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Abstract—Gossip-based protocols are increasingly popular in
large-scale distributed applications that disseminate updates to
replicated or cached content. GO (Gossip Objects) is a per-
node gossip platform that we developed in support of this
class of protocols. In addition to making it easy to develop
new gossip protocols and applications, GO allows nodes to
join multiple gossip groups without losing the appealing fixed
bandwidth guarantee of gossip protocols, and the platform
optimizes rumor delivery latency in a principled manner. Our
heuristic is based on the observations that multiple rumors can
often be squeezed into a single IP packet, and that indirect
routing of rumors can speed up delivery. We formalize these
observations and develop a theoretical analysis of this heuristic.
We have also implemented GO, and study the effectiveness of
the heuristic by comparing it to the more standard random
dissemination gossip strategy via simulation. We also evaluate
GO on a trace from a popular distributed application.
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I. I NTRODUCTION

Gossip-based communication is commonly used in dis-
tributed systems to disseminate information and updates in
a scalable and robust manner [1], [2], [3]. The idea is simple:
At some fixed frequency, each node sends or exchanges
information (known asrumors) with a randomly chosen peer
in the system, allowing rumors to propagate to everybody
in an “epidemic fashion”.

The basic gossip exchange can be used for more than just
sharing updates. Gossip protocols have been proposed for
scalable aggregation, monitoring and distributed querying,
constructing distributed hash tables and other kinds of over-
lay structures, orchestrating self-repair in complex networks
and even for such prosaic purposes as to support shopping
carts for large data centers [4]. By using gossip to track
group membership, one can implement gossip-based group
multicast protocols.

When considered in isolation, gossip protocols have a
number of appealing properties.

P1. Robustness. They can sustain high rates of message
loss and crash failures without reducing reliability or
throughput [3], as long as several assumptions about
the implementation and the node environment are
satisfied [5].

P2. Constant, balanced load. Each node initiates exactly
one message exchange per round, unlike leader-based
schemes in which a central node is responsible for
collecting and dispersing information. Since message
exchange happens at fixed intervals, network traffic
overhead is bounded [6].

P3. Simplicity . Gossip protocols are simple to write and
debug. This simplicity can be contrasted with non-
gossip styles of protocols, which can be notoriously
complex to design and reason about, and may depend
upon special communication technologies, such as
IP multicast [7], or embody restrictive assumptions,
such as the common assumption that any node can
communicate directly with any other node in the
application.

P4. Scalability. All of these properties are preserved when
the size of the system increases, provided that the
capacity limits of the network are not reached and the
information contained in gossip messages is bounded.

However, gossip protocols also have drawbacks. The most
commonly acknowledged are the following. The basic gossip
protocol is probabilistic meaning that some rumors may be
delivered late, although this occurs with low probability.
The expected number of rounds required for delivery in
gossip protocols is logarithmic in the number of nodes.
Consequently, the latency of gossip protocols is on average
higher than can that provided by systems using hardware
accelerated solutions like IP Multicast. Finally, gossip proto-
cols support only the weak guarantee ofeventual consistency
— updates may arrive in any order and the system will
converge to a consistent state only if updates cease for a
period of time. Applications that need stronger consistency
guarantees must employ more involved and expensive mes-
sage passing schemes [3]. We note that weak consistency
is not always a bad thing. Indeed, relaxing consistency
guarantees has become increasingly popular in large-scale
industrial applications such as Amazon’s Dynamo [4] and
Yahoo!’s PNUTS [8].

Gossip also has a less-commonly recognized drawback.
An assumption commonly seen in the gossip literature
is that all nodes belong to a single gossipgroup. Since



such a group will often exist to support an application
component, we will also call thesegossip objects. While
sufficient in individual applications, such as when replicating
a database [1], an object-oriented style of programming
would encourage applications to use multiple objects and
hence the nodes hosting those applications will belong to
multiple gossip groups. The trends seen in other object
oriented platforms (e.g., Jini and .NET) could carry over
to gossip objects, yielding systems in which each node in
a data center hosts large numbers of gossip objects. These
objects would then contend for network resources and could
interfere with one-another. The gossip-imposed load on each
node in the network now depends on the number of gossip
objects hosted on that node, which violates property P2.

