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Abstract—Gossip-based protocols are increasingly popular in
large-scale distributed applications that disseminate updates to
replicated or cached content. GO (Gossip Objects) is a per-
node gossip platform that we developed in support of this
class of protocols. In addition to making it easy to develop
new gossip protocols and applications, GO allows nodes to
join multiple gossip groups without losing the appealing fixed
bandwidth guarantee of gossip protocols, and the platform
optimizes rumor delivery latency in a principled manner. Our
heuristic is based on the observations that multiple rumors can
often be squeezed into a single IP packet, and that indirect
routing of rumors can speed up delivery. We formalize these
observations and develop a theoretical analysis of this heuristic.
We have also implemented GO, and study the effectiveness of
the heuristic by comparing it to the more standard random
dissemination gossip strategy via simulation. We also evaluate
GO on a trace from a popular distributed application.
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I. INTRODUCTION

Gossipbased communication is commonly used in dis-

P2. Constant, balanced load Each node initiates exactly
one message exchange per round, unlike leader-based
schemes in which a central node is responsible for
collecting and dispersing information. Since message
exchange happens at fixed intervals, network traffic
overhead is bounded [6].

Simplicity. Gossip protocols are simple to write and
debug. This simplicity can be contrasted with non-
gossip styles of protocols, which can be notoriously
complex to design and reason about, and may depend
upon special communication technologies, such as
IP multicast [7], or embody restrictive assumptions,
such as the common assumption that any node can
communicate directly with any other node in the
application.

Scalability. All of these properties are preserved when
the size of the system increases, provided that the
capacity limits of the network are not reached and the
information contained in gossip messages is bounded.

P3.

P4,

tributed systems to disseminate information and updates in However, gossip protocols also have drawbacks. The most
a scalable and robust manner [1], [2], [3]. The idea is simplecommonly acknowledged are the following. The basic gossip
At some fixed frequency, each node sends or exchanggsotocol is probabilistic meaning that some rumors may be
information (known asumorg with a randomly chosen peer delivered late, although this occurs with low probability.
in the system, allowing rumors to propagate to everybodyrhe expected number of rounds required for delivery in
in an “epidemic fashion”. gossip protocols is logarithmic in the number of nodes.
The basic gossip exchange can be used for more than justonsequently, the latency of gossip protocols is on average
sharing updates. Gossip protocols have been proposed faigher than can that provided by systems using hardware
scalable aggregation, monitoring and distributed queryin accelerated solutions like IP Multicast. Finally, gossiptp-
constructing distributed hash tables and other kinds of-ove cols support only the weak guaranteesgéntual consistency
lay structures, orchestrating self-repair in complex meks — updates may arrive in any order and the system will
and even for such prosaic purposes as to support shoppin@nverge to a consistent state only if updates cease for a
carts for large data centers [4]. By using gossip to trackperiod of time. Applications that need stronger consistenc
group membership, one can implement gossip-based groupuarantees must employ more involved and expensive mes-
multicast protocols. sage passing schemes [3]. We note that weak consistency
When considered in isolation, gossip protocols have as not always a bad thing. Indeed, relaxing consistency
number of appealing properties. guarantees has become increasingly popular in large-scale

P1. Robustness They can sustain high rates of messagghdustrial applications such as Amazon’s Dynamo [4] and
loss and crash failures without reducing reliability or Yahoo!'s PNUTS [8].
throughput [3], as long as several assumptions about Gossip also has a less-commonly recognized drawback.
the implementation and the node environment areAn assumption commonly seen in the gossip literature
satisfied [5]. is that all nodes belong to a single gosgipup. Since



such a group will often exist to support an applicationthe rumor, it can request a copy from the exchange node.
component, we will also call thesgossip objectsWhile  An individual rumor header and its version number can be
sufficient in individual applications, such as when reglivg  represented in as little as 12-16 bytes. The second observa-
a database [1], an object-oriented style of programmingion is that there is negligible difference in operatingteys
would encourage applications to use multiple objects anénd network overhead between a UDP datagram packet
hence the nodes hosting those applications will belong t@ontaining 10 bytes or 1000 bytes, as long as the datagram is
multiple gossip groups. The trends seen in other objechot fragmented [10]. It follows from these observationd tha
oriented platforms (e.g., Jini and .NET) could carry overstackingmultiple rumors in a single datagram packet from
to gossip objects, yielding systems in which each node imodes to d is possible and imposes practically no additional
a data center hosts large numbers of gossip objects. Thesest. The question then becomé&ghich rumors should be
objects would then contend for network resources and couldtacked in a packetPhe obvious answer is to include rumors
interfere with one-another. The gossip-imposed load oh eacfrom all the gossip objects of which both and d are
node in the network now depends on the number of gossimembers.GO takes this a step further will sometimes
objects hosted on that node, which violates property P2. include rumors for gossip objects thais not interested in,

