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Figure 1: Yarn-level cloth: Three knitting patterns relaxed to rest in our simulator. Each starts from a flat input configuration like at left;
they differ only in their interlocking patterns. Characteristic shapes and textures of each knit emerge from our yarn-level physical model.

Abstract

Knitted fabric is widely used in clothing because of its unique and
stretchy behavior, which is fundamentally different from the behav-
ior of woven cloth. The properties of knits come from the nonlinear,
three-dimensional kinematics of long, inter-looping yarns, and de-
spite significant advances in cloth animation we still do not know
how to simulate knitted fabric faithfully. Existing cloth simulators
mainly adopt elastic-sheet mechanical models inspired by woven
materials, focusing less on the model itself than on important sim-
ulation challenges such as efficiency, stability, and robustness. We
define a new computational model for knits in terms of the motion
of yarns, rather than the motion of a sheet. Each yarn is modeled
as an inextensible, yet otherwise flexible, B-spline tube. To simu-
late complex knitted garments, we propose an implicit-explicit inte-
grator, with yarn inextensibility constraints imposed using efficient
projections. Friction among yarns is approximated using rigid-body
velocity filters, and key yarn-yarn interactions are mediated by stiff
penalty forces. Our results show that this simple model predicts
the key mechanical properties of different knits, as demonstrated by
qualitative comparisons to observed deformations of actual samples
in the laboratory, and that the simulator can scale up to substantial
animations with complex dynamic motion.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling I.6.8
[Simulation and Modeling]: Types of Simulation—Animation,
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1 Introduction

Most research on cloth mechanics, both in computer graphics and
in other fields, has focused on woven cloth, both for its simplicity
and because many fabrics used in engineering applications are wo-

ven. In computer graphics, however, clothing is the predominant
application for cloth simulators—and in clothing, knit fabrics are
as commonly used as wovens. Many very common garments, such
as T-shirts or leggings, owe their existence to knits and cannot be
made from woven material.

The distinction between knits and wovens is important for simula-
tion because their mechanical structures are entirely dissimilar, and
as a result they behave differently at all scales. The yarns in woven
fabric are nearly immobile, leading to an almost inextensible sheet
with limited deformations in the yarn structure. In contrast, the in-
terlocked loops in a knit material deform and slide readily, leading
to a highly extensible sheet with dramatic changes in small-scale
structure as the material stretches.

Cloth simulation generally uses models that approximate the me-
chanics of linear elastic sheets. Because of the small in-plane de-
formations of woven materials, acceptable realism can often be
achieved for woven fabric using these models. But linear-elastic
sheet models inevitably look “rubbery” if they are allowed to stretch
as much as a typical knit fabric does. This is unsurprising, since the
mechanics of interlocking loops in a knit fabric bears little resem-
blance to the mechanics of a continuous elastic material—a funda-
mentally different kind of model is required. The small-scale be-
havior of knits is also important because many knits are made with
large yarns, meaning that the yarn structure is clearly visible and
must behave correctly for realistic results.

The simulation we propose in this paper meets the challenge of
knits head-on, by directly solving for the motion of the yarn that
makes up the fabric and the interactions between loops that deter-
mine its behavior. Our physical model is concisely described by the
behavior of a single yarn: an inextensible curve with resistance to
bending, a collision force that resists interpenetration, and damping
for stability and to stand in for the effects of friction. Based on that
model, we demonstrate the first practical yarn-level simulations of
significant yarn structures, producing rich, complex deformations
that are impossible to achieve using any kind of sheet-based simu-
lation. Many of the properties of knit structures emerge naturally
from the simulation, including the characteristic shapes and textures
produced by different knitting patterns and the varying extensibil-
ity of the knit sheets. Evaluation of repetitive yarn-level compu-
tations can exploit multicore architectures naturally, allowing for
large knits to be simulated in practice.

A simulation at this level of detail is required for realistic results
with coarse-knit garments like sweaters, scarves, or socks, because
of their visible yarn structure. Furthermore, yarn-level simulation is



a fundamental tool for studying the large-scale properties of finely
knit fabric, in order to develop continuum models that can realisti-
cally describe knits under large deformations. The same approach
can also lead to models for wovens that are able to capture the
material-dependent subtleties missed by current models.

In the following sections we detail our model, the methods used to
simulate it, and the results of our simulations, including qualitative
laboratory validation of the deformations of similar structures.

