changes in density, and this requirement could limit the kinds
of materials that can be captured using this imaging modality. Fur-
ther, the scanner can only image small samples, less than a centime-
ter across, at the resolution needed to produce clear fiber orienta-
tion maps. Thick materials that do not fit fully in the volume (e.g.,
materials with very long flyaway fibers) cannot be handled well.
Some unusual materials, such as metallic fibers, may be problem-
atic for CT because of limited dynamic range. Also, texture content
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at larger scales will be missed. These problems will decrease as CT
scanners improve in resolution and dynamic range. CT is very well
suited to textiles, and it remains to be seen what other materials it
performs well for, and how other volume imaging methods work
in this technique. Further, materials with differently colored yarns
cannot be currently captured by our method.

There are many areas of future work. For better models, volume
texture synthesis methods are needed that can work with this type
of structured geometry and produce large volumes of high quality
seamless texture while maintaining rendering efficiency. This work
was done using extremely small samples, and with larger samples,
which should be possible as CT technology improves and becomes
cheaper, better texture could be produced. To extend the range of
materials that can be handled, new parameter estimation methods
are needed that can identify and fit multiple materials within a sin-
gle volume. To improve accuracy, more photographs under varying
conditions can be used, allowing more parameters (for instance,
more complex phase functions) to be fit. Ultimately, this method
can be extended to work for a wide range of types of materials
whose appearance is difficult to capture using surface models.
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