Whole Genome Analysis and Annotation

Adam Siepel
Biological Statistics \& Computational Biology
Cornell University

The Challenge

Whole Genome Analysis

Genome Browsers

Whole Genome Analysis

Quick Links to Tools and Databases

Genome Browser	Gene Sorter	VisiGene	Proteome Browser	Table Schema	UniProt
Entrez Gene	PubMed	OMIM	GeneLynx	GeneCards	HGNC
CGAP	HPRD	Stanford SOURCE	ExonPrimer	Ensembl	Jackson Labs
H-INV	Allen Brain Atlas				

Comments and Description Text from UniProt (Swiss-Prot/TrEMBL)

ID: GBRA3 HUMAN
DESCRIPTION: Gamma-aminobutyric-acid receptor alpha-3 subunit precursor (GABA(A) receptor).
FUNCTION: GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
SUBUNIT: Binds UBQLN1 (By similarity). Generally pentameric. There are five types of GABA(A) receptor chains: alpha, beta, gamma, delta, and rho.
SUBCELLULAR LOCATION: Membrane; multi-pass membrane protein.
SIMILARITY: Belongs to the ligand-gated ionic channel (TC 1.A.9) family.
DATABASE: NAME=Protein Spotlight; NOTE=Issue 56 of March 2005; WWW="http://www.expasy.org/spotlightback_issues/sptlo56.shtml".

Whole Genome Analysis

Whole Genome Analysis

Comparative Analysis of Complete Mammalian Genomes

Detection of Functional Elements

Conservation Track

Conservation Track: GAL1

Solanaceae Browser

chr2: \rightarrow TAGTCTAATACGAAATAAAAGAATGGATTGATTAGTCAATTATGAGTGCACTATCACCCATTAACCAACAGAAGAATATATTCTCGTTTTTCTCTTCCTCTTCCT Known Genes
\qquad
Myb Element 1 Predictions - $\mathrm{P}=1.5 \mathrm{e}-4$
TBA Alignment \& Conservation
Conservation
 solanum_tuberosum TAGTCTAATACGGAATGAAAGGATGGATTGATTGGTCAATTATGAGTGGACTATCACCCATTAACCAACAGAAGAATATATT solanum_tuberosum TAGTCTAATACGGAATGAAAGGATGGATTGATTGGTCAATTATGAGTGGACTATCACCCATTAACCAACAGAAGAATATATT
solanum_melongena
GAAAGGATGGATTGATTGGTCAATTACGGGTGCATTATCGCCCATTAACCAACAGAAGAATATATT
capsicum_sp
GAAAGGATGGATTGATTGGTCAATTATGAGTGCATTATCACCCATTAACCAACAGAAGAACATATT
Petunia_sp TAAGTCATCons Conserved Elements

Possible Positive Selection

chrX: $\quad \rightarrow->$ GTGGACTGGAGTAGACTGTACAGAGACACTGGTCTGGTGAAGATGTCCAGGAAACCACGAGCCTCCAGCCCATTTTCCAACAACCACCCATCAACACCAAAGAGGCGAGGAAGG CSAG1 V D W S R L Y R D T G L VCSC Known Genes Based on UniProt. RefSeq, and GenBank mRNA
human GTGGACTGGAGTAGACTGTACAGAGACACTGGTCTGGTGAAGATGTCCAGGAAACCACGAGCCTCCAGCCCATTTTCCAACAACCACCCATCAACACCAAAGAGGCGAGGAAGG chimp GTGGACTGGAGTAGACTGT TGAGAGACACTGGTCTGGTGAAGATGTCCAGGAAACCACGAGCCTCCAGCCCATTGTCCAACAACCACCCACCAACACCAAAGAGGCGAGGAAGT hesus GTGGACTGGAGTAGATTGT TGAGAGATGCTGGTGTGGTGAAGATGTCCAGGAAACCACGAGCCTCCAGCCCATTGTCCAAAAACCACCCGCCAACACCAAAGAGGCGAGGAAGG mouse

Repeating Elements by RepeatMasker

Chondrosarcoma associated gene 1 isoform a

Whole Genome Analysis

"Human Accelerated Region 1" (HAR1)

New Human RNA Structure

Exon Predictions

Whole Mount in situ Hybridizations to Zebra Fish Embryos

Whole Genome Analysis

Phylo-HMM Used by PhastCons

Introduction to Hidden Markov Models, Phylogenetic Models, and Phylo-HMMs

A Markov Model (Chain)

- Suppose $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{L}\right)$ is a sequence of cloudy $\left(Z_{i}=0\right)$ or sunny $\left(Z_{i}=1\right)$ days
- We could assume days are iid with probability theta of sun but cloudy and sunny days occur in runs
- We can capture the correlation between successive days by assuming a first-order Markov model:

$$
P\left(Z_{1}, \ldots, Z_{L}\right)=P\left(Z_{1}\right) P\left(Z_{2} \mid Z_{1}\right) P\left(Z_{3} \mid Z_{2}\right) \cdots P\left(Z_{L} \mid Z_{L-1}\right)
$$

instead of complete independence:

$$
P\left(Z_{1}, \ldots, Z_{L}\right)=P\left(Z_{1}\right) \cdots P\left(Z_{L}\right)
$$

Three Views

I. $\quad P(\mathbf{z})=P\left(z_{1}\right) \prod_{i=2}^{L} a_{z_{i-1}, z_{i}}$
where $a_{c, d}=P\left(z_{i}=d \mid z_{i-1}=c\right)$

Process Interpretation

- Let's add an end state and cap the sequence with $z_{0}=B, z_{L+1}=E$, e.g. $\mathbf{z}=$ B0000IIOOOE

- This is a probabilistic machine that generates sequences of any length. It is a stochastic finite state machine and defines a $\underset{L}{ }$ grammar.
- We can now simply say: $P(\mathbf{z})=\prod_{i=0} a_{z_{i}, z_{i+1}}$
$P(\mathbf{z})$ is a probability distribution over all sequences (for given alphabet).

A Hidden Markov Model

- Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{L}\right)$ indicate whether AS bikes on day $i\left(X_{i}=1\right)$ or not ($X_{i}=0$)
- Suppose AS bikes on day i with probability theta $_{0}=0.25$ if it is cloudy $\left(Z_{i}=0\right)$ and with probability theta ${ }_{1}=0.75$ if it is sunny $\left(Z_{i}=I\right)$
- Further suppose the Z_{i} are hidden; we see only $\boldsymbol{X}=\left(X_{1}, \ldots, X_{L}\right)$
- This hidden Markov model is a mixture model in which the $Z_{i s}$ are correlated
- We call $\boldsymbol{Z}=\left(Z_{l}, \ldots, Z_{L}\right)$ the path

HMM, cont.

- \mathbf{Z} is determined by the Markov chain:

- The joint probability of \boldsymbol{X} and \mathbf{Z} is:

$$
P(\mathbf{x}, \mathbf{z})=P(\mathbf{z}) P(\mathbf{x} \mid \mathbf{z})=a_{B, z_{1}} \prod_{i=1}^{L} e_{z_{i}, x_{i}} a_{z_{i}, z_{i+1}}
$$

where $e_{z_{i}, x_{i}}=P\left(x_{i} \mid z_{i}\right)$

- The X_{i} s are conditionally independent given the $Z_{i} s$

Parameters of the Model

- Transition parameters: $a_{s_{1}, s_{2}}$ for all $s_{1}, s_{2} \in S \cup\{B, E\}$
- Emission parameters: $e_{s, x}$ for all $s \in S, x \in \mathcal{A}$
- The transition parameters define conditional distributions for state s_{2} at position i given state s_{1} at position $i-1$
- The emission parameters define conditional distributions over observation x given state s, both at position i
- The observations can be anything!

Key Questions

- Given the model (parameter values) and a sequence \boldsymbol{X}, what is the most likely path?

$$
\hat{\mathbf{z}}=\operatorname{argmax}_{\mathbf{z}} P(\mathbf{x}, \mathbf{z})
$$

- What is the likelihood of the sequence?

$$
P(\mathbf{x})=\sum_{z} P(\mathbf{x}, \mathbf{z})
$$

- What is the posterior probability of Z_{i} given X
- What is the maximum likelihood estimate of all parameters?

Graph Interpretation of Most Likely Path

Graph Interpretation of Probability of \boldsymbol{x}

Viterbi Algorithm for Most Likely Path

- Let $v_{i j}$ be the weight of the most likely path for $\left(x_{1}, \ldots, x_{i}\right)$ that ends in state j
- Base case: $v_{0, B}=I, v_{i, B}=0$ for $i>0$
- Recurrence: $v_{i, j}=e_{x_{i}, j} \max _{k} v_{i-1, k} a_{k, j}$
- Termination: $P(\mathbf{x}, \hat{\mathbf{z}})=\max _{k} v_{L, k} a_{k, E}$
- Keep back-pointers for traceback, as in alignment
- See Durbin et al. for algorithm

Example

Example

Why HMMs Are Cool

- Extremely general and flexible models for sequence modeling
- Efficient tools for parsing sequences
- Also proper probability models: allow maximum likelihood parameter estimation, likelihood ratio tests, etc.
- Inherently modular, accommodating of complexity
- In many cases, strike an ideal balance between simplicity and expressiveness

Some Applications In Bioinformatics

Burge \& Karlin, 1997

HMMs Generalize Motif Models

Krogh et al., I 994

Forward Algorithm

$$
f_{4,1}=P\left(x_{1}, \ldots, x_{4}, z_{4}=1\right)
$$

Forward Algorithm

- Let $f_{i, j}$ be the (marginal) probability of (x_{1}, \ldots, x_{i}) and $\mathrm{z}_{i}=j: f_{i, j}=P\left(x_{1}, \ldots, x_{i}, z_{i}=j\right)$
- Base case: $f_{0, B}=I, f_{i, B}=0$ for $i>0$
- Recurrence: $f_{i, j}=e_{x_{i}, j} \sum_{k} f_{i-1, k} a_{k, j}$
- Termination: $P(\mathbf{x})=\sum_{k} f_{L, k} a_{k, E}$

$$
\begin{gathered}
f_{i-1,1} \bigcirc \bigcirc_{2, j} a_{1, j} e_{x_{i}, j} \\
f_{i-1,2} \xrightarrow{\bigcirc} \overbrace{i, j} \\
\vdots a_{k, j}
\end{gathered}
$$

Backward Algorithm

Backward Algorithm

- Let $b_{i, j}$ be the (marginal) probability of (x_{i+1}, \ldots, x_{L}) given $\mathrm{z}_{i}=j: b_{i, j}=P\left(x_{i+1}, \ldots, x_{L} \mid z_{i}=j\right)$
- Base case: $b_{L, j}=a_{j, E}$ for all states j
- Recurrence: $b_{i, j}=\sum_{k} a_{j, k} e_{x_{i+1}, k} b_{i+1, k}$
- Termination: $P(\mathbf{x})=\sum_{k} a_{B, k} e_{x_{1}, k} b_{1, k}$

Forward/Backward

Real-world Use

Typical Phylogeny

Figure 10.7 An evolutionary tree showing the divergence of raccoons and bears. Despite their difference in size and shape, these two families are closely related.

Recent Vertebrate Phylogeny

Questions

- What is the tree?
- What were the ancestral states (genomes, genes, etc.)?
- When did the divergences occur?
- What is the process?
- Where are the genes?

The Data

- Originally, morphological "characters" such as number of toes, shape of tooth
- Continuous traits
- DNA or amino acid sequences*
- Gene order or copy number
- Gene expression patterns
- Networks

General Approaches

- Parsimony: search for tree and ancestral states requiring the fewest events
- Distance matrices: define distance function on taxa, find tree that best approximates matrix of pairwise distances
- Statistical: define probabilistic model, perform ML or Bayesian inference
- Other approaches: compatibility, quartet methods, phylogenetic invariants, Hadamard methods, ...

Parsimony for Sequences

- Given a multiple alignment \boldsymbol{X} and a tree T, let $U_{T}(\boldsymbol{X})$ be the minimum number of changes (substitutions) along the branches of T required to explain X
- If $U_{T}\left(\boldsymbol{X}_{i}\right)$ is the minimum number of changes for column i of \boldsymbol{X}, then

$$
U_{T}(\mathbf{X})=\sum_{i} U_{T}\left(\mathbf{X}_{i}\right)
$$

- We seek the best-scoring tree,

$$
\hat{T}=\operatorname{argmin}_{T} U_{T}(\mathbf{X})
$$

- Ancestral sequences reconstructed in passing

Sankoff's Algorithm

- Let x_{k} be the base at node k. Let $S_{k}(a)$ be min. no. changes beneath k, given $x_{k}=a$
- Base case (leaf k):

$$
S_{k}(a)= \begin{cases}0 & x_{k}=a \\ \infty & \text { otherwise }\end{cases}
$$

$$
\begin{gathered}
k \npreceq \\
\left(x_{k}=a\right)
\end{gathered}
$$

- Recurrence (ancestor k, children $i \& j$):

$$
\begin{aligned}
S_{k}(a)= & \min _{b}\left(S_{i}(b)+I(a \neq b)\right) \\
& +\min _{c}\left(S_{j}(c)+I(a \neq c)\right)
\end{aligned}
$$

- Termination: $S_{\text {tree }}=\min _{a} S_{\text {root }}(a)$

Parsimony Example

Problems with Parsimony

- Incapable of dealing with multiple hits. Especially a problem with long branches
- Not a natural framework for addressing the correlation between "weights" and branch lengths
- Not consistent!
- We would like a statistical approach

Poisson Processes

- Let $f(x \mid t)$ denote the probability of x events in an interval of length t
- Suppose $f(x \mid t)$ obeys the Poisson postulates:
I. $f(1 \mid t)=\lambda t+o(t) \quad\left[\lambda>0, \lim _{t \rightarrow 0} o(t) / t=0\right]$

2. $\sum_{x=2}^{\infty} f(x \mid t)=o(t)$
3. The numbers of events in nonoverlapping intervals are independent

- Then x has a Poisson distribution:

$$
f(x \mid t)=\frac{(\lambda t)^{x} e^{-\lambda t}}{x!}
$$

Jukes-Cantor Model

- Some change occurs at rate $4 u / 3$. A new base is randomly drawn from the four possibilities.
- On a branch of length t, the probability of 0 events is: $e^{-4 u t / 3}$
- The probability of $\geq \mathbf{I}$ events is: $1-e^{-4 u t / 3}$
a_{0} - The probability of $b \mid a$ is thus:

Jukes-Cantor, cont.

$$
D=\hat{u t}=-\frac{3}{4} \ln \left(1-\frac{4}{3} D_{S}\right)
$$

Jukes \& Cantor, 1969; Felsenstein, 2004

Kimura's Model

- Distinguishes between transitions and transversions
- Scaling constraint: $\alpha+2 \beta=1$

This implies: $\quad \alpha=\frac{R}{R+1}, \quad \beta=\frac{1}{2(R+1)} \quad\left[R=\frac{\alpha}{2 \beta}\right]$

- It can be shown that:

$$
\begin{gathered}
P(\text { transition } \mid t)=\frac{1}{4}-\frac{1}{2} \exp \left(-\frac{2 R-1}{R+1} t\right)+\frac{1}{4} \exp \left(-\frac{2}{R+1} t\right) \\
P(\text { transversion } \mid t)=\frac{1}{2}-\frac{1}{2} \exp \left(-\frac{2}{R+1} t\right)
\end{gathered}
$$

- These relationships are also invertible

Some Other (DNA) Models

- Felsenstein, I98I (F8I): Rates proportional to equilibrium frequencies $\left(\pi_{A}, \pi_{C}, \pi_{G}, \pi_{T}\right)$
- Felsenstein, I 984 (F84): Rates proportional to equilibrium frequencies, transition/ transversion bias
- Hasegawa-Kishino-Yano, 1985 (HKY85): Similar to F84 but different parameterization
- TN93: Generalizes both F84 \& HKY85, allows for unequal $\mathrm{A}-\mathrm{G}$ and $\mathrm{C}-\mathrm{T}$ transition biases

A General Framework

$$
\mathbf{Q}=\left(\begin{array}{cccc}
-q_{A, C}-q_{A, G}-q_{A, T} & q_{A, C} & q_{A, G} & q_{A, T} \\
q_{C, A} & -q_{C, A}-q_{C, G}-q_{C, T} & q_{C, G} & q_{C, T} \\
q_{G, A} & q_{G, C} & -q_{G, A}-q_{G, C}-q_{G, T} & q_{G, T} \\
q_{T, A} & q_{T, C} & q_{T, G} & -q_{T, A}-q_{T, C}-q_{T, G}
\end{array}\right)
$$

Subject to: $\sum_{a, b: a \neq b} \pi_{a} q_{a, b}=1$

Time-Reversibility

- The process is reversible if, for all a and b,

$$
\pi_{a} q_{a, b}=\pi_{b} q_{b, a}
$$

where π_{x} is the equilibrium frequency of base x

- This is not the same as requiring \mathbf{Q} to be symmetric, but it does impose a kind of symmetry on the process
- At equilibrium, the expected numbers of a-tob and b-to- a substitutions will be equal
- Reversibility has nice mathematical properties and in most cases is not strongly contradicted by real biological data

The REV (GTR) Model

- The most general reversible model is:

$$
\mathbf{Q}_{\mathrm{REV}}=\left(\begin{array}{cccc}
- & a \pi_{C} & b \pi_{G} & c \pi_{T} \\
a \pi_{A} & - & d \pi_{G} & f \pi_{T} \\
b \pi_{A} & d \pi_{C} & - & g \pi_{T} \\
c \pi_{A} & f \pi_{C} & g \pi_{G} & -
\end{array}\right)
$$

- This model has eight free parameters (accounting for constraints) and a stationary distribution of $\boldsymbol{\pi}=\left(\pi_{A}, \pi_{C}, \pi_{G}, \pi_{T}\right)$
- In practice, $\boldsymbol{\pi}$ is often taken to be equal to the observed relative frequencies and the other five parameters are estimated by ML

Others are Special Cases

$$
\begin{array}{cc}
\mathbf{Q}_{\mathrm{JC}}=\left(\begin{array}{cccc}
- & u / 3 & u / 3 & u / 3 \\
u / 3 & - & u / 3 & u / 3 \\
u / 3 & u / 3 & - & u / 3 \\
u / 3 & u / 3 & u / 3 & -
\end{array}\right) & \boldsymbol{\pi}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) \\
\mathbf{Q}_{\mathrm{K} 2 \mathrm{P}}=\left(\begin{array}{cccc}
- & \beta & \alpha & \beta \\
\beta & - & \beta & \alpha \\
\alpha & \beta & - & \beta \\
\beta & \alpha & \beta & -
\end{array}\right) \\
\mathbf{Q}_{\mathrm{HKY}}=\left(\begin{array}{cccc}
- & \pi_{C} & \kappa \pi_{G} & \pi_{T} \\
\pi_{A} & - & \pi_{G} & \kappa \pi_{T} \\
\kappa \pi_{A} & \pi_{C} & - & \pi_{T} \\
\pi_{A} & \kappa \pi_{C} & \pi_{G} & -
\end{array}\right) & \boldsymbol{\pi}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) \\
\end{array}
$$

Computing Probabilities

- Suppose discrete Markov process with transition matrix \mathbf{A}
- Let $\boldsymbol{P}(k)$ be the matrix of conditional probabilities after k steps. That is, $\boldsymbol{P}_{a, b}(k)=P(b \mid a, k)$. Note $\boldsymbol{P}(0)=\boldsymbol{I}$
- Recall that $\boldsymbol{P}(k)=\boldsymbol{P}(k-I) \boldsymbol{A}$, so that $\boldsymbol{P}(k)=\boldsymbol{A}^{k}$ (because $P(b \mid a, k)=\sum_{c} P(c \mid a, k-1) a_{c, b}$)
- Therefore:

$$
\begin{aligned}
\Delta \mathbf{P}(k) & =\mathbf{P}(k)-\mathbf{P}(k-1) \\
& =\mathbf{P}(k-1) \mathbf{A}-\mathbf{P}(k-1) \\
& =\mathbf{P}(k-1)(\mathbf{A}-\mathbf{I})
\end{aligned}
$$