We believe that this situation argues for a new kind ofand when this occurg, will attempt to forward those rumors
operating system extension focused on nodes that belong to nodes that will benefit from them. We formalize rumor
multiple gossip objects. Such a platform can play multiplestacking andnessage indirectioby defining theutility of a
roles. First, it potentially simplifies the developer's kas rumor in Section Il
by standardizing common operations, such as tracking the We envision a number of uses f&O. Within our own
neighbor set for each node or sending a rumor, much awork, GO will be the WAN communication layer for Live
a conventional operating system simplifies the design oDistributed Objects, a framework for abstract components
client-server applications by standardizing remote metho running distributed protocols that can be composed easily
invocation. Second, the platform can implement fair-stgri  to create custom and flexible live applications or web pages
policies, ensuring that when multiple gossip applicatiares  [11], [12]. This application is a particularly good fit f@GO:
hosted on a single node, they each get a fair share of thafive Objects is itself an object-oriented infrastructuasd
node’s communication and memory resources. Finally, thdence it makes sense to talk about objects that use gossip for
platform will have opportunities to optimize work across replication. TheGO interface can also be extended to resem-
independently developed applications — the main focus oble a gossip-based publish/subscribe system [13]. Finally
the present paper. For example, if applicatiohsand B GO could be used as a kind of IP tunnel, with end-to-end
are each replicated onto the same sets of nodes, any gossiptwork traffic encapsulated, routed througl®, and then
objects used byl will co-reside on those nodes with ones de-encapsulated for delivery. Such a configuration would
used byB. To the extent that the platform can sense thisconvert a conventional distributed protocol or applicatio
and combine their communication patterns, overheads wilinto one that shares the same gossip properties enumerated
be reduced and performance increased. earlier, and hence might be appealing in settings where

With these goals in mind, we built a per-node serviceunrestricted direct communication would be perceived as
called the Gossip Objects platfornGQ) which allows potentially disruptive.
applications to join large numbers of gossip groups in a Our paper focuses on the initial implementation@®,
simple fashion. The initial implementation GO provides  and makes the following contributions:

a multicast-like interface: local applications can joinemve « A natural extension of gossip protocols in which mul-
gossip objects, and send or receive rumors via callback tiple gossip objects can be hosted on each node.

handlers that are executed at particular rates. Down ti& roa  , A npovel heuristic to exploit the similarity of gossip
the GO interfaces will be extended to support other styles of groups to improve propagation speed and scalability.

gossip protocols, such as the ones listed earlier. In thé spi | Ap evaluation of theSO platform on a real-world trace
of property P2, the platform enforces a configurable per- by simulation.

node bandwidth limit for gossip communication, and will
reject a join request if the added gossip traffic would cause Il. GOSSIPALGORITHMS
the limit to be exceeded. The maximum memory space use
by GO is also limited and customizable. - Model

GO incorporates optimizations aimed at satisfying the Our model focuses on push-style gossip, but can easily
gossip properties while maximizing performance. Our firstbe extended to the push-pull or pull-only cases.
observation is that gossip messages are frequently short: Consider a system with a st of n nodes and a set/
perhaps just a few tens of bytes. Some gossip systems pushi m gossip objects denoted By, 2, ..., m}. Each node
only rumor version numbers to minimize waste [6], [9], so belongs to some subsdf; of gossip objects. LeD; denote
if the destination node does not have the latest version ahember sebf gossip objectj, defined ag); := {i € N :



j € A;}. We let N; denote the set afeighborsof 4, defined  rumor once it reaches the destination gossip object, such
as UjeA,; 0;. that a “fresh” rumor has higher probability of infecting an

A subset of nodes in a gossip object genemamors  uninfected node. If rumor needs to travel via many hops
Each rumorr consists of a payload and two attributes: (i) before reaching a node indst, by which timer might be
r.dst € M: the destination gossip object for which rumor known to most members ofdst, the utility of includingr
r is relevant, and (iiy~.ts € N: the timestamp when the in a message is limited. Ideally, rumors that are “young” or
rumor was created. A gossimessagebetween a pair of “close” should have higher utility.
nodes contains a collection of at mabtstacked rumors, 1) Hitting Time: We make use of results on gossip within
where L reflects the maximum transfer unit (MTU) for IP a single object. Define ampidemic onn hoststo be the
packets before fragmentation kicks in. For example, if eacHollowing process: One host in a fully-connected network of
rumor has length of 100 bytes and the MTU is 1500 bytesn nodes starts out infected. Every round, each infected node
Lis 15. picks another node uniformly at random and infects it.

