
COMPOSITIONAL GOSSIP SYSTEMS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Lonnie J Princehouse

December 2017



c© 2017 Lonnie J Princehouse

ALL RIGHTS RESERVED



COMPOSITIONAL GOSSIP SYSTEMS

Lonnie J Princehouse, Ph.D.

Cornell University 2017

Gossip protocols have a wide range of applications in distributed systems. They

offer robust fault tolerance in exchange for probabilistic guarantees and conver-

gence, and are characterized by elegance and simplicity. This body of research

considers the problem of gossip protocol representation and composition; that

is, how to use simple gossip protocols as building blocks to form more complex

and powerful compound protocols. In doing so, we propose a novel formal

representation of gossip, and use it to define the essential properties of gossip

systems. We propose composition operators that combine protocols, and show

how properties of operands protocols are (or are not) transferred to the resulting

compound protocols. Choice among composition operators leads to trade-offs

of performance and independence, while preserving semantics. The optimiza-

tion afforded by what we call ”correlated merge” operator enables construc-

tions that would be quite difficult to implement on their own by opportunisti-

cally combining gossip messages from many constituent protocols. We discuss

which practical syntactic features are helpful for gossip system implementa-

tion. A proof-of-concept implementation named MiCA is presented, consisting

of Java-language runtime for gossip, a library of gossip primitives, a simulator

for rapid development, and visualization and analysis tools that can be used to

interpret the results of experiments.



BIOGRAPHICAL SKETCH

Lonnie J Princehouse hails from Seattle, Washington, where he attended school

and earned a Bachelor of Science degree in Applied and Computational Math-

ematical Sciences from the University of Washington. Prior to graduate school

at Cornell University, Lonnie worked for the Boeing Company’s Mathematics

and Computing Technology group, where he prototyped CAD software for pro-

grammatic geometry design. He has two young children with his wife Haixin.

iii



Dedicated to my wife Haixin, who is even more important than she knows; to

Kallista, age 2.5, and Max, age 1.

iv



ACKNOWLEDGEMENTS

Acknowledgements to my advisor, Ken Birman, with his relentless encourage-

ment and saintly patience. To Nate Foster, whose contributions helped sharpen

the ideas in these pages. To Dexter Kozen, the voice of the field of mathematics.

To my collaborators and co-authors Robert Soulé, Rakesh Chenchu, and Zhefu
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CHAPTER 1

INTRODUCTION

The internet has revolutionized almost every aspect of modern life. Using

web browsers on mobile devices and conventional desktop and laptop com-

puters, people use the internet to communicate, search for information, order

groceries, play games, check their bank accounts, watch movies, find romance,

and conduct business.

The distributed systems that run these services are comprised of anywhere

from two or three computers to thousands or even millions. Designing dis-

tributed programs to run on these distributed systems differs from writing pro-

grams for conventional systems that run on one machine. Distributed systems

have a more complex, more nuanced programming model, making them diffi-

cult to build and debug. In a conventional computer, if a piece of hardware fails,

the machine crashes. It’s quite clear that the system has crashed and that your

program has stopped running.

In a distributed system, when one part breaks, the rest of the system often

continues to run. Other parts of the system may not even realize a failure has

occurred. The architects of distributed systems must reason about program be-

havior in the presence of such faults.

Another difference in distributed systems programming is that communica-

tion between processes is unreliable, has much higher latency, and has much

lower bandwidth relative to the speed of computation. Nodes in a distributed

system may be far apart, perhaps distributed around the world. Without a sin-

gle, fast, reliable, random-access shared memory, placement of state becomes
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much more important. Not all processes have access to all data. A process on

one node may need to communicate with other nodes to collect pieces of state

needed for its own computation.

To illustrate the complexity of modern, web-scale systems, consider what

happens when a customer navigates to Amazon’s front page: It takes dozens

or hundreds of computers in dozens of services to generate this web page. The

customer will receive a page customized to their interests, promoting products

that are predicted to be of interest to the customer, displaying special promo-

tions and seasonal products that might be relevant, etc. The page will even look

up user profile information, such as how many items are in the shopping cart, or

whether a user is logged in. Just this single page view is an immensely complex

interaction of distributed systems.

The differences in the programming model presented by distributed systems

make it inherently difficult. This is compounded by the fact that the languages

we use to write distributed systems—C, Java, C#, Ruby, JavaScript, Python,

etc.—all operate within the scope of a single machine. These languages’ com-

pilers and interpreters target single machine execution. From the perspective

of programs written in these languages, communication between processes in

a distributed system is an action that happens as communication between two

programs, rather than within a single program. There’s a disconnect here in

how we implement distributed systems and how we want to reason about them.