2 Prior Work
Cloth has been modeled in a variety of different ways in the lit-
erature. Perhaps the most straightforward approach, and the one
primarily used in the computer graphics community, is to treat the
cloth as an elastic sheet, typically one that is linearly elastic and
isotropic. These models are either explicitly continuous [Terzopou-
los et al. 1987] or a discrete approximation to some continuous sur-
face [Baraff and Witkin 1998]. Extensions to these models have fo-
cused on speeding up the computation time [Volino and Thalmann
2000], simulating stable behavior under compression [Choi and Ko
2002], revised models of bending [Bridson et al. 2003; Grinspun
et al. 2003], or stable collision processing [Volino and Thalmann
2000; Bridson et al. 2002; Baraff et al. 2003]. Focus has also gone
into limiting the amount of stretching fabric can undergo, either by
a strain-limiting iterative process [Provot 1995; Bridson et al. 2002]
or a constraint satisfaction phase [Goldenthal et al. 2007]. While
simulation speeds are relatively fast, there is in general a prob-
lem of mapping physical cloth properties to the parameter space of
the elastic model. Jojic and Huang [1997] used range scan data of
static cloth configurations to estimate the elastic parameters. Bhat
et al. [2003] used video data of moving cloth to estimate the elastic
and damping parameters, with the experimentally determined pa-
rameters for the knit sample varying noticeably; this suggests that
the elastic model may not be a good fit for knitted materials.

Several models have attempted to address the fact that cloth is com-
prised of a discrete set of yarns. Geometric modeling of yarns ar-
guably began with Peirce [1937], who derived a set of parameters
and equations for modeling the crossing of yarns in a woven fabric
as inextensible curves. Kawabata et al. [1973] proposed a beam and
truss model for yarn crossings in a woven fabric, as well as a sys-
tem for measuring the physical force curves resulting from stretch,
shear, and bend motions of cloth. Variations of the beam-and-truss
model have been used in the textile community to simulate the be-
havior of plain-weave fabrics like Kevlar [King et al. 2005; Zeng
et al. 2006]. Breen et al. [1994] and Eberhardt et al. [1996] mod-
eled woven fabric as a particle system, where a particle ideally rep-
resented a yarn crossing.

Woven yarn crossings have also been modeled as a pair of curves
[Warren 1990]. In particular, Nadler et al. [2006] employed a two-
scale model, treating cloth at the high level as a continuous sheet,
and at the fine level as a collection of pairs of orthogonal curves in
contact with each other, with feedback from the fine scale driving
the simulation of the large scale. Yarns have also been modeled
as splines, with Rémion [1999] developing the basic equations for
using splines in a knit; however, they used springs between the con-
trol points to preserve length. Jiang and Chen [2005] used a spline-
based yarn model to generate plausible static woven fabric configu-
rations. Similar to this, there has also been work done in computer
graphics on modeling and simulating thin flexible rods [Pai 2002;
Bertails et al. 2006; Theetten et al. 2007; Spillmann and Teschner
2008], although the simulated rods are typically much shorter than
the spline curves used in our cloth.

The work of Chu [2005] is similar to the current work in that both
use B-splines to simulate fabric, with similar terms for collisions,
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Figure 2: Interlocking loop structures of three knitting patterns
used in our examples compared to standard woven cloth.

but the former is focused on woven fabrics and allows the yarns to
stretch, which requires a much smaller timestep than our simulator
for stable results. In addition, the integral for the contact model
is approximated by using closest points in a set of contacts prede-
termined by the cloth structure at initialization time. Our collision
evaluation makes no assumptions about cloth topology, allowing ar-
bitrary collision regions typical of cloth-cloth contact, while scaling
to support the simulation of large, arbitrary knits.

Because of their relative complexity compared to woven fabrics,
knits are not as well-studied. Eberhardt et al. [2000] model knits as
a continuous sheet with force curves derived from Kawabata mea-
surements. Nocent et al. [2001] deform a thin sheet and project the
changes to the sheet to an underlying spline-based geometry. Sev-
eral works in the textile community have focused on generating knit
geometry using spline curves, typically assuming incompressible
yarns and specific geometric constraints [Demiroz and Dias 2000;
Göktepe and Harlock 2002; Choi and Lo 2003]; only Choi [2003]
attempts to simulate the resulting geometry. Chen et al. [2003] are
primarily concerned with rendering knit geometry, and use as their
base model a system of key points mapped to a mass-spring mesh.
In contrast, we allow for compressible yarns through our collision
model and have no geometric constraints on the curves, allowing
them to take a natural instead of a prescribed shape and support-
ing arbitrary knit structures. Finally, we are able to scale up our
simulations to model large knit structures like loose scarves and leg
warmers; to our knowledge, ours is the first practical implementa-
tion capable of this.