We will assume throughout this paper that each node Definition 1: Let S(n,t) denote the number of nodes that
knows the full membership of all of its neighbolg. This  aresusceptiblguninfected) aftet rounds of an epidemic on
assumption is for theoretical clarity, and can be relaxéaigus n hosts.
peer sampling techniques [14] or remote representative$o the best of our knowledge, the probability distribution
[15]. Furthermore, large groups can likely be fragmentedfunction for S(n,t) has no closed form. It is conjectured
at a cost of higher latency, although we leave this avenue dh [1], [16] that E[S(n,t)] = nexp(—t/n) for push-based
research to future work. However, the types of applicationgjossip and large: using mean-field equations, and that
for which GO is appropriate, such as pub-sub systems oE[S(n,t)] = nexp(—2!) for push-pull. Here, we will
Live Objects, will neither produce immensely large groupsassume thatS(n,t) is sharply concentrated around this
nor sustain extreme rates of churn. mean, soS(n,t) = nexp(—t/n) henceforth. Improved
. — approximations, such as using look-up tables for simulated
B. Random Dissemination values of S(n,t), can easily be plugged into the heuristic

A gossip algorithm has two stagesirecipient selection code.
stage and @ontent selectiorstage [2]. The content is then  Definition 2: The expected hitting timeH (n, k) is the
sent to the recipient. For baseline comparison, we will conexpected number of rounds in an epidemicrohosts until

sider the following straw-man gossip algorithmARDOM- e infect some node in a given subsetiobpecial nodes
STACKING running on each node assumingS(n,t) nodes are susceptible in round
« Recipient selection:Pick a recipientd from N; uni-  If a gossip rumorn destined for some gossip objecends
formly at random. up in a different gossip objegt that overlaps withy, then
« Content selection: Pick a set ofL unexpired rumors the expected hitting time roughly approximates how many
uniformly at random. rounds elapse beforeinfects a node in the intersection of
If there are fewer thanl unexpired rumors, RNpomM-  O; andOj.. Two simplifying assumptions are at work here,

STACKING will pick all of them. We will also evaluate the first that each node in contacts only nodes withig in

effects of rumor stacking; RVDOM is a heuristic that packs €ach round, and second thahas high enough utility to be

only onerandom rumor per gossip message, as would occuiicluded in all gossip messages exchanged within the group.

in a traditional gossip application that sends rumors diyec Let p(n,k,t) = 1 — (1 — %)nfs(n’t) denote the the

in individual UDP packets. probability of infecting at least one of special nodes at

time ¢t whenS(n, t) are susceptible. We derive an expression

for H(n,k) akin to the expectation of a geometrically
As mentioned earlier, the selection strategy iRNROM distributed random variable.

can be improved by sending rumors indirectly via other gos- . 1

sip objects. In the following diggrg_m, a triangle represent H(n, k) = Z tp(n, k, 1) H(l — pln, k,0)),

a rumor specific to gossip objegtis sent from nodes to et =1

a noded only in j/. Noded in turn infects a node in the

overlap of the two gossip objects.

C. Optimized Dissemination

which can be approximated by summing a constant number
max-depttof terms from the infinite series, and by plugging
in S(n,t) from above, as shown in Algorithm 1.
. @ ) 2) Utility: Recall that each nodeonly tracks the mem-
] J bership of its neighbors. What happens ifeceives gossip
message containing a rumer from an unknown gossip

We will define theutility of including a rumor in a gossip object;? To be able to compute the utility of including
message, which informally measures the “freshness” of theén a message to a given neighbor, we will have nodes track



Algorithm 1 H(n,k,t): approximate the expected hitting Algorithm 3 U,(d, r,¢): utility of sending rumorr from s

time of k£ of n at timet. to d at timet.
if ¢ > max-depththen Require: compute-graphmust have been run.
return 1.0 {Prevent infinite recursiof. distance— oo
end if for j € d.groupsdo
p — exp(log(1.0 — k/n) - S(n,t) distance— min{distancegraph-distancgj][r.ds{}
return ¢-(1.0—p)+ H(n,k,t+1)-p end for
if distance= oo then
Algorithm 2 Compute-graphdetermine the overlap graph, en:jetilfjm 0.0

hitting times and shortest paths between every pair of nodes

Require: overlagj][j'] = w(j,j’) has been computed for
all groups; andj’.

return S(j.sizet — r.ts+ dist)/j.size

for j € groupsdo Algorithm 4 Sampléu, R, L): sample L rumors without
for j' € groupsdo replacement fromR with probability proportional tau.
if overlap(j, ;') > 0 then S «— () {The set of rumors in the sample
graphj][j'] < H (overlagj,j’), j.size 0) sume— > pu(r)
else Letry,7o,...,7x be a random permutation @t.
graph(j][j’] « oo z « randon{0, 1) {Uniformly random number irf0, 1)}
end if 0
end for for £=1tok do
end for ¢ ¢+ulry) - L/sum
Run an all-pairs shortest path algorithm [17] graph to if (> 2 then
producegraph-distance S«—Su{r/ and(+—¢-1.0
end if
end for

the size and the connectivity between every pair of gossip réturn S
objects. Define awverlap graphfor propagation of rumors
across gossip objects as follows:

Definition 3: An overlap graph G = (M,E) is an Definition 5: The utility Us(d, r,t) of including rumorr
undirected graph on the set of gossip objects, &hd= in a gossip message from nogléo d at timet is the expected
{{4,5'y € M x M : O; N1 Oj # 0}. Define theweight fraction of nodes in gossip objegt = r.dst that are still
functionw : M x M — R asw(j,j’) = |0; N O;| for ~ susceptible at time¢’ = ¢ —r.ts + D(s,r) when we expect
all j,j' € M. Let P, ;» be the set of simple paths between it to be delivered. More precisely,
gossip objectg andj’ in the overlap graplt. S(10;], )

We can now estimate the propagation time of a rumor by Us(d,r,t) = TJ[
computing the expected hitting time on a path in the overlap /
graphG. A rumor may be diffused via different paths @ Pseudo-code for approximating the utility function is show

we will estimate the time taken by thehortestpath. in Algorithm 3. The code is optimized by making use of the
Definition 4: Let P € P, ;» be a path where? = (j =  overlap graph computed by Algorithm 2.
p1,...,0s = j'). The expected delivery time oR is 3) TheGO Heuristic: The following code is run by client
o on nodes at timet.
D(P) = ZH(|Opk|7w(pk7pk+1))~ « Recipient selection: Pick a recipientd uniformly at
P ' random fromV.

« Content selection:Let R denote the set of unexpired
rumors. Calculate the utilityu(r) = Us(d,r,t) for
eachr € R using Algorithm 3. CallSampléu, R, L)
(Algorithm 4) to pick L rumors at random fronR

Theexpected delivery timeom when a node € N includes
a rumorr in an outgoing message until it reaches another
node inr.dst is

D(i,r) =min min D(P). so that the probability of including rumar € R is
JEA: PEPj rast proportional to its utilityu(r).
Algorithm 2 shows pseudo-code for computing the expected Algorithm 4 for sampling without replacement while re-
delivery time between every pair of groups. specting probabilities on the elements may be of indepdnden

We can now define a utility functio® to estimate the interest. We include it here without proof for the curious
benefit from including a rumor in a gossip message. reader.



- Network ,,,} rumors take logarithmic time on average to be disseminated
S o within a given gossip object.
The GO platform enforces customizable upper bounds on
both the memory use and gossip rate (and hence bandwidth),
G"“";“:fmgism Ej rejecting applications from joining gossip objects thatido
Q GO Heuristic MoTBETEhip cause either of these limits to be violated. Rumors are dtore
GO Platform Component in a priority queue based on their maximum possible utility;
if the rumors in the queue exceed the memory bound then
the least beneficial rumors are discarded.

Ill. PLATFORM IMPLEMENTATION

_ As noted earlierGO was implemented using Cornell’s
Figure 1. TheGO Platform. Live Distributed Objects technology, and inherits many-fea

In order to compute the utility of a rumor, each node needdures from the Live Objects system. For reasons of brevity,
to maintain complete information about the overlap graphe limit ourselves to a short summary. Ea€80 application
and the sizes of gossip objects. We describe the protocdHns as a small component, coded in any of the 40 or so
that maintains this state in Section IlI-C. languages supported by Microsoft .NET, and implements a

The cost of Storing and maintaining such a graph maﬁtandard interface defined by the Live ObjeCtS framework.
become prohibitive for very large networks. We intend toAt runtime, an “end user” application can link t6O
remedy this potential scalability issue by maintainingyoml ~ applications through simple library interfaces. Moreover
local viewof the transition graph, based on the observatiord0ssip objects can be composed into graphs, with one object
that if a rumor belongs to distant gossip object with respectalking to another through typed endpoints over which event
to the overiap graph’ then its Utlllty is automatica”y low are passed. The reSUlting architecture is rich, flexible, an
and the rumor could be discarded. Evaluating the trade-offiuite easy to extend.
between the view size and the benefit that can be achieved The GO platform runs on all nodes in the target sys-
by the above optimizations is a work in progress. tem, and currently supports applications via an interface

Consider the content selection policies for theN®om-  focused on group membership and multicast operations.
STACKING and theGO heuristic. A random policy will often ~ The platform consists of three major parts: the membership
include rumors in packets that have no chance of beingomponent, the rumor queue and the gossip mechanism, as
useful because the recipient of the packet has no “routefllustrated in Figure 1.
to the group for which the rumor was destin&D will not GO exports a simple interface to applications. Applica-
make this error: if it includes a rumor in a packet, the rumortions first contact the platform via a client library or an
has at least some chance of being useful. We evaluate tHBC connection. An application can thgwoi n (or | eave)

importance of this effect in Section IV. gossip objects by providing the name of the group, and a
. poll rate R. Note that g oi n request might be rejected. An
D. Traffic Rates and Memory Use application can start a rumor by adding it to an outgoing

The above model can be generalized to allow gossipumors queue which is polled at rafe(or the declared poll
objects to gossip at differentites Let \; be the rate at rate in the gossip object) using teend primitive. Rumors
which new messages are generated by nodes in gossip objese received via aecv callback handler which is called by
4, andR; the rate at which th&O platform gossips at node GO when data is available.

i. Rumors are garbage collected when they expire, or when

For simplicity, we have implicitly assumed that all plat- they cannot fit in memory and have comparatively low utility
forms gossip at the same fixed rafg and that this rate to other rumors as discussed in Section II-D.
is “fast enough” to keep up with all the rumors that are ]
generated in the different gossip objects. Viewing a gossig" Bootstrapping
object as a queue of rumors that arrive according to a Poisson We bootstrap gossip objects using a rendezvous mecha-
process, it follows from Little’s law [18] that the averagge  nism that depends upon a directory servibSy, similar to
at which nodei sends and receives rumorg;, cannot be DNS or LDAP. TheDS tracks a random subset of members
less than the rat&; of message production jhif rumors are  in each group, the size of which is customizable. When a
to be diffused to all interested parties in finite time withitBh GO node: receives a request by one of its applications to
memory. In the worst case there is no exploitable overlagjoin gossip objectj, ¢ sends the identifier foj (a string)
between gossip objects, in which case we reqfii® be at  to the DS which in turn returns a random nodec O; (if
leastmax;en >, 4, Aj- Furthermore, the amount of mem- any). Nodei then contacts’ to get the current state of gossip
ory required is at leashax;en >~ ;c 4, O (log|O;|) A; since  object;: (i) the setOy;, (ii) full membership of nodes i®;,



A; as a special system rumor. We rate-limit the frequency

of membership changes by allowing nodes to only make

special system announcements everyounds.

In ongoing work, we are changing th@O membership

algorithm to bias it in favor of accuraf@oximalinformation

at the expense of decreased accuracy about membership of

remote groups. The rationale for this reflects the value of

of having accurate information in the utility computation.