Many distributed programming languages exist. However, no dominant one-

size fits all language has emerged for distributed programming. There is no

“C for distributed systems”; it may not even be possible. A common feature of

distributed programming languages is that their scope is an entire distributed
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system, rather than just a single process or a single machine. Most distributed

programming languages focus on a specific niche within distributed systems.

For example, database-inspired languages such as BLOOM [1] study how to

distribute a query across multiple nodes, and work with highly structured data.

Other languages for distributed systems are based on SQL or Map/Reduce

(not itself a language, but an important programming model for “big data”).

Languages like MACEDON [53] and P2 [45] describe the structure overlay net-

works.

Like these languages, the body of research described in this dissertation pro-

poses a programming model for a category of distributed systems: gossip pro-

tocols.

Gossip protocols excel at certain tasks: Health monitoring, group mem-

bership, overlay network construction, metrics aggregation, and eventually

consistent replication. These are important components of almost all large,

production-ready distributed systems. Although gossip is not always the mech-

anism of choice for these, it is well-suited. We assert that by giving system de-

signers a gossip framework at a high level of abstraction, we will facilitate the

building of modular, reusable, robust, and scalable gossip components. Gos-

sip has a reputation for simplicity, which may explain why such a framework

doesn’t already exist: It’s easy enough to “re-implement the gossip wheel”

when called to do so. However, the temptation to do so could result in scal-

ability problems: For example, a naive implementation of uniform gossip over

a complete network will encounter scalability problems with membership, as

every node must know the complete system membership in order to select a

random peer for gossip. As the system grows, and as nodes come and go, it
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becomes harder to keep membership up to date. In a production system that

may already have thousands or millions of users, this is a latent liability that

will eventually result in crisis. Such occurrences—crashing into forgotten scal-

ability constraints—happen often behind the scenes in the Cloud Computing

industry. One of the best ways to avoid such problems is to use battle-tested,

well-understood industry standard components when possible. One goal of this

research is to move closer towards reusable gossip components.

A detailed definition of gossip and background information are given in

chapter 2.

In this dissertation, we propose a new programming model, “pairwise gos-

sip”. With this model, we wanted to capture the fundamental elements of gossip

protocols. Pairwise gossip is uniquely tailored to gossip protocols, solving the

problem described earlier, that conventional languages only have a one-node

view of state when writing distributed systems. Pairwise gossip gives pairs of

nodes exchanging gossip access to each others’ states, and makes both states

visible to the programmer.

To the best of our knowledge, this approach is completely novel. There are

few other programming frameworks specifically for gossip, and those that are

available [44] focus on providing object-oriented classes and utilities as libraries

for conventional languages, or on simulation [49]. No other research into gos-

sip protocols has studied composition of protocols, nor have gossip views been

represented as discrete probability distributions instead of sets.

This dissertation is organized as follows:
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• Chapter 2 gives an overview gossip protocols, their history and applica-

tions.

• Chapter 3 describes the pairwise gossip model and our early research into

gossip representation and composition, as excerpted from [51].

• Chapter 4 puts forth the the finished version of our gossip framework,

MiCA, as it appeared in ECOOP 2014 [52].

• Chapter 5 goes into greater detail on MiCA’s implementation and its ca-

pabilities.

• Chapter 6 presents further experimental results on gossip protocol com-

position.

• Chapter 7 contains conclusions and ideas for future directions.
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CHAPTER 2

BACKGROUND

This chapter presents definitions and background information on gossip pro-

tocols, as well as a literature survey of gossip algorithms. We use the terms

“gossip” and “epidemic” interchangeably to describe this class of algorithms;

both are used in the literature. First, we discuss the origins of gossip, followed

by discussion of the major categories of gossip algorithms.

2.1 Gossip

Gossip protocols are a family of network protocols roughly characterized by the

following scenario: One node selects another node at random from a pool of

known peers (its view). These two nodes exchange information, and one or both

update their internal states accordingly. The first node waits for some interval

before repeating the process. Nodes gossip concurrently and independently. It

is not uncommon to have an upper bound on the size of data exchanged or the

amount of computation that may be performed per unit time; this, combined

with the regular frequency of gossip exchanges, results in steady, predictable

network overhead that scales well as the network grows, and is well-behaved

in the presence of network congestion. In general, gossip is well-suited to appli-

cations for which probabilistic guarantees are adequate and which do not call

for immediate reactions to events.