We believe that this situation argues for a new kind of
operating system extension focused on nodes that belong to
multiple gossip objects. Such a platform can play multiple
roles. First, it potentially simplifies the developer’s task
by standardizing common operations, such as tracking the
neighbor set for each node or sending a rumor, much as
a conventional operating system simplifies the design of
client-server applications by standardizing remote method
invocation. Second, the platform can implement fair-sharing
policies, ensuring that when multiple gossip applicationsare
hosted on a single node, they each get a fair share of that
node’s communication and memory resources. Finally, the
platform will have opportunities to optimize work across
independently developed applications – the main focus of
the present paper. For example, if applicationsA and B
are each replicated onto the same sets of nodes, any gossip
objects used byA will co-reside on those nodes with ones
used byB. To the extent that the platform can sense this
and combine their communication patterns, overheads will
be reduced and performance increased.

With these goals in mind, we built a per-node service
called the Gossip Objects platform (GO) which allows
applications to join large numbers of gossip groups in a
simple fashion. The initial implementation ofGO provides
a multicast-like interface: local applications can join orleave
gossip objects, and send or receive rumors via callback
handlers that are executed at particular rates. Down the road,
theGO interfaces will be extended to support other styles of
gossip protocols, such as the ones listed earlier. In the spirit
of property P2, the platform enforces a configurable per-
node bandwidth limit for gossip communication, and will
reject a join request if the added gossip traffic would cause
the limit to be exceeded. The maximum memory space used
by GO is also limited and customizable.

GO incorporates optimizations aimed at satisfying the
gossip properties while maximizing performance. Our first
observation is that gossip messages are frequently short:
perhaps just a few tens of bytes. Some gossip systems push
only rumor version numbers to minimize waste [6], [9], so
if the destination node does not have the latest version of

the rumor, it can request a copy from the exchange node.
An individual rumor header and its version number can be
represented in as little as 12-16 bytes. The second observa-
tion is that there is negligible difference in operating system
and network overhead between a UDP datagram packet
containing 10 bytes or 1000 bytes, as long as the datagram is
not fragmented [10]. It follows from these observations that
stackingmultiple rumors in a single datagram packet from
nodes to d is possible and imposes practically no additional
cost. The question then becomes:Which rumors should be
stacked in a packet?The obvious answer is to include rumors
from all the gossip objects of which boths and d are
members.GO takes this a step further:s will sometimes
include rumors for gossip objects thatd is not interested in,
and when this occurs,d will attempt to forward those rumors
to nodes that will benefit from them. We formalize rumor
stacking andmessage indirectionby defining theutility of a
rumor in Section II.

We envision a number of uses forGO. Within our own
work, GO will be the WAN communication layer for Live
Distributed Objects, a framework for abstract components
running distributed protocols that can be composed easily
to create custom and flexible live applications or web pages
[11], [12]. This application is a particularly good fit forGO:
Live Objects is itself an object-oriented infrastructure,and
hence it makes sense to talk about objects that use gossip for
replication. TheGO interface can also be extended to resem-
ble a gossip-based publish/subscribe system [13]. Finally,
GO could be used as a kind of IP tunnel, with end-to-end
network traffic encapsulated, routed throughGO, and then
de-encapsulated for delivery. Such a configuration would
convert a conventional distributed protocol or application
into one that shares the same gossip properties enumerated
earlier, and hence might be appealing in settings where
unrestricted direct communication would be perceived as
potentially disruptive.

Our paper focuses on the initial implementation ofGO,
and makes the following contributions:

• A natural extension of gossip protocols in which mul-
tiple gossip objects can be hosted on each node.

• A novel heuristic to exploit the similarity of gossip
groups to improve propagation speed and scalability.

• An evaluation of theGO platform on a real-world trace
by simulation.

II. GOSSIPALGORITHMS

A. Model

Our model focuses on push-style gossip, but can easily
be extended to the push-pull or pull-only cases.

Consider a system with a setN of n nodes and a setM
of m gossip objects denoted by{1, 2, . . . ,m}. Each nodei
belongs to some subsetAi of gossip objects. LetOj denote
member setof gossip objectj, defined asOj := {i ∈ N :



j ∈ Ai}. We letNi denote the set ofneighborsof i, defined
as

⋃

j∈Ai
Oj .

A subset of nodes in a gossip object generaterumors.
Each rumorr consists of a payload and two attributes: (i)
r.dst ∈ M : the destination gossip object for which rumor
r is relevant, and (ii)r.ts ∈ N: the timestamp when the
rumor was created. A gossipmessagebetween a pair of
nodes contains a collection of at mostL stacked rumors,
whereL reflects the maximum transfer unit (MTU) for IP
packets before fragmentation kicks in. For example, if each
rumor has length of 100 bytes and the MTU is 1500 bytes,
L is 15.