3 Structure of Knitted Cloth
The yarns that comprise cloth are themselves formed from fibers,
either long filaments like silk or shorter fibers like cotton, which
are twisted so that friction holds the yarns together. As a result,
the fibers at the core of the yarn tend to have little relative move-
ment, and the yarn as a whole resists stretching. Much research has
been done in the textile community on fiber-level models of yarn
and how the interactions at the fiber level lead to yarn-level behav-
ior, particularly bending rigidity [Park and Oh 2003; Park and Oh
2006]. In particular, Choi and Tandon [2006] develop a model of a
multi-ply yarn, showing that their model reasonably approximates
experimental results and predicts the strain energy of bending to be
approximately quadratic with respect to the curvature.

3.1 A Brief Primer on Knits and Knitting

Cloth can in general be divided into two broad categories: woven
and knit fabrics. Woven fabrics are comprised of two sets of yarns,



Figure 3: Views of three knitted samples: Note the large differences in dimensions for the same number of stitches and length of yarn. The
predictions of our model (Figure 1) are qualitatively similar.

the warp and the weft, organized into two perpendicular directions
on the cloth surface. In contrast, the yarns in a knitted fabric are
organized into a regular set of loops in horizontal rows. The loops
from each horizontal row of a knit are pulled through the loops of
the previous row, either in a “knit” stitch (up through the previous
loop) or a “purl” stitch (down through the previous loop). The two
primary directions in a knit are called the course and the wale, with
the course traveling in the direction of a single row of loops and the
wale traveling in the direction of the stack of loops. Typically, when
the yarn reaches the end of a row of a knit, it then doubles backs
and forms the next row as well. As a result, knits consist of only
a few yarns, which is in contrast to woven fabrics which consist of
many yarns. The first and last row of stitches are special stitches
known as bind-ons and bind-offs, respectively, which serve to keep
the knit from unraveling, while the beginning and end of the yarn is
either pulled back through the fabric several times and held in place
by friction or simply knotted off.

Alternating between knit and purl stitches results in much of the va-
riety in knitted fabrics, with three of the most common varieties be-
ing the stockinette (all “knit” stitches), the garter (alternating rows
of “knits” and “purls”), and the 2-2 rib (each row consists of repeti-
tions of 2 “knit” stitches followed by 2 “purl” stitches)1. In Figure
2, we show samples of the three styles of knitting from above. The
garter is the simplest of the three, and has the same overall pat-
tern on both sides of the fabric. In comparison, the stockinette is
different on the front and the back, which leads to some dramatic
curling behavior on the edges. The rib is much shorter in the course
direction than either of the other two, again because of this same
curling behavior. As can be seen from the pattern, it is essentially 2
columns of the front side of a stockinette followed by 2 columns of
the back side of a stockinette. These columns curl like the regular
stockinette, with adjacent columns curling in opposite directions,
compressing the rib knit greatly and giving it a tremendous degree
of stretchiness; typically, the cuffs of shirts and sweaters and the
ankles of socks are made out of ribbed stitching. Examples of these
fabric are shown in overview in Figure 3.

3.2 Qualitative Mechanical Behavior

As a result of its construction, the deformations of cloth are multi-
phasic, particularly when being stretched. When under tension, the
cloth first begins unrolling from any compression caused by curl-
ing. This is particularly evident in ribbed knits, where the columns
of the front-facing stockinette stitch are pulled apart, revealing the
columns of back-facing stockinette stitch. After that, the cloth then

1When hand knitting, the work is typically turned over after each row,
which reverses the notation of stitches (i.e., a “purl” stitch when flipped
looks like a “knit” stitch from the front). As a result, these definitions of a
stockinette and a garter are reversed from standard hand-knitting definitions.

begins deforming its woven or knit structure. In the case of a wo-
ven fabric, the warp-weft intersections become compressed, while
in a knit fabric the loops are stretched in one dimension while be-
ing compressed in the other. Because the loops are typically free to
undergo much larger deformations than the compression of the in-
tersections in a woven fabric, knits tend to be much stretchier than
their woven counterparts. At some point, however, the cloth is un-
able to deform much more in this fashion and so additional load
causes the yarns themselves to stretch. As noted above, though,
yarns are very resistant to stretching, which results in a sharp in-
crease in the load curve at this point.

It is also important to note that stretching behavior in one dimen-
sion affects the characteristics of the other dimension as well. For
instance, in a knit, as the loops are stretched in one dimension they
compress in the other dimension, sometimes quite noticeably; as a
result, capturing these couplings is important for visual accuracy.
Although some current cloth simulators are capable of expressing
these types of relationships, it can be difficult to tune the parameters
correctly, and oftentimes they are ignored.

4 A Yarn-Level Cloth Model
Our cloth is modeled using the individual yarns that comprise it
(see Figure 4 for an overview). Without loss of generality, we will
assume that our knits are constructed using a single yarn. The yarn
is an open cubic B-spline curve with a constant radius of r described
by the control points q ∈ R3m. In general, indices i, j range over
spline segments, while indices k, l range over control points. The
curve is described by y(s) =

∑
bk(s)qk, s ∈ [0, N ] for a yarn

with N = m − 3 spline segments, where bk(s) is the cubic B-
spline basis function associated with control point k. Similarly, the
velocity of the yarn at parametric point s is v(s) =

∑
bk(s)q̇k.

For convenience, the curve restricted to a particular spline segment
i is denoted yi(s), s ∈ [0, 1] (and vi(s) for the velocity). Each
spline segment has a fixed arclength `i. The yarn has a mass per
unit length of munit, and mass is spread along the curve according
to the function m(s) = munit`bsc, a piecewise constant function
that assigns mass to segments according to their arclength and then
spreads the mass uniformly in parameter space.

We model the yarn’s time evolution using the equations of motion
of constrained Lagrangian dynamics; see Goldstein et al. [2002]
for a further description of Lagrangian mechanics, and Rémion et
al. [1999] for its application to spline curves. In addition, some of
the stiffer properties of the cloth are enforced via constraints. The
result is a differential algebraic equation (DAE) of the form,

M q̈ = −∇qE(q)−∇q̇D(q̇) + f (1)
C(q) = 0, (2)
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Figure 4: Summary of yarn-level model: Yarns are splines with
constraints fixing the arc length of each segment. Internal forces
resist bending and intra-segment stretching, and external forces re-
pel colliding lengths of spline. Damping forces are applied to the
yarns, at the collisions, and to areas of cloth.

where M is the mass matrix, E(q) is the sum of all positional en-
ergy terms, D(q̇) is the sum of all “damping energy” terms, f are
external forces, and C(q) is a vector of constraint functions.

4.1 Intra-Yarn Properties

Mass: The kinetic energy of the yarn is:

T (q̇) =

N∑
i=1

munit `i

∫ 1

0

vi(s)
Tvi(s) ds (3)

In order to apply Lagrangian mechanics, we must compute
d
dt

(∇q̇T (q̇)). By expanding the integral on the right hand side
of Equation 3, ∇q̇T (q̇) can be rewritten as Mq̇, where Mk,l =∫ N
0
m(s)bk(s)bl(s)ds. Because this depends only on the ar-

clengths, munit, and basis functions, all of which remain constant
during simulation, this matrix can be precomputed, and because the
cubic B-spline functions have local support, the matrix is sparse
with upper and lower bandwidth of 12. Taking the derivative with
respect to t yields Mq̈, the left hand side of (1)

Bending: Bending resistance is modeled by a bend energy den-
sity functional which is quadratic in curvature:

Ebend
i = kbend `i

∫ 1

0

κi(s)
2 ds, (4)

where κi(s) =
‖y′

i(s)×y′′
i (s)‖

‖y′
i(s)‖

3 is the unsigned curvature of spline
segment i at s.

Inextensibility: Because of their high resistance to stretching rel-
ative to the cloth, we model yarns as inextensible. Ideally this
would be a constraint at the infinitesimal level; however, we need
to ensure that we do not lock up the system by removing too many
degrees of freedom. As a result, we define one length constraint on
each spline segment

C len
i = 1− 1

`i

∫ 1

0

‖y′i(s)‖ ds. (5)

This constraint ensures that the total length of the segment remains
constant, but it does not necessarily keep the mass of the spline
from sliding around inside the curve as the parameterization speed
changes; as long as the overall length is constant, the infinitesimal
length can change without penalty. To prevent this, we also intro-
duce a set of energy terms,

E len
i = klen

∫ 1

0

(
1− ‖y

′
i(s)‖
`i

)2

ds, (6)

where klen is a stiffness coefficient. It should be noted that this term
does not have to be particularly stiff due to the use of length con-
straints, since it only needs to resist the stretching or compression
of mass in a local area. For instance, in a piece of yarn hanging ver-
tically klen only needs to be stiff enough to support the weight of a
single spline segment, while without the constraint term klen needs
to be stiff enough so that the first segment can support the weight
of the entire yarn.

4.2 Yarn-Yarn Collisions

Yarn collision forces are modeled with an energy term,

Econtact
(i,j) = kcontact `i`j

∫ 1

0

∫ 1

0

f

(
‖yj(s′)− yi(s)‖

2r

)
ds ds′, (7)

for i, j such that |i−j|>1, where f(d) is defined such that f(d)→
0 as d→ 1, f ′(d)→ 0 as d→ 1, and f(d)→∞ as d→ 0. In our
implementation, we use

f(d) =

{
1
d2

+ d2 − 2, d < 1
0, otherwise . (8)

We found this collision model to be physically and computation-
ally more robust than ones based on closest point distances. In
addition, this approach by definition also handles arbitrary cloth
self-collisions such as those seen in folding and bunching.

4.3 Damping and Friction

Damping and friction in knitted cloth structures are complex, with
significant hysteresis effects. The interlooped structure of knits cre-
ates large contact regions, and for yarns made of short fibers the di-
rect contact between yarns combines with the mass of intertwined
stray fibers, or “fuzz,” that resists relative motion between nearby
yarns. Accurate yarn-level modeling of such phenomena is beyond
the scope of this paper. Instead, we employ three damping models
of practical importance:

Mass-proportional damping is a classic way to dissipate any
motion, and it is our most basic damping force component. Damp-
ing is applied uniformly to the yarn according to the following
damping energy term:

Dglobal
i = kglobal

∫ 1

0

vi(s)
Tvi(s)ds. (9)

Because the density of our yarns is constant, the mass dependence
is effectively pushed into kglobal. We make extensive use of inher-
ently stable mass-proportional damping model during knit structure
initialization (§6). During actual simulation, however, kglobal is typ-
ically turned off, and we rely on the following two damping models
to damp the motion of the cloth.

Contact damping: A yarn-yarn collision damping term Dcollision
(i,j)

is used both to damp the stiff yarn-yarn contact forces and to ap-
proximate sliding friction, defined as:

`i`j

∫ 1

0

∫ 1

0

(
kdt‖∆vij‖2− (kdt−kdn)(n̂Tij∆vij)

2
)
ds ds′, (10)

where kdt ≥ 0 controls damping in the tangential direction, and
kdn ≥ 0 controls damping in the normal direction; ∆vij =
∆vij(s, s

′) = vj(s
′)−vi(s) is the relative velocity; and n̂ij =

n̂ij(s, s
′) is the normalized value of the collision direction,

nij(s, s
′) = yj(s

′)−yi(s). This integral is only evaluated where
the yarns are determined to be in contact with each other according
to Equation 8
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Figure 5: Regions used for the non-rigid damping velocity filter

Non-rigid motion damping: Modeling the dissipative effects of
“fuzz” properly is a rather difficult problem. While we do not wish
to model it explicitly, we also do not want to ignore it, since we
believe that it is an important characteristic of cloth to capture. Here
we present a simple model that works well in practice, and we leave
the development of a more advanced model for future work.

In order to resist relative motion between nearby sections of yarn,
we damp non-rigid motion [Müller et al. 2006]. The cloth is broken
up into fixed overlapping regions as in Rivers and James [2007],
and at each step the center of mass, angular momentum, and inertia
tensor of each region are computed. The yarn in each region is then
damped according to α

r(s)
(vrigid(s)−v(s)), where vrigid(s) is the

expected rigid motion of point s. The parameter α ∈ [0, 1] controls
how strong the damping is, and r(s) is the number of fixed regions
containing the point s.

There are several ways to break up the cloth into regions. We use
a two-pass filter over parametrically static regions defined during
yarn initialization, first heavily damping small regions of two yarn
loops and then damping the motion of larger regions (see Figure
5). The first pass is designed to damp out motion locally where the
yarns loop around each other, and the second pass damps stretching,
shearing, and bending modes.

4.4 Additional Constraints and Contacts

In order to prevent knitted cloths from unraveling, the end of the
yarn is typically either knotted off or pulled through several loops
and held in place by friction. We accomplish the same effect by
“gluing” the end of the yarn to another piece of yarn via a con-
straint of the form Cglue = y(s1)− y(s2) for particular choices of
s1 and s2. Similarly, when the cloth needs to be pinned in place,
vector constraints of the form Cpin

i = y(si) − pi are inserted. It
is important to avoid introducing too many hard constraints, which
can lead to overconstrained or near-singular systems, or degraded
quality in yarn dynamics.

We approximate object collisions in one of two ways. We resolve
contact with implicit surfaces (such as our leg warmer example)
using penalty forces modeled via an energy term,

Eobj
i = kobj

∫ 1

0

{
(f(yi(s))− f0)2, f(yi(s)) < f0
0, otherwise

}
ds, (11)

along with corresponding damping forces (analogous to yarn-yarn
collision damping (10)). Alternately, for objects with distance fields
(such as the scarf falling on a plane), we employ a velocity filter: a
normal impulse is applied that resolves interpenetration, along with
an approximate frictional impulse (c.f. [Bridson et al. 2002]).

For each timestep, h
[q, v] = unconstrained step (q, v, t)
[q, v] = satisfy constraints (q, v)
v = filter velocity (q, v)
t = t+ h

end

Figure 6: Overview of time-stepping scheme

5 Integrating Yarn Dynamics
Implementing our yarn-level model requires careful choice of sim-
ulation methods and attention to several crucial details in evaluating
the terms presented in (§4). Figure 6 contains an overview of the
steps in our simulator.

5.1 Integration Method

The DAE is stepped forward in time using the Implicit Constraint
Direction (ICD) method [Goldenthal et al. 2007], using Algorithm
1 in that paper. We use an explicit midpoint step as our uncon-
strained step. The algorithm iterates until convergence, with each
iteration requiring a sparse linear system solve of a matrix which
depends on the inverse mass matrix and the Jacobian of the con-
straint function. To speed up the simulation and simplify inverse
mass computation, we lump the mass matrix along the diagonal.
We found that at most 4-5 iterations were usually needed for ac-
ceptable convergence, and oftentimes only 1 or 2.

Although the integrals for the mass matrix and for global damping
are readily solved, the others lack efficient closed forms. As a re-
sult, we used Simpson’s quadrature at fixed positions in parameter
space to evaluate the integrals in (4), (5), (6), (7), (10), and (11),
typically using 11 quadrature points per spline segment. We plan
to explore the use of efficient adaptive quadrature rules for some of
the integrals, in particular the collision integral.

5.2 Yarn Collisions

In practice, expanding the integrals in (7) and (10) is the bottleneck
for the simulation, so they must be computed efficiently. Naive
evaluation is exceedingly slow, because it involves a double integral
over the entire yarn. However, it should be noted that the integrand
is zero over the vast majority of the integration domain, since yarn
segments typically contact only a few neighbors. To compute this
integral effectively, we exploit spatial culling: we generate bound-
ing spheres with a radius equal to the radius of the yarn at fixed
quadrature points in parameter space, and insert them into a static
AABB hierarchy that is generated at the beginning of the simula-
tion. To evaluate the integral, we intersect the hierarchy with itself
to determine the quadrature point-pairs requiring evaluation. In ad-
dition, both the tree traversal and contact force evaluations can be
parallelized across multiple cores.

5.3 Velocity Filters

We also allow velocity filters to update control point velocities di-
rectly. Most previous velocity filters are used on discrete particle
systems, however, our system models a continuous curve. In order
to easily generate filters for the spline’s control points, we split the
curve into a set of disjoint sample segments, typically using 6–10
sample segments per spline segment. The desired impulse ∆v(s)
is computed for each sample segment, and the resultant impulse ap-
plied to the kth control point is then bk(s)∆v(s). All of the control
point impulses are accumulated and then multiplied by the lumped
M−1 to produce the actual change in velocity ∆q̇ for the control



Figure 7: Small-scale structure of the three knitting patterns be-
fore and after relaxation (yarn radius shrunk for clarity).

points. Finally, q̇new = q̇ + ∆q̇. To prevent impulses from affect-
ing each other, all impulses for a particular velocity filter are com-
puted first, then applied together. The non-rigid damping and non-
penalty-based object collisions (for objects with distance fields) are
both handled with a velocity filter.

6 Initializing Yarn Configuration
There are a variety of ways to generate initial knit configurations.
For instance, methods have been proposed for generating knit ge-
ometry by simulating the knitting process itself [Eberhardt et al.
2000]. In order to generate an initial configuration, our algorithm
takes as input a knit pattern, the number of spline segments k to
generate per stitch, and a set of curves which describe the basic
shape of the various kinds of stitches. In particular, it expects a
model of a general loop (which can be flipped along the z-axis to
form either a knit or a purl stitch) as well as models of the various
types of stitches which can occur on the boundaries of the cloth.
It then forms a single spline curve to describe the fabric by laying
down one stitch at a time and finding the best least-squares cubic B-
spline approximation of that stitch using k segments and given the
control points already added by the previous stitch. The first (last)
stitch are modeled with a special type of stitch where the beginning
(end) of the yarn connects to another part of the stitch, forming a
loop; these endpoints are then “glued” to the closest point using the
glue constraints from (§4.4)

The goal of the model generation is to obtain a configuration where
all of the loops are properly interconnected according to the speci-
fied pattern, but it is not necessarily the rest state. To find the rest
state, we simulate the pattern using our model, but without the hard
constraint on length and with a high length energy coefficient and
high viscous damping. In addition, the yarn is shrunk by setting the
desired arclength `i of each spline segment to c`0i , where `0i is the
starting arclength and c<1 is a shrinking factor, e.g., in our simula-
tions, c=0.935. This causes the entire cloth to compress and settle
into a general rest state, which we can then use as a cloth sample in
our simulations.