The canonical gossip uses are:

Anti-entropy. One of the canonical gossip uses; nodes keep versioned sets of
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objects (e.g., database rows), and gossip to discover newer versions else-

where in the system. Anti-entropy is a mechanism for eventual consis-

tency.

Rumor mongering. A probabilistic broadcast mechanism.

Failure detection. Gossiping about who we’ve talked with recently can help

the system notice who we haven’t heard from.

Aggregation. Similar to rumor-mongering, but computing a function of data

held at different nodes. Examples are: Approximating statistics about

node capacity throughout the network[27][29]; computing user-defined

aggregate queries[62].

Overlay maintenance. Systems such as distributed hash tables often build dy-

namic routing overlays that must be constantly updated as nodes enter

and leave the system. Gossip can be used to update views in such a man-

ner that the graph of node connectivity either functions as the desired

overlay, or can be used to monitor some underlying overlay for purposes

of adaptation and repair.

Peer sampling. Randomness of peer selection is important for many gossip

protocols. For large networks, however, it is impractical for each node

to store the address of all other nodes in the system. Peer sampling algo-

rithms allow gossip nodes to sample values maintained by their peers in a

way that approximates true random peer selection given only a fixed-size

local view. [47]

7



� �
// Active thread , running on node a with state σa
do forever:

wait t seconds
b← selectPeer(σa)
send σa to b
receive σb from b

σa ← updatea(σa, σb)� �� �
// Passive thread , running on node b with state σb

do forever:
a← awaitConnection
receive σa from a

send σb to a
σb ← updateb(σa, σb)� �

Figure 1: Active and passive threads

2.2 Literature Survey

Epidemiology as model for information dissemination was proposed by Goff-

mann and Newill in 1964 [25]. The authors advanced the notion that the spread

of ideas and information are analogous to how infections propagate through a

population. They laid out the mathematics for what we call uniform gossip—

gossip over a complete graph with peers chosen at random—and solved for

the rate of convergence of total infection. Kendall and Daley[15] observed that

the social phenomenon of a rumor spreading in a social network could also be

modeled as an epidemic, and compared several models for the spread of rumors

through populations.

The general pattern of a gossip—choose a peer, exchange information, wait,

repeat—appeared in distributed systems literature well before it was labeled as

“gossip” or as an “epidemic”. For example, Usenet’s Network News Transfer

Protocol (NNTP) [36] uses a network of peered news servers to distribute new

messages through individual peer-to-peer interaction. This is cited as an early

example of gossip, although RFC 977 did not use that term.
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Another early example is proposed by Fischer and Michael [23]. This paper

considers the problem of replicating a dictionary across a distributed system,

and propose a weakened consistency model that allows high availability and

improved partition tolerance. In their discussion of open problems, they pro-

pose a communication mechanism that sounds very much like gossip, although

it stops short of randomized peer selection:

We have not yet addressed the problem of finding a good strategy

for the nodes to use in deciding when and how to communicate. If

each message can be received by only a single process, then various

strategies can be imagined. At one extreme, a message transmission

from i to j could be attempted periodically for all pairs i, j, i 6= j,

resulting in a total of O(N2) messages to propagate information be-

tween all pairs of nodes. On the other hand, given a spanning tree in

the network and a root, one can propagate information from every

node to every other node using only O(N) messages...

This strategy would later by implemented and refined by Ladin et al. [41].

Fischer and Michael consider communication over both a complete graph and

a spanning tree topology.

In 1987, Demers et al. introduced anti-entropy [19] as a means to keep dis-

tributed database replicas consistent. Anti-entropy is a form of gossip wherein

database peers compare local replicas data sets of versioned objects. If one peer

finds it has a lower versioned object than another, it gets the newer version.

Updates to objects propagate through the system as an epidemic, but the point-

to-point state exchange is triggered by the detection of stale information rather
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than through broadcast of explicit update messages as in [23]. This introduced

a weakened consistency model that enabled availability at scale.