Figure 2. Membership information maintained ®® nodes. The topology As observed earlier, rumors have diminishing freshneds wit

of thef Wme Ssxgtm IZE Tth% (ljétnissfg%elr?g bgbtofler;lgg]% g;sch?rﬂrﬂﬂ @gﬁ time, which also implies that the expected utility of rogtia

?I?)tcgl sgtate)F,) and (ii) the overlapggraph for %ther groupbpse r?odes are ru.mor very indirectly is lOW,' In ,eﬁeCt’_a rumqr ,Sem inditiyc

depicted as squares and edges are represented by thickréneste state).  Still needs to reach a destination quickly if it is to be usefu
We conjecture that th6&O heuristic can be proved to be
insensitive to information about groups and membership

and (iii) the subgraph spanned pyand its neighbors in the very remote (i.e., several hops from a sender node), but

overlap graphG' along with weights. If node is booting  highly sensitive to what might be called proximal topology

from scratch, it gets the full overlap graph fraih information. It would follow that proximal topology suffise

B. Gossip Mechanism
. . ) ) D. Rumor Queue
GO'’s main loop runs periodically, receives gossip mes-

sages from other messages and performing periodic upcalls As mentioned in Section [I-DGO tracks a bounded set

to applications, which may react by adding rumors to theof rumors in a priority queue. The queue is populated by
rumor queue Each activity period ends when the platform rumors received by the gossip mechanism (remote rumors),
runs theGO heuristic (from Section 11-C3) to send a gossip OF by application requests (local rumors). The priority of
message to a randomly chosen neighbor. The platform thefimor = in the rumor queue for node at time ¢ is

discards old rumors. maxgen, Us(d,r,t), since rumors with lowest maximum
_ utility are least likely to be included in any gossip message
C. Membership Component As previously discussed, priorites change with time so

EachGO nodei maintains the membership information We speed up the recomputation by storing the value of
for all of its neighbors,N; (local state). It also tracks the argmaxey,D(s,7).
overlap graphG and gossip group sizese(notestate), as
discussed in Section Il. Figure 2 illustrates an example of IV. EVALUATION
system-wide group membership (left) and the local and ] . )
remote state maintained by the center node (right). The We evaluate th&O platform using a discrete time-based
initial implementation 0fGO maintains both pieces of state Simulatof. The focus of our experiments is on quantifying
via gossip. fthe effectlveness OGO in comparison to |mpleme_ntat|ons

1) Remote state:After bootstrapping, all nodes join a " which each gossip object runs independently without any
dedicated gossip objegt on which nodes exchange updates Platform support at all.
for the overlap graph. Lef” be a global parameter that  Our first experiment explores the usefulness of rumor
controls the rate of system-wide updates, that should tefle$tacking, and evaluates the benefits of computing utility fo
both the anticipated level of churn and membership changegd/mors. We compare the three different gossip algorithms
in the system, and th@(log n) gossip dissemination latency (theé GO heuristic, RRNDOM and RANDOM-STACKING)
constant. EveryP log |O;| rounds, some nodgin j starts ~ running in a simple topology.
a rumorr in j* that contains the current size ¢f; and We then evaluaté&sO on a trace of a widely deployed
overlap sizes oD; and;’s neighboring gossip objects. The Web-management application, IBM WebSphere. This trace
algorithm is leaderless and symmetric: each nodeDin  shows WebSphere's patterns of group membership changes
starts their version of rumor with probability 1/|0;|. In  and group communication in connection with a whiteboard
expectation, only one node will start a rumorjinfor each ~ abstraction used heavily by the product, and thus is a good
gossip object. match with the kinds of applications for whicO is

2) Local state: GO tracks the time at which each neigh- intended.
boring node was last heard from; a node that fails will
eventually be removed from the membership list of any 1Although the GO platform has been fully implemented, length con-

. . .. straints forced us to choose between simulation and reativeaperimental

groups to which it belongs. When nodgoins or changes

3 A i ) ) findings in this paper. A future extended paper will discussexperimental
its membership, an upcall is issued to each gossip object ifindings.
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Figure 3. Rumor Stacking and Indirection. Different heuristics running on th€O platform over the topology from Figure 4. The plots show the
number of new rumors received by nodes in the system over tirftg gled as a function of messages sent (right). The vertioal $hows the time when
all 2,000 rumors have been generated.

A. Rumor Stacking and Message Indirection behind an optimal delivery, compared to 460 fosNOM-

We evaluated the benefits of message indirection useéTACKlNG and 1,460 for RNDOM.

by the GO heuristic using the topology shown in Fig- B. Real-World Scenarios
ure 4. The scenario constitutes a grogipthat contains  As noted earlier, IBM WebSphere [19] is a widely de-
nodess and d in which s sends frequent updates far  ployed commercial application for running and managing

Both nodes also belong to a web applications. A WebSphere cell may contain hundreds
number of other gossip objects s of servers, on top of which application clusters are de-
that overlap, so that they share ployed. Cell management, which entails workload balancing
some set of common neigh- dynamic configuration, inter-cluster messaging and perfor
bors, in this case four. As- d mance measurements, is implemented by a form of built-
suming theGO platform ats in whiteboard, which in turn interfaces to the underlying

; Figure 4. The topology used L . . ;
only sends one gossip messageingﬁrst experimeml_o Ea%% edge COmMMunication layer via a pub-sub [13] interface. To obtain

per round, the shared neigh- corresponds to a gossip group, a trace, IBM deployed 127 WebSphere nodes constituting
bors are in a position to prop- the members of which are the - 30 gpplication clusters for a period of 52 minutes, and
agate messages intended for 'O endpoints. recorded topic subscriptions as well as the messages sent by
other gossip objects. every node. An average process subscribed to 474 topics and
We measured the speed of propagation of messages fibsted to 280 topics, and there were a total of 1,364 topics
group j using our simulator. All nodes simulate tf&0O  with at least two subscribers and at least one publisher. The
platform with a message rate of 1 message per round, usingpic membership is strongly correlated, in fact 26 topics
one of the three gossip algorithms discussed earlier. Qurincontain at least 121 of the 127 nodes. On the other hand,
each time step until time 400 (vertical line), nodgenerates none of the remaining topics contained more than 10 nodes.
a new rumor for each group i,, after which rumor We used the WebSphere trace to drive our simulation by
generation stops. We assume that 15 rumors can be stackaésigning a gossip group to each topic. All publishers and
in each packet, and that nodes can fit at most 100 rumorsubscribers for the topic are members of the corresponding
in memory. gossip group. We limited the memory and bandwidth re-
Figure 3 shows the total number of distinct rumorsquirements by expiring rumors 100 rumors after they were
node d has received for group. The benefits of rumor first generated. Again, we compare t&® heuristic with
stacking are evident when one compares the results dRANDOM and RANDOM-STACKING. However, in contrast
the RANDOM-STACKING algorithm to the RNDOM one.  to the experiment of Section IV-A, in which tl@&O platform
RANDOM-STACKING diffuses rumors more than 5 times itself used the specified stacking policy, this WebSphere
faster than the single-messagaNdoM. experiment is slightly different: it compares a simulated
Next, compare the5O heuristic results to those of the “port” of WebSphere to run oveGO with a simulation
RANDOM-STACKING algorithm. TheGO heuristic delivers  of WebSphere running over independent gossip groups that
rumors efficiently: nodes are on average only 11.5 rumorgxhibit the same membership and communication patterns,
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Figure 5. IBM WebSphere Trace. The number of new rumors received by nodes in the system anduthber of messages sent (left), also plotted as
a ratio of new rumors per message over time (right). The nodes ube random heuristics gossip per-group every round, eels$&30O sends a single
gossip message.

but do not benefit from any form of platform support. To observation is motivating us to explore dynamically adjust

emphasize that these group policies are not identical ting the platform gossip rate to cope with bursty senders, but
RANDOM-STACKING and RaNDOM, as used internally by in ways that would still respect operator-imposed policies
the GO platform itself in the first experiment, we desig- over longer time periods.

nate the policies as WSARDOM-STACKING and WS-

! C. Discussion
RANDOM in what follows.

i ) . There are two take-away messages from the first ex-
We expect the rige approaches to disseminate rumorSpqriment. First, rumor stacking is inherently useful even
faster thanGO because each WebSphere group is operatenan ysing RNDOM-STACKING without a utility-driven
independently and in a "greedy” manner. As & cONSequUeNCeymor selection scheme. Nonetheless, we see a substantial
each node sends one gossip message per group per rougdin \when using th&O heuristic to guide the platform’s

as opposed to only one message per round as@®® g, qking choices. Although not reported here, we have con-
platform does. As can be seen in Figure 5(a), the delivery,,qieq additional experiments that confirm this finding unde
speed of th&S0 platform is 6.7% percent lower on average 5 ige range of conditions. Second, if processes exhibit
than the néve WS-RANDOM-STACKING approach.GO,  cqrrelated but not identical group membership, then there
however, beats WS-RDOM by a factor of 2. An even oy often be indirect paths that can be exploited using
bigger win forGO can be seen in Figure 5(b), which shows eqqage indirectionGO learns these paths by exploring
the number of new rumors delivered versus the numbep,emphership of nearby groups, and can then ricochet rumors
of messages exchanged. TGO platform sends 3.9 imes 4,9 those indirectly accessible groups. ThenBOM-
fewer messages than theivea approaches, thus keeping gracking policy lacks the information needed to do this.
bandwidth bounded, while disseminating rumors almost agy/hiie the topology in the first experiment is deliberately

fast. adversarial, it is also extremely simple. For this reasoma, w
At the end of the trace, the total number of rumorsbelieve that patterns of this sort may be common in the
received by all nodes was 8% lower when usiB@® than  wild, where correlated group membership is known to be a
WS-RANDOM-STACKING, meaning that some rumors had pervasive phenomenon.
not reached all intended recipients. We traced this loss The WebSphere experiment supports our belief that the
to a specific point in the execution at which WebSphereGO platform is able to cope with real-world message dis-
generates a burst of communication, exceeding @@  semination at a rate close to that of daweaimplementation
imposed bandwidth limit. One reasonable inference is thatvithout losing the fixed bandwidth guarantee discussed
such loss is an unavoidable consequence of our approach, im the introduction, and in fact using substantially fewer
which a single platform handles communication on behalfmessages than a non-platform approach.
of all gossip groups. However, it is interesting to realizatt We believe that the scenarios we evaluated illustrate the
the WebSphere traffic burst was brief and that averaged ovgrotential benefit of theGO methodology in a reasonably
even a short window, need not have overwhelr@€dl. This  general way. If a large number of groups overlap at a



single node, conditions could arise that would favor @@ VI. RELATED WORK

heuristic to an even greater degree than in our examples. For The pioneering work by Demerst al. [1] used gossip
example, this would be the case if a large number of groupgyotocols to enable a replicated database to converge to a
overlap, generating high volumes of gossip traffic, and yegonsistent state despite node failures or network parttio
the pattern of membership is such that relatively few rumorsrpe repertoire of systems that have since employed gossip
are legitimate candidates for stacking in any particulasgo protocols is impressive [9], [6], [15], [13], [4], [20], &lbugh
message.GO has the information to optimize for such most work is focused on application-specific use of gossip

cases, including only high-value rumors; random stackingnstead of providing gossip communication as a fundamental
would tend to fill packets with useless content, missing thesgpyice.

opportunity. VII. CONCLUSION
V. FUTURE DIRECTIONS The GO platform generalizes gossip protocols to allow
them to join multiple groups without losing the appealing

At presentGO rejects gossip join requests if the resulting fixed bandwidth guarantee of gossip protocols, and simulta-
additional gossip load would overflow its rumor buffers. Oneneously optimizing |atency ina principled way. Our heucist
might imagine a more flexible scheme that would allocateis based on the observations that a single IP packet can
rumor buffer space among applications in an optimizedcontain multiple rumors, and that indirect routing of rusor
manner, so as to accommodate applications with varied datgan accelerate delivery. The platform has been implemented
production rates. If we then think about information flow put remains a work in progress. Our vision is ti&D can
rates within individual groups, and compare this with thosebecome an infrastructure component in various group-heavy
achievable using th€O (where groups carry traffic for one- distributed services, such as a robust multicast or publish
another), it would be possible to demonstrate an increase igubscribe layer, and an integral layer of the Live Distréolt
the peak data rates when usiGg relative to systems that Objects framework.
lack this cooperative behavior.

A second direction for future investigation concerns other ;
potential uses foGO. As noted earlier, our near term plan  Krzys Ostrowski and Danny Dolev were extremely helpful
is to extendGO so that it can support a wider range of |n.the deglgn of the basllGO platform. We acknowledge
gossip styles. Beyond this, we are considering hosting norMike Spreitzer for col_lectlng the IBM ngSphere trace. We
gossip protocols “overGO, tunneling their communication @S0 thank Anne-Marie Kermarrec, Davide Frey and Martin
traffic throughGO so as to gain the properties of those Bertier for contributions aF an earlier stage.of this perec
protocols (such as consistency, tolerance of applicdéoer  [12]: GO was supported in part by the Chinese National
Byzantine faults,etc) while also benefiting fromGO's ~ Research Foundation (grant #6073116063), AFOSR, AFRL,
simple worst-case communication loads. NSF, Intel Corporation and Yahoo!.
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