7 Results
Our simulator is implemented in Java and was run on machines
with two 4-core Intel Xeon processors clocked at 2.66GHz. Simu-
lation parameters common to all scenes are in Table 1, while scene-
specific parameters and details are available in Table 2. The render-
ings in the paper and video were made using a software implemen-
tation of the Lumislice method [Chen et al. 2003] in a ray tracer.
Our implementation follows the original except that it uses volume
ray tracing rather than alpha blending to accumulate light through
the volume; it uses first-order spherical harmonics, rather than a
directional table, to store the Volume Reflectance Function; and it

Relaxation Simulation
r 0.125 cm 0.125 cm
m 0.006 g

cm 0.006 g
cm

klen 10000 g cm2

s2 2000 g cm2

s2

kbend 0.005 g cm2

s2 5 g cm2

s2
kglobal 1.5 g

s 0 g
s

kcontact 3250 g
s2 3250 g

s2
kdt 0.001–0.005 g

cm2s 0.001–0.005 g
cm2s

kdn 0.01–0.05 g
cm2s 0.01–0.05 g

cm2s
αsmall 0.3 0.6–0.75
αlarge 0.3 0.2–0.4

Table 1: Parameters used during relaxation and simulation.

Stretch Scarf Legwarmer
h 1/11800 s 1/22500 s 1/12000 s
Avg # segs/knit loop 8 8 8
# of spline segs 11264 26240 35200
# collision quadrature
pts per seg

20 10 10

Avg time per frame 6.8 min 10.7 min 10.8 min
Yarn Collisions 58% 57% 52%
Other energy 7% 12% 23%
Constraints 7% 9 % 19%
Velocity filters 28% 22 % 6%

Table 2: Scene statistics.

uses distribution ray tracing, rather than a shadow map, to compute
shadows from area sources. The expensive shadow computations
are performed at regularly spaced points throughout the yarn vol-
ume, then interpolated as the yarn volume is traversed. Rendering
times range from 4 to 15 minutes per frame, on the same hardware
as used for simulation.

The first stage of computation, before we begin simulating motion,
is relaxing the models from their initial configuration to a rest state.
In this process the models, which initially differ only in the orien-
tation of the loops, take on the characteristic shapes and textures
associated with these patterns in real knits. The relaxed models are
shown in Figure 1, and the small-scale structures of the three mod-
els before and after relaxation are shown in Figure 7.

All of the real samples were knitted (by the first author) using wool
worsted size 8 yarn, with each row knitted using alternating col-
ors so that the knit structure is more readily apparent. The weight
and diameter of this yarn was used as input parameters to our yarn
model. Each sample consists of 42 rows, with each row containing
32 stitches. Figure 1 illustrates the results of using our model to
relax an initial configuration into a default rest state for the three
samples, while Figure 3 shows their real-life equivalents. Other
than the placement of knit and purl stitches according to the model’s
knit pattern, all of the other parameters for the three models were
identical. Our yarn-based model accurately predicts the curling on
the edges of the stockinette, as well as the compression of the rib
knit in the course direction and the garter knit in the wale direc-
tion. These properties arose naturally from the interactions of the
yarn in our model; in comparison, to achieve the same effect in an
elastic model would require careful manual tweaking of rest angles
customized for each particular knit.

Figure 8 shows a three-way comparison of the stretching behavior
of our sample knits along various directions. We compare the mea-
sured results to the output of our yarn-based model and an elastic
sheet model [Baraff and Witkin 1998]. For all tests, one end of the
cloth was held fixed while the other end was clamped and moved. In
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Figure 8: Stretch-test comparisons for various knit types.

Figure 9: Scarf: Our contact model scales to support the complex
contact and folding that occurs in cloth.