Anti-entropy would go on to be influential in the peer-to-peer era, and later

in the age of cloud computing and NoSQL database systems. In the late 1990’s

and early 2000’s, the promise of cheap computing devices coupled with per-

vasive internet connectivity led researchers to envision a world of peer-to-peer

computing, where large internet services could be run in a decentralized fashion

on nodes scattered around the globe. The Bayou [58] storage system is a shared,

distributed data store, intended for a network of mobile devices with intermit-

tent or unreliable internet connectivity. Bayou allows clients to read and write

to any replica and uses anti-entropy gossip to make the system eventually consis-

tent, a name given to the weakened consistency that arises from anti-entropy’s

gossip-based update propagation. Eventual consistency in a multi-master sys-

tem can give rise to write conflicts, which Bayou addressed by allowing appli-

cations to specify their own conflict resolution handlers.

Bimodal multicast [7, 6, 5] employs anti-entropy for probabilistic multicast.

The authors make the point that, while gossip’s probabilistic guarantees are

weaker than those offered by other reliable multicast methods, they are more

predictable than best-effort systems and offer greater stability. With gossip, al-

though worst-case behavior is possible, the systems are robust in practice and

have well-understood bounds. Bimodal multicast’s anti-entropy prioritizes re-

cent messages over old messages, giving the system a weak real-time guarantee.

In addition to anti-entropy for multicast, the SpinGlass implementation [5] of bi-

modal multicast also relies on gossip for eventually consistent, self-stabilizing

group membership, drawing from [26, 64].
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Gossip-based group membership is used widely, typically in conjunction

with gossip-based failure detection. Uber’s Ringpop [46] service, which pro-

vides membership for geospatial coordination within Uber’s distributed appli-

cations, uses the SWIM [16] gossip protocol for group membership and for fail-

ure detection. HashiCorp’s Serf, a membership and event delivery platform,

is itself based on an extension of SWIM called Lifeguard [13]. Lifeguard ex-

tends SWIM with measures to reduce false positive failure detection caused by

servers that are temporarily unable to respond, or respond late, due to high

CPU or memory utilization. Amazon’s S3 uses gossip for group membership,

as revealed in the post-mortem of a 2008 outage caused by corrupted gossip

messages [57].

In 2007, Amazon’s influential Dynamo [18] paper inspired a new genera-

tion of eventually consistent database systems. Dynamo utilizes gossip in sev-

eral ways: anti-entropy, for replication; gossip-based group membership; and

failure detection, in the style of [28]. Dynamo’s goal was to achieve scala-

bility beyond the capabilities of contemporary ACID-compliant RDBMS, pri-

oritizing availability over consistency when necessary. Although none of Dy-

namo’s gossip techniques were novel, the use of eventual consistency for the

Amazon.com shopping cart—an important and highly visible service—fostered

a surge in the popularity [67] of eventual consistency and spurred the growth

of the NoSQL database market. Dynamo’s example would go on to inspire

anti-entropy-backed eventual consistency in Facebook’s Cassandra [42] (now

Apache Cassandra), Riak [40], and more. The popularity of eventual consis-

tency has faded somewhat since, possibly due to the additional complexity it

forces on designers. Many current NoSQL databases offer both eventual and

strongly consistent operations, but gossip’s role is now firmly established.
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Another prominent gossip use case is aggregation. Gossip-based aggrega-

tion typically runs a distributed algorithm to compute a query on distributed

data: Min, Max , Sum, count , avg , quantiles, sampling[33, 60], distribution es-

timation [29], among many others. Research into gossip-based aggregation

addresses the challenges of dynamic networks, where nodes leaving or arriv-

ing may alter the values of computed aggregates, necessitating recomputa-

tion [30]; trading accuracy for time and space efficiency [2]; and analysis of

convergence [37, 9]. Aggregation over various topologies has been considered:

Uniform gossip on a complete graph [37], arbitrary unstructured graphs [2],

spanning trees, and expander graphs [38]. Astrolabe [62] computes aggregate

queries on a hierarchy of nodes by gossiping both within and between levels of

the hierarchy.

Use cases for gossip-based aggregation include massive peer-to-peer un-

structured networks [2] and sensor networks [43, 37]. In both settings, gossip’s

robustness to dynamic churn and unreliable networks gives it an advantage

over other distributed system aggregation techniques, such as spanning-tree-

based aggregation [50]. Gossip-based aggregation is also well-suited for appli-

cations that need a query result to be present at many nodes, instead of just a

spanning tree root, such as Sliver [27] which uses an aggregate at each node

to dynamically determine the node’s placement relative to other nodes. Span-

ning tree aggregation is not mutually exclusive with gossip, as demonstrated by

Astrolabe, which successfully combines the two.