Continuous Analog

- Suppose each step represents a tiny segment $d t$ of a branch of length t, so $k=t / d t$. What happens as dt approaches 0 ?
- It can be shown that $\boldsymbol{P}(t)$ is continuous, and that a differential equation analogous to the above arises:

$$
\frac{d}{d t} \mathbf{P}(t)=\mathbf{P}(t) \mathbf{Q}
$$

- This equation has solution:

$$
\begin{aligned}
\mathbf{P}(t) & =e^{\mathbf{Q} t}=\mathbf{I}+\mathbf{Q} t+\frac{\mathbf{Q}^{2} t^{2}}{2}+\frac{\mathbf{Q}^{3} t^{3}}{6}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{\mathbf{Q}^{n} t^{n}}{n!}
\end{aligned}
$$

Diagonalization

- In practice, we diagonalize \mathbf{Q} :

$$
\mathbf{Q}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{-1}
$$

- Now:

$$
\begin{aligned}
\mathbf{P}(t) & =\sum_{n=0}^{\infty} \frac{\mathbf{Q}^{n} t^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{\left(\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{-1}\right)^{n} t^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{\mathbf{U} \boldsymbol{\Lambda}^{n} \mathbf{U}^{-1} t^{n}}{n!} \\
& =\mathbf{U} e^{\boldsymbol{\Lambda} t} \mathbf{U}^{-1}
\end{aligned}
$$

Computing Likelihoods

- Suppose \boldsymbol{X} is a (gapless) alignment of $\boldsymbol{X}^{(1)}$ and $\boldsymbol{x}^{(2)}$, with \boldsymbol{X}_{i} as the ith column.

$$
\begin{gathered}
\boldsymbol{x}_{1} \\
\boldsymbol{x}^{(1)}=\text { AATGEGTAGA... } \\
\mathbf{x}^{(2)}=\text { ATTCAGCACGT } \ldots
\end{gathered}
$$

- The sequences are derived from an unobserved ancestral sequence y
- Assuming independence,

$$
P(\mathbf{X} \mid \mathbf{Q}, t, \boldsymbol{\pi})=\prod_{i=1}^{L} P\left(\mathbf{X}_{i} \mid \mathbf{Q}, t, \boldsymbol{\pi}\right)=\prod_{i=1}^{L} \sum_{y_{i}} P\left(x_{i}^{(1)}, x_{i}^{(2)}, y_{i} \mid \mathbf{Q}, t, \boldsymbol{\pi}\right)
$$

- Assuming stationarity,

$$
P\left(x_{i}^{(1)}, x_{i}^{(2)}, y_{i} \mid \mathbf{Q}, t, \boldsymbol{\pi}\right)=\pi_{y_{i}} P\left(x_{i}^{(1)} \mid y_{i}, \mathbf{Q}, t\right) P\left(x_{i}^{(2)} \mid y_{i}, \mathbf{Q}, t\right)
$$

Likelihoods, cont.

- Now suppose \boldsymbol{X} is a multiple alignment of sequences related by a (known) phylogeny

$$
\begin{aligned}
& \boldsymbol{X}_{i} \\
& \mathbf{x}^{(1)}=\text { AATCGGTACGA } \ldots \\
& \mathbf{x}^{(2)}=\text { ATTCAGCACGT } \ldots \\
& \vdots \\
& \mathbf{x}^{(k)}=\text { GTTGACTATGA } \ldots
\end{aligned}
$$

- $P\left(x_{i}^{(l)}, \ldots, x_{i}^{(2 k-1)}\right)$ is a product over branches:

$$
P\left(x_{i}^{(1)}, \ldots, x_{i}^{(2 k-1)}\right)=\pi_{x_{i}^{2(2-1)}} \prod_{j=1}^{2 k-2} P\left(x_{i}^{(j)} \mid x_{i}^{\text {preanent }(j)}, t_{j}\right)
$$

- But we need:

$$
P\left(x_{i}^{(1)}, \ldots, x_{i}^{(k)}\right)=\sum_{x_{i}^{(k+1)}, \ldots, x_{i}^{(2 k-1)}} P\left(x_{i}^{(1)}, \ldots, x_{i}^{(2 k-1)}\right)
$$

Recall: Sankoff's Algorithm

- Let x_{k} be the base at node k. Let $S_{k}(a)$ be min. no. changes beneath k, given $x_{k}=a$
- Base case (leaf k):

$$
S_{k}(a)= \begin{cases}0 & x_{k}=a \\ \infty & \text { otherwise }\end{cases}
$$

$\underset{\left(x_{k}=a\right)}{k}$

- Recurrence (ancestor k, children $i \& j$):

$$
\begin{aligned}
S_{k}(a)= & \min _{b}\left(S_{i}(b)+w(a \rightarrow b)\right) \\
& +\min _{c}\left(S_{j}(c)+w(a \rightarrow c)\right)
\end{aligned}
$$

- Termination: $S_{\text {tree }}=\min _{a} S_{\text {root }}(a)$

Felsenstein's Algorithm

- Let $P\left(x^{(k)} \mid x^{(k)}=a\right)$ be the probability of the observed bases beneath node k, given $x^{(k)}=a$
- Base case (leaf k):

$$
P\left(x^{(k)} \mid x^{(k)}=a\right)= \begin{cases}1 & x^{(k)}=a \\ 0 & \text { otherwise }\end{cases}
$$

- Recurrence (ancestor k, children $i \& j$):

$$
\begin{aligned}
P\left(x^{(k)} \mid x^{(k)}=a\right)= & \sum_{b} P\left(x^{(i)} \mid x^{(i)}=b\right) P\left(b \mid a, t_{i}\right) \\
& \left.\times \sum_{c} P\left(x^{(i)} \mid x^{(j)}=c\right) P\left(c \mid a, t_{j}\right) \quad \text { (} x_{i}=b\right)\left(x_{\mathrm{k}}=a\right) \\
\text { - Termination: } & \left(x_{j}=c\right)
\end{aligned}
$$

$$
P\left(x^{(1)}, \ldots, x^{(k)}\right)=\sum_{a} \pi_{a} P\left(x^{(2 k-1)} \mid x^{(2 k-1)}=a\right)
$$

Estimating Parameters

- We now have an efficient way to compute the likelihood of a given phylogenetic model,

$$
P(\mathbf{X} \mid \mathcal{T}, \mathbf{t}, \boldsymbol{\pi}, \mathbf{Q})
$$

- If we fix the tree \mathcal{T}, ML estimation of the other parameters is a standard nonlinear optimization problem:

$$
(\hat{\mathbf{t}}, \hat{\boldsymbol{\pi}}, \hat{\mathbf{Q}})=\underset{\mathbf{t}, \boldsymbol{\pi}, \mathbf{Q}}{\arg \max } P(\mathbf{X} \mid \mathcal{T}, \mathbf{t}, \boldsymbol{\pi}, \mathbf{Q})
$$

- It can be solved numerically using wellknown algorithms (e.g., quasi-Newton methods)

Finding the Tree

- Unfortunately, finding the tree is still hard.
- Like with parsimony, we use heuristic or branch-and-bound methods to search the space of trees. We compute a likelihood for each tree and keep the best one.
- Unlike with parsimony, we have to solve a nonlinear optimization problem for each tree!
- Divide-and-conquer heuristics can be useful, because the search space for small trees is manageable

Posterior Probabilities

- What is the posterior distribution of bases at the root? By Bayes' rule:

$$
P\left(x^{(2 k-1)}=a \mid x^{(1)}, \ldots, x^{(k)}\right)=\frac{P\left(x^{(1)}, \ldots, x^{(k)} \mid x^{(2 k-1)}=a\right) \pi_{a}}{P\left(x^{(1)}, \ldots, x^{(k)}\right)}
$$

- We have already computed the numerator and the denominator! (Felsenstein's algorithm)
- With reversibility, we can root the tree at any node and compute the posterior distribution
- Possible to compute simultaneously for all nodes using an "inside/outside" algorithm resembling the forward/backward algorithm

Non-nucleotide Models

- Can define \mathbf{Q} in terms of codons, amino acids, paired nucleotides in RNA structures
- Codon models are especially useful. They can be parameterized in terms of a nonsynonymous/synonymous rate ratio ω.
- Estimates of this parameter imply negative selection, positive selection, or neutral evolution
- Likelihood ratio tests for positive selection can be constructed