We will assume throughout this paper that each nodei
knows the full membership of all of its neighborsNi. This
assumption is for theoretical clarity, and can be relaxed using
peer sampling techniques [14] or remote representatives
[15]. Furthermore, large groups can likely be fragmented
at a cost of higher latency, although we leave this avenue of
research to future work. However, the types of applications
for which GO is appropriate, such as pub-sub systems or
Live Objects, will neither produce immensely large groups
nor sustain extreme rates of churn.

B. Random Dissemination

A gossip algorithm has two stages: arecipient selection
stage and acontent selectionstage [2]. The content is then
sent to the recipient. For baseline comparison, we will con-
sider the following straw-man gossip algorithm RANDOM-
STACKING running on each nodei.

• Recipient selection:Pick a recipientd from Ni uni-
formly at random.

• Content selection:Pick a set ofL unexpired rumors
uniformly at random.

If there are fewer thanL unexpired rumors, RANDOM-
STACKING will pick all of them. We will also evaluate the
effects of rumor stacking; RANDOM is a heuristic that packs
only onerandom rumor per gossip message, as would occur
in a traditional gossip application that sends rumors directly
in individual UDP packets.

C. Optimized Dissemination

As mentioned earlier, the selection strategy in RANDOM

can be improved by sending rumors indirectly via other gos-
sip objects. In the following diagram, a triangle representing
a rumor specific to gossip objectj is sent from nodes to
a noded only in j′. Node d in turn infects a node in the
overlap of the two gossip objects.

j j’
s d

We will define theutility of including a rumor in a gossip
message, which informally measures the “freshness” of the

rumor once it reaches the destination gossip object, such
that a “fresh” rumor has higher probability of infecting an
uninfected node. If rumorr needs to travel via many hops
before reaching a node inr.dst, by which timer might be
known to most members ofr.dst, the utility of includingr
in a message is limited. Ideally, rumors that are “young” or
“close” should have higher utility.

1) Hitting Time: We make use of results on gossip within
a single object. Define anepidemic onn hosts to be the
following process: One host in a fully-connected network of
n nodes starts out infected. Every round, each infected node
picks another node uniformly at random and infects it.

Definition 1: Let S(n, t) denote the number of nodes that
aresusceptible(uninfected) aftert rounds of an epidemic on
n hosts.
To the best of our knowledge, the probability distribution
function for S(n, t) has no closed form. It is conjectured
in [1], [16] that E[S(n, t)] = n exp(−t/n) for push-based
gossip and largen using mean-field equations, and that
E[S(n, t)] = n exp(−2t) for push-pull. Here, we will
assume thatS(n, t) is sharply concentrated around this
mean, soS(n, t) = n exp(−t/n) henceforth. Improved
approximations, such as using look-up tables for simulated
values ofS(n, t), can easily be plugged into the heuristic
code.

Definition 2: The expected hitting timeH(n, k) is the
expected number of rounds in an epidemic onn hosts until
we infect some node in a given subset ofk special nodes
assumingS(n, t) nodes are susceptible in roundt.
If a gossip rumorr destined for some gossip objectj ends
up in a different gossip objectj′ that overlaps withj, then
the expected hitting time roughly approximates how many
rounds elapse beforer infects a node in the intersection of
Oj andOj′ . Two simplifying assumptions are at work here,
first that each node inj contacts only nodes withinj in
each round, and second thatr has high enough utility to be
included in all gossip messages exchanged within the group.

Let p(n, k, t) = 1 −
(

1− k
n

)n−S(n,t)
denote the the

probability of infecting at least one ofk special nodes at
time t whenS(n, t) are susceptible. We derive an expression
for H(n, k) akin to the expectation of a geometrically
distributed random variable.

H(n, k) =

∞
∑

t=1

tp(n, k, t)

t−1
∏

ℓ=1

(1− p(n, k, ℓ)),

which can be approximated by summing a constant number
max-depthof terms from the infinite series, and by plugging
in S(n, t) from above, as shown in Algorithm 1.

2) Utility: Recall that each nodei only tracks the mem-
bership of its neighbors. What happens ifi receives gossip
message containing a rumorr from an unknown gossip
object j? To be able to compute the utility of includingr
in a message to a given neighbor, we will have nodes track



Algorithm 1 H(n, k, t): approximate the expected hitting
time of k of n at time t.

if t ≥ max-depththen
return 1.0 {Prevent infinite recursion.}

end if
p← exp(log(1.0− k/n) · S(n, t)
return t · (1.0− p) + H(n, k, t + 1) · p

Algorithm 2 Compute-graph: determine the overlap graph,
hitting times and shortest paths between every pair of nodes.