Gossip is used as a foundational layer for network overlay construction

(which can be viewed as a kind of aggregation). For example, for spanning tree

overlays for aggregation as discussed above, or for the ring overlays that under-

12



pin some distributed hash tables [55, 18]. This is a natural extension of gossip-

based health monitors, which must be aware of when nodes join and leave the

system. Overlay construction is generalized by T-Man [32], which proposes an

elegantly simple ranking mechanism that can construct overlays for a class of

network topologies. T-Man’s algorithm can be viewed as an aggregation, where

the primitive data to be aggregated are profiles of nodes participating in the net-

work.
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CHAPTER 3

CODE-PARTITIONING GOSSIP*

Code-Partitioning Gossip (CPG) is a novel technique to facilitate implemen-

tation and analysis of gossip protocols. A gossip exchange is a pair-wise trans-

action between two nodes; a gossip system executes an endless sequence of ex-

changes between nodes chosen by a randomized procedure. Using CPG, the

effects of a gossip exchange are succinctly defined by a single function that

atomically updates a pair of node states based on their previous values. This

function is automatically partitioned via program slicing into executable code

for the roles of gossip-initiator and gossip-recipient, and networking code is

added automatically. CPG may have concrete benefits for protocol analysis and

authoring composite gossip protocols.

In defining code-partitioning gossip, we consider two different perspectives

on gossip—that of the programmer, and that of the theorist.

The programmer formulates gossip with implementation in mind. A gossip

system uses two threads per node; one active, one passive[31]. The active thread

periodically initiates a gossip exchange with a randomly selected peer, and the

passive thread awaits and reacts to connections. In this paper, we use the ter-

minology “sender” to refer to the active-thread node that initiates a gossip ex-

change, and “receiver” to indicate the passive-thread recipient, even though

both nodes send and receive data. For brevity, all examples name the sender a

and the receiver b. Figure 1 contains pseudo-code for the sender and receiver

∗Excerpted from Princehouse, L. and Birman, K. Code-Partitioning Gossip. Fifth Program-

ming Languages and Operating Systems Workshop (PLOS), 2009. Operating Systems Review

2010, Vol. 43
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event loops. Note that during an exchange, each node sends its state to the

other, and then computes a new state based on the pair of states. In gossip ter-

minology, this is a push-pull protocol, and it encompasses the more specific sets

of push protocols (in which only the sender pushes its state to the receiver) and

pull protocols, in which state moves only from receiver to sender.

In contrast, the theorist frames gossip in more holistic terms, asking, “How

does the gossip exchange affect the state of the system?”. Instead of two update func-

tions σa ← updatea(σa, σb) and σb ← updateb(σa, σb) separated by networking

code, the theorist ignores the network and poses the exchange as single uni-

fied update function, (σa, σb) ← update(σa, σb). Using this function, the theorist

proves interesting properties about her gossip algorithm. For example, the the-

orist might prove that update is monotonic with respect to some property of

system state, and use this fact in an inductive proof to show that an invariant

always holds.

There are, of course, simplifying assumptions. The theorist has presented

this gossip exchange as an atomic transaction on system state. In reality, net-

works are unreliable and nodes sometimes fail. The Two Generals tell us that a

node fundamentally has no way of knowing if its counterpart has successfully

completed the exchange; the best our nodes can do is to atomically commit

changes to their own state, such that the failure of one node halfway through a

gossip exchange does not leave the other node with an inconsistent state. Ac-

cordingly, the proofs must be expanded to account for the possibility of failure,

which may cause a gossip exchange to unpredictably update one, both, or none

of the states of its participants.

In this paper, we present Code-Partitioning Gossip (CPG), a Programming
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Languages-inspired technique for the implementation of gossip protocols. CPG

strives to reach a happy medium between the programmer and the theorist.

Using CPG, the programmer writes a unified update function that operates

on pairs of states. This function is automatically partitioned into updatea and

updateb, and code for the active and passive threads is synthesized. Network-

ing code is inserted automatically, allowing systems to be easily re-tooled for

different network models and transports.

Code-Partitioning Gossip offers several possibilities. First, it allows the pro-

grammer to create composite gossip protocols using the familiar mechanisms of

functional composition and object oriented programming. Second, it affords the

theorist the opportunity to bring program analysis tools to bear on the update

function. Third, it lets the programmer separate implementation details from

protocol semantics.

This paper is organized as follows: Section 2 elaborates on the design of

CPG. Section 3 further describes the design of Code-Partitioning Gossip and

our prototype implementation. Section 4 discusses existing work as it relates

to gossip protocols and code-partitioning. Finally, Section 5 ruminates on the

implications and future directions of CPG.