Figure 10: Leg warmer: Simulating at the yarn level captures the
nonlinear stretching of the knit ribs around the heel of the foot.



order to generate the yarn geometry from the elastic sheet mesh, we
project the control points of our knitted cloth while at rest into the
mesh, determining for each point its barycentric coordinates with
respect to the nearest triangle. We then use those to deform the
control points when the mesh is deformed.

Our model predicts the characteristic shape of the knit while being
stretched, in particular the tightening of the yarn loops in the garter,
the separation of the ridges in the rib, and the rapid curling of the
ends of the stockinette. The elastic model, due to its assumptions of
infinitesimal continuity, predicts an unrealistic and inaccurate shape
for the garter and the rib as the entire cloth stretches instead of
the yarns deforming. For the stockinette, it does a reasonable job
deforming the yarn structure; however, it fails to curl at the ends,
which happens in both the real sample and our yarn model. Our
model is in fact overeager to curl compared to the sample, although
we believe this is due to the lack of an appropriate friction model.
As a supplement to this paper, we provide the samples for the other
6 tests (in total, 3 samples and 3 directions each) for both the real
sample and our model. We note that this is a rather strenuous test
resulting in stiff but stable contacts, with some of the final states
depending largely on frictional forces, which we do not model; as a
result, some of the configurations reached are unstable and tend to
rapidly shift to lower energy ones. However, despite this, we still
capture the overall deformation of the yarns in the cloth.

Figure 9 shows the robustness of our collision model when applied
to a 20 × 160 knitted scarf falling onto a plane. Our model is able
to resolve the collisions resulting from contact with both the plane
and itself. The average time per frame was about 10.7 minutes due
to the small timestep used, which is comparable to the rendering
time of about 9 minutes per frame for video-quality renderings.

Figure 10 shows a 44 × 96 knitted leg warmer being pulled over a
foot. Because we simulate the yarn contacts directly, we are able
to resolve the complicated stretching pattern as it slides over the
heel. Due to the size of the model, there are over 100 billion pairs
of quadrature points that potentially need to be evaluated for the
collision integral at each step. Using our bounding box hierarchy,
however, we are able to quickly find the 3.7 million pairs on average
that are in contact, using only 12 million bounding box traversals
and 12 million sphere-sphere evaluations on average.

Finally, Figure 11 shows our largest example, a 20 × 400 scarf
composed of 64,690 spline segments falling on an inclined plane.
The full movie of the sequence appears in the SIGGRAPH 2008
Computer Animation Festival [Kaldor et al. 2008].

8 Conclusion

We have demonstrated a robust and scalable technique for simu-
lating knitted cloth at the yarn level. Our simulation approach al-
lows for significant increases in yarn-level knitted cloth complex-
ity over previous research, while achieving practical offline simula-
tion rates. In addition, we qualitatively verified our simulation both
against knitted samples and against the predictions of a standard
elastic cloth model, showing that there are interesting and visually
noticeable nonlinear effects occurring in knits that are captured by
our model but not by the elastic sheet approximation. In particu-
lar, our model is able to capture the salient mechanical features of
garter, stockinette, and rib knits at rest without any parameter tun-
ing or special cases–it follows directly from yarn interactions.

We anticipate that this work will be especially valuable to the tex-
tile community, particularly in the rapid design of clothing by al-
lowing designers to see how knitted materials will drape and react
without having to actually create the material. It is also applicable
anywhere visual accuracy is of the utmost importance, such as for

Figure 11: A longer scarf on an inclined plane “bunches up” as
it falls and slides down.

large, loose knits in computer animation, where individual yarns
are visible in the frame and incorrect motion may be visually dis-
tracting. Finally, we think that models such as ours can provide a
computational ground truth for future model comparisons. Approx-
imations to yarn-level and/or continuous models can be compared
against the output of a yarn-level simulator to see where and how
they differ, and whether those differences are visually noticeable.

For future work, we see a wide variety of opportunities available
for extending and building upon this research. Although our model
stably handles yarns that are in constant, low-stiffness contact, as
well as transient stiff contact between two colliding yarns, it is not
as stable in handling constant, high-stiffness contact, such as those
caused by stretching a knit excessively. In addition, our model does
not treat friction, which is a critical component of yarn-yarn inter-
actions and a driving factor in cloth hysteresis. Handling friction in
yarn-level cloth is exceedingly difficult due to the large numbers of
interrelated and distributed contacts. Beyond that, in addition to the
qualitative evaluation performed here, we plan to do quantitative
comparisons against real samples. Finally, as noted above, we be-
lieve that yarn-level cloth computations provide a starting point for
the comparison of approximate models of knitted cloth to reality,
and we plan to explore using this model to validate faster approxi-
mations of knit behavior.
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