Require: overlap[j][j′] = w(j, j′) has been computed for
all groupsj and j′.
for j ∈ groupsdo

for j′ ∈ groupsdo
if overlap(j, j′) > 0 then

graph[j][j′]← H(overlap(j, j′), j.size, 0)
else

graph[j][j′]←∞
end if

end for
end for
Run an all-pairs shortest path algorithm [17] ongraph to
producegraph-distance.

the size and the connectivity between every pair of gossip
objects. Define anoverlap graphfor propagation of rumors
across gossip objects as follows:

Definition 3: An overlap graph G = (M,E) is an
undirected graph on the set of gossip objects, andE =
{{j, j′} ∈ M × M : Oj ∩ Oj′ 6= ∅}. Define theweight
function w : M ×M → R as w(j, j′) = |Oj ∩ Oj′ | for
all j, j′ ∈ M . Let Pj,j′ be the set of simple paths between
gossip objectsj and j′ in the overlap graphG.

We can now estimate the propagation time of a rumor by
computing the expected hitting time on a path in the overlap
graphG. A rumor may be diffused via different paths inG;
we will estimate the time taken by theshortestpath.

Definition 4: Let P ∈ Pj,j′ be a path whereP = (j =
p1, . . . , ps = j′). The expected delivery time onP is

D(P ) =

s−1
∑

k=1

H (|Opk
|, w (pk, pk+1)) .

Theexpected delivery timefrom when a nodei ∈ N includes
a rumorr in an outgoing message until it reaches another
node inr.dst is

D(i, r) = min
j∈Ai

min
P∈Pj,r.dst

D(P ).

Algorithm 2 shows pseudo-code for computing the expected
delivery time between every pair of groups.

We can now define a utility functionU to estimate the
benefit from including a rumorr in a gossip message.

Algorithm 3 Us(d, r, t): utility of sending rumorr from s
to d at time t.
Require: compute-graphmust have been run.

distance←∞
for j ∈ d.groupsdo

distance← min{distance, graph-distance[j][r.dst]}
end for
if distance=∞ then

return 0.0
end if
return S(j.size, t− r.ts+ dist)/j.size

Algorithm 4 Sample(u,R,L): sampleL rumors without
replacement fromR with probability proportional tou.

S← ∅ {The set of rumors in the sample}
sum←

∑

r∈R u(r)
Let r1, r2, . . . , rk be a random permutation ofR.
z ← random(0, 1) {Uniformly random number in[0, 1)}
ζ ← 0
for ℓ = 1 to k do

ζ ← ζ + u(rℓ) · L/sum
if ζ ≥ z then

S← S ∪ {rℓ} andζ ← ζ − 1.0
end if

end for
return S

Definition 5: The utility Us(d, r, t) of including rumorr
in a gossip message from nodes to d at timet is the expected
fraction of nodes in gossip objectj = r.dst that are still
susceptible at timet′ = t− r.ts + D(s, r) when we expect
it to be delivered. More precisely,

Us(d, r, t) =
S(|Oj |, t

′)

|Oj |
.

Pseudo-code for approximating the utility function is shown
in Algorithm 3. The code is optimized by making use of the
overlap graph computed by Algorithm 2.

3) TheGO Heuristic: The following code is run by client
on nodes at time t.

• Recipient selection:Pick a recipientd uniformly at
random fromNs.

• Content selection:Let R denote the set of unexpired
rumors. Calculate the utilityu(r) = Us(d, r, t) for
eachr ∈ R using Algorithm 3. CallSample(u,R,L)
(Algorithm 4) to pick L rumors at random fromR
so that the probability of including rumorr ∈ R is
proportional to its utilityu(r).

Algorithm 4 for sampling without replacement while re-
specting probabilities on the elements may be of independent
interest. We include it here without proof for the curious
reader.
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Figure 1. TheGO Platform.

In order to compute the utility of a rumor, each node needs
to maintain complete information about the overlap graph
and the sizes of gossip objects. We describe the protocol
that maintains this state in Section III-C.

The cost of storing and maintaining such a graph may
become prohibitive for very large networks. We intend to
remedy this potential scalability issue by maintaining only a
local viewof the transition graph, based on the observation
that if a rumor belongs to distant gossip object with respect
to the overlap graph, then its utility is automatically low
and the rumor could be discarded. Evaluating the trade-off
between the view size and the benefit that can be achieved
by the above optimizations is a work in progress.

Consider the content selection policies for the RANDOM-
STACKING and theGO heuristic. A random policy will often
include rumors in packets that have no chance of being
useful because the recipient of the packet has no “route”
to the group for which the rumor was destined.GO will not
make this error: if it includes a rumor in a packet, the rumor
has at least some chance of being useful. We evaluate the
importance of this effect in Section IV.

D. Traffic Rates and Memory Use

The above model can be generalized to allow gossip
objects to gossip at differentrates. Let λj be the rate at
which new messages are generated by nodes in gossip object
j, andRi the rate at which theGO platform gossips at node
i.

For simplicity, we have implicitly assumed that all plat-
forms gossip at the same fixed rateR, and that this rate
is “fast enough” to keep up with all the rumors that are
generated in the different gossip objects. Viewing a gossip
object as a queue of rumors that arrive according to a Poisson
process, it follows from Little’s law [18] that the average rate
at which nodei sends and receives rumors,Ri, cannot be
less than the rateλj of message production inj if rumors are
to be diffused to all interested parties in finite time with finite
memory. In the worst case there is no exploitable overlap
between gossip objects, in which case we requireR to be at
leastmaxi∈N

∑

j∈Ai
λj . Furthermore, the amount of mem-

ory required is at leastmaxi∈N

∑

j∈Ai
O (log |Oj |) λj since

rumors take logarithmic time on average to be disseminated
within a given gossip object.

TheGO platform enforces customizable upper bounds on
both the memory use and gossip rate (and hence bandwidth),
rejecting applications from joining gossip objects that would
cause either of these limits to be violated. Rumors are stored
in a priority queue based on their maximum possible utility;
if the rumors in the queue exceed the memory bound then
the least beneficial rumors are discarded.

III. PLATFORM IMPLEMENTATION

As noted earlier,GO was implemented using Cornell’s
Live Distributed Objects technology, and inherits many fea-
tures from the Live Objects system. For reasons of brevity,
we limit ourselves to a short summary. EachGO application
runs as a small component, coded in any of the 40 or so
languages supported by Microsoft .NET, and implements a
standard interface defined by the Live Objects framework.
At runtime, an “end user” application can link toGO
applications through simple library interfaces. Moreover,
gossip objects can be composed into graphs, with one object
talking to another through typed endpoints over which events
are passed. The resulting architecture is rich, flexible, and
quite easy to extend.

The GO platform runs on all nodes in the target sys-
tem, and currently supports applications via an interface
focused on group membership and multicast operations.
The platform consists of three major parts: the membership
component, the rumor queue and the gossip mechanism, as
illustrated in Figure 1.

GO exports a simple interface to applications. Applica-
tions first contact the platform via a client library or an
IPC connection. An application can thenjoin (or leave)
gossip objects by providing the name of the group, and a
poll rateR. Note that ajoin request might be rejected. An
application can start a rumor by adding it to an outgoing
rumors queue which is polled at rateR (or the declared poll
rate in the gossip object) using thesend primitive. Rumors
are received via arecv callback handler which is called by
GO when data is available.

Rumors are garbage collected when they expire, or when
they cannot fit in memory and have comparatively low utility
to other rumors as discussed in Section II-D.

A. Bootstrapping

We bootstrap gossip objects using a rendezvous mecha-
nism that depends upon a directory service (DS), similar to
DNS or LDAP. TheDS tracks a random subset of members
in each group, the size of which is customizable. When a
GO nodei receives a request by one of its applications to
join gossip objectj, i sends the identifier forj (a string)
to the DS which in turn returns a random nodei′ ∈ Oj (if
any). Nodei then contactsi′ to get the current state of gossip
objectj: (i) the setOj , (ii) full membership of nodes inOj ,
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Figure 2. Membership information maintained byGO nodes. The topology
of the whole system on the left is modeled by the node in center as (i) the
set of groups to which it belongs and neighbor membership information
(local state), and (ii) the overlap graph for other groups, whose nodes are
depicted as squares and edges are represented by thick lines(remote state).

and (iii) the subgraph spanned byj and its neighbors in the
overlap graphG along with weights. If nodei is booting
from scratch, it gets the full overlap graph fromi′.

B. Gossip Mechanism

GO’s main loop runs periodically, receives gossip mes-
sages from other messages and performing periodic upcalls
to applications, which may react by adding rumors to the
rumor queue. Each activity period ends when the platform
runs theGO heuristic (from Section II-C3) to send a gossip
message to a randomly chosen neighbor. The platform then
discards old rumors.

C. Membership Component

EachGO node i maintains the membership information
for all of its neighbors,Ni (local state). It also tracks the
overlap graphG and gossip group sizes (remotestate), as
discussed in Section II. Figure 2 illustrates an example of
system-wide group membership (left) and the local and
remote state maintained by the center node (right). The
initial implementation ofGO maintains both pieces of state
via gossip.

1) Remote state:After bootstrapping, all nodes join a
dedicated gossip objectj∗ on which nodes exchange updates
for the overlap graph. LetP be a global parameter that
controls the rate of system-wide updates, that should reflect
both the anticipated level of churn and membership changes
in the system, and theO(log n) gossip dissemination latency
constant. EveryP log |Oj | rounds, some nodei in j starts
a rumor r in j∗ that contains the current size ofOj and
overlap sizes ofOj andj’s neighboring gossip objects. The
algorithm is leaderless and symmetric: each node inOj

starts their version of rumorr with probability 1/|Oj |. In
expectation, only one node will start a rumor inj∗ for each
gossip object.

2) Local state:GO tracks the time at which each neigh-
boring node was last heard from; a node that fails will
eventually be removed from the membership list of any
groups to which it belongs. When nodei joins or changes
its membership, an upcall is issued to each gossip object in

Ai as a special system rumor. We rate-limit the frequency
of membership changes by allowing nodes to only make
special system announcements everyP rounds.

In ongoing work, we are changing theGO membership
algorithm to bias it in favor of accurateproximal information
at the expense of decreased accuracy about membership of
remote groups. The rationale for this reflects the value of
of having accurate information in the utility computation.
As observed earlier, rumors have diminishing freshness with
time, which also implies that the expected utility of routing a
rumor very indirectly is low. In effect, a rumor sent indirectly
still needs to reach a destination quickly if it is to be useful.
We conjecture that theGO heuristic can be proved to be
insensitive to information about groups and membership
very remote (i.e., several hops from a sender node), but
highly sensitive to what might be called proximal topology
information. It would follow that proximal topology suffices.

D. Rumor Queue

As mentioned in Section II-D,GO tracks a bounded set
of rumors in a priority queue. The queue is populated by
rumors received by the gossip mechanism (remote rumors),
or by application requests (local rumors). The priority of
rumor r in the rumor queue for nodes at time t is
maxd∈Ni

Us(d, r, t), since rumors with lowest maximum
utility are least likely to be included in any gossip messages.
As previously discussed, priorities change with time so
we speed up the recomputation by storing the value of
argmaxd∈Ni

D(s, r).

IV. EVALUATION

We evaluate theGO platform using a discrete time-based
simulator1. The focus of our experiments is on quantifying
the effectiveness ofGO in comparison to implementations
in which each gossip object runs independently without any
platform support at all.

Our first experiment explores the usefulness of rumor
stacking, and evaluates the benefits of computing utility for
rumors. We compare the three different gossip algorithms
(the GO heuristic, RANDOM and RANDOM-STACKING)
running in a simple topology.

We then evaluateGO on a trace of a widely deployed
web-management application, IBM WebSphere. This trace
shows WebSphere’s patterns of group membership changes
and group communication in connection with a whiteboard
abstraction used heavily by the product, and thus is a good
match with the kinds of applications for whichGO is
intended.

1Although theGO platform has been fully implemented, length con-
straints forced us to choose between simulation and real world experimental
findings in this paper. A future extended paper will discuss our experimental
findings.
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A. Rumor Stacking and Message Indirection

We evaluated the benefits of message indirection used
by the GO heuristic using the topology shown in Fig-
ure 4. The scenario constitutes a groupj that contains
nodess and d in which s sends frequent updates ford.
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Figure 4. The topology used
in first experiment. Each edge
corresponds to a gossip group,
the members of which are the
two endpoints.

Both nodes also belong to a
number of other gossip objects
that overlap, so that they share
some set of common neigh-
bors, in this case four. As-
suming theGO platform at s
only sends one gossip message
per round, the shared neigh-
bors are in a position to prop-
agate messages intended for
other gossip objects.

We measured the speed of propagation of messages in
group j using our simulator. All nodes simulate theGO
platform with a message rate of 1 message per round, using
one of the three gossip algorithms discussed earlier. During
each time step until time 400 (vertical line), nodes generates
a new rumor for each group inAs, after which rumor
generation stops. We assume that 15 rumors can be stacked
in each packet, and that nodes can fit at most 100 rumors
in memory.

Figure 3 shows the total number of distinct rumors
node d has received for groupj. The benefits of rumor
stacking are evident when one compares the results of
the RANDOM-STACKING algorithm to the RANDOM one.
RANDOM-STACKING diffuses rumors more than 5 times
faster than the single-message RANDOM.

Next, compare theGO heuristic results to those of the
RANDOM-STACKING algorithm. TheGO heuristic delivers
rumors efficiently: nodes are on average only 11.5 rumors

behind an optimal delivery, compared to 460 for RANDOM-
STACKING and 1,460 for RANDOM.

B. Real-World Scenarios

As noted earlier, IBM WebSphere [19] is a widely de-
ployed commercial application for running and managing
web applications. A WebSphere cell may contain hundreds
of servers, on top of which application clusters are de-
ployed. Cell management, which entails workload balancing,
dynamic configuration, inter-cluster messaging and perfor-
mance measurements, is implemented by a form of built-
in whiteboard, which in turn interfaces to the underlying
communication layer via a pub-sub [13] interface. To obtain
a trace, IBM deployed 127 WebSphere nodes constituting
30 application clusters for a period of 52 minutes, and
recorded topic subscriptions as well as the messages sent by
every node. An average process subscribed to 474 topics and
posted to 280 topics, and there were a total of 1,364 topics
with at least two subscribers and at least one publisher. The
topic membership is strongly correlated, in fact 26 topics
contain at least 121 of the 127 nodes. On the other hand,
none of the remaining topics contained more than 10 nodes.

We used the WebSphere trace to drive our simulation by
assigning a gossip group to each topic. All publishers and
subscribers for the topic are members of the corresponding
gossip group. We limited the memory and bandwidth re-
quirements by expiring rumors 100 rumors after they were
first generated. Again, we compare theGO heuristic with
RANDOM and RANDOM-STACKING. However, in contrast
to the experiment of Section IV-A, in which theGO platform
itself used the specified stacking policy, this WebSphere
experiment is slightly different: it compares a simulated
“port” of WebSphere to run overGO with a simulation
of WebSphere running over independent gossip groups that
exhibit the same membership and communication patterns,
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(a) WebSphere, new rumors vs. number of messages.
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(b) WebSphere, ratio of new rumors per message vs. time.

Figure 5. IBM WebSphere Trace. The number of new rumors received by nodes in the system and the number of messages sent (left), also plotted as
a ratio of new rumors per message over time (right). The nodes using the random heuristics gossip per-group every round, whereasGO sends a single
gossip message.

but do not benefit from any form of platform support. To
emphasize that these group policies are not identical to
RANDOM-STACKING and RANDOM, as used internally by
the GO platform itself in the first experiment, we desig-
nate the policies as WS-RANDOM-STACKING and WS-
RANDOM in what follows.

We expect the naı̈ve approaches to disseminate rumors
faster thanGO because each WebSphere group is operated
independently and in a ”greedy” manner. As a consequence,
each node sends one gossip message per group per round,
as opposed to only one message per round as theGO
platform does. As can be seen in Figure 5(a), the delivery
speed of theGO platform is 6.7% percent lower on average
than the näıve WS-RANDOM-STACKING approach.GO,
however, beats WS-RANDOM by a factor of 2. An even
bigger win forGO can be seen in Figure 5(b), which shows
the number of new rumors delivered versus the number
of messages exchanged. TheGO platform sends 3.9 times
fewer messages than the naı̈ve approaches, thus keeping
bandwidth bounded, while disseminating rumors almost as
fast.

At the end of the trace, the total number of rumors
received by all nodes was 8% lower when usingGO than
WS-RANDOM-STACKING, meaning that some rumors had
not reached all intended recipients. We traced this loss
to a specific point in the execution at which WebSphere
generates a burst of communication, exceeding theGO-
imposed bandwidth limit. One reasonable inference is that
such loss is an unavoidable consequence of our approach, in
which a single platform handles communication on behalf
of all gossip groups. However, it is interesting to realize that
the WebSphere traffic burst was brief and that averaged over
even a short window, need not have overwhelmedGO. This

observation is motivating us to explore dynamically adjust-
ing the platform gossip rate to cope with bursty senders, but
in ways that would still respect operator-imposed policies
over longer time periods.

C. Discussion

There are two take-away messages from the first ex-
periment. First, rumor stacking is inherently useful even
when using RANDOM-STACKING without a utility-driven
rumor selection scheme. Nonetheless, we see a substantial
gain when using theGO heuristic to guide the platform’s
stacking choices. Although not reported here, we have con-
ducted additional experiments that confirm this finding under
a wide range of conditions. Second, if processes exhibit
correlated but not identical group membership, then there
may often be indirect paths that can be exploited using
message indirection.GO learns these paths by exploring
membership of nearby groups, and can then ricochet rumors
through those indirectly accessible groups. The RANDOM-
STACKING policy lacks the information needed to do this.
While the topology in the first experiment is deliberately
adversarial, it is also extremely simple. For this reason, we
believe that patterns of this sort may be common in the
wild, where correlated group membership is known to be a
pervasive phenomenon.

The WebSphere experiment supports our belief that the
GO platform is able to cope with real-world message dis-
semination at a rate close to that of a naı̈ve implementation
without losing the fixed bandwidth guarantee discussed
in the introduction, and in fact using substantially fewer
messages than a non-platform approach.

We believe that the scenarios we evaluated illustrate the
potential benefit of theGO methodology in a reasonably
general way. If a large number of groups overlap at a



single node, conditions could arise that would favor theGO
heuristic to an even greater degree than in our examples. For
example, this would be the case if a large number of groups
overlap, generating high volumes of gossip traffic, and yet
the pattern of membership is such that relatively few rumors
are legitimate candidates for stacking in any particular gossip
message.GO has the information to optimize for such
cases, including only high-value rumors; random stacking
would tend to fill packets with useless content, missing the
opportunity.

V. FUTURE DIRECTIONS

At present,GO rejects gossip join requests if the resulting
additional gossip load would overflow its rumor buffers. One
might imagine a more flexible scheme that would allocate
rumor buffer space among applications in an optimized
manner, so as to accommodate applications with varied data
production rates. If we then think about information flow
rates within individual groups, and compare this with those
achievable using theGO (where groups carry traffic for one-
another), it would be possible to demonstrate an increase in
the peak data rates when usingGO relative to systems that
lack this cooperative behavior.

A second direction for future investigation concerns other
potential uses forGO. As noted earlier, our near term plan
is to extendGO so that it can support a wider range of
gossip styles. Beyond this, we are considering hosting non-
gossip protocols “over”GO, tunneling their communication
traffic through GO so as to gain the properties of those
protocols (such as consistency, tolerance of application-level
Byzantine faults,etc.) while also benefiting fromGO’s
simple worst-case communication loads.

Yet a third open topic concerns security. TheGO rumor
stacking scheme does not currently provide true performance
isolation: an aggressive application may be able to dominate
a less aggressive one, seizing an unfair share of stacking
space. A thorough exploration of this form of fairness, and
of other security issues raised byGO, would represent an
appealing subject for further study.

In summary,GO is a work in progress. While gossip
protocols for individual applications are a relatively mature
field, it is interesting to realize that by building a platform
– an operating system – to support multiple gossip appli-
cations, one encounters such a wide range of challenging
problems. We conjecture that practitioners who use gossip
aggressively will encounter these problems too, and that in
the absence of good solutions, might conclude that gossip is
not as effective a technology as generally believed. Yet there
seems to be every reason to expect that these problems can
be solved. By doing so we advance the theory, while also
enlarging the practical utility of gossip in large data centers
and WAN peer-to-peer settings, where gossip seems to be a
good fit to the need.

VI. RELATED WORK

The pioneering work by Demerset al. [1] used gossip
protocols to enable a replicated database to converge to a
consistent state despite node failures or network partitions.
The repertoire of systems that have since employed gossip
protocols is impressive [9], [6], [15], [13], [4], [20], although
most work is focused on application-specific use of gossip
instead of providing gossip communication as a fundamental
service.

VII. C ONCLUSION

The GO platform generalizes gossip protocols to allow
them to join multiple groups without losing the appealing
fixed bandwidth guarantee of gossip protocols, and simulta-
neously optimizing latency in a principled way. Our heuristic
is based on the observations that a single IP packet can
contain multiple rumors, and that indirect routing of rumors
can accelerate delivery. The platform has been implemented,
but remains a work in progress. Our vision is thatGO can
become an infrastructure component in various group-heavy
distributed services, such as a robust multicast or publish-
subscribe layer, and an integral layer of the Live Distributed
Objects framework.
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