Design

Let the set of all nodes be N . For the purposes of Code-Partitioning Gossip, we

define a gossip protocol as the triplet,

State type A datatype. The set of all states is Σ.

selectPeer : Σ→ N . Chooses a peer to gossip with based on a node’s state.
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Allowed to be non-deterministic.

update : Σ2 → Σ2. Deterministic exchange update function. Given a pair of

node states, compute an updated pair.

Given such a protocol definition, the CPG runtime automatically partitions

update into updatea and updateb. Before explaining exactly how this is done, we

present as a simple example the MAXVALUE protocol. In MAXVALUE, each

node stores an integer value. During a gossip exchange, both nodes adopt the

greater of their two values. MAXVALUE runs on a fixed communication graph.

All nodes eventually converge to the maximum value in the system with high

probability.� �
1 public class Maxvalue {
2 private Address address;
3 public int value;
4

5 public Maxvalue(Address address, int value,
6 Set<Address> view) {
7 this .address = address;
8 this .value = value;
9 this .view = view;

10 }
11

12 @GossipSelectPeerUniform
13 private Set<Address> view;
14

15 @GossipExchangeUpdate
16 public void update(Maxvalue b) {
17 value = b.value = max(value, b.value);
18 }
19 }� �

Figure 1: MAXVALUE protocol

Figure 1 contains the actual Java code for MAXVALUE as implemented in

our system. MAXVALUE is mostly ordinary Java code: The gossip protocol is

written as a class, and instances of this class represent individual nodes. The

only unusual features are the annotations GossipSelectPeerUniform and Gos-
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� �
@GossipExchangeUpdate
public void update(Maxvalue b) {

value = b.value = max(value, b.value);
}� �

↓� �
public void update a(Maxvalue b) {

value = max(value, b.value);
}
public void update b(Maxvalue a) {

value = max(a.value, value);
}� �

Figure 2: MAXVALUE automatic partition

sipExchangeUpdate on lines 12 and 15. These annotations tag elements of the

program for special treatment by our runtime system. GossipSelectPeerUni-

form tells the runtime that the member variable view is to be used for uniform

random peer selection, and GossipExchangeUpdate marks the function update

for automatic partitioning.

Figure 1 contains the actual Java code for MAXVALUE as implemented in

our system. MAXVALUE is mostly ordinary Java code: The gossip protocol is

written as a class, and instances of this class represent individual nodes. The

only unusual features are the annotations GossipSelectPeerUniform and Gos-

sipExchangeUpdate on lines 12 and 15. These annotations tag elements of the

program for special treatment by our runtime system. GossipSelectPeerUni-

form tells the runtime that the member variable view is to be used for uniform

random peer selection, and GossipExchangeUpdate marks the function update

for automatic partitioning.

We employ static program slicing[70] to accomplish this partition. Briefly,

program slicing attempts to solve the following problem: Given a program and

a target value (as it appears at some program point), return a subgraph of the

18



program’s control flow graph consisting only of statements that contribute to

the computation of the target value. This CFG subgraph is called a “slice”, and

is itself an executable program. When executed, the slice computes the target

value exactly as the original program would have. CPG’s program slicing is

necessarily conservative, omitting statements only if they are proven irrelevant.

Code-Partitioning Gossip generates two slices: one that computes updated

state σ′a for the sender, and one that computes σ′b for the receiver. These slices

are effectively the updatea and updateb functions seen earlier. Figure 2 shows an

example of the how MAXVALUE’s update function could be partitioned. Code-

Partitioning Gossip expects the update function to be deterministic and to halt;

the onus to enforce these conditions is on the programmer.

This particular brand of program slicing—splitting a function between two

nodes—raises some interesting questions. The nodes cooperate initially to share

their states, but program slicing may reveal that only pieces of the other node’s

state are needed to compute updatea or updateb. For example, view and address

are part of MAXVALUE’s state, but are not needed for the gossip update. Fur-

ther, which pieces of state are needed may only be known at runtime. Rather

than shipping the entire state in a single transaction, our synthesis of the updatea

and updateb functions could provide the opportunity to send state between

nodes on demand. Such a system might make the additional decisions of

whether to send any state speculatively and whether to try to minimize band-

width used or total number of messages sent between nodes. However, these

questions are not our focus.
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Implementation

In our prototype implementation, CPG protocols are written in Java, with cus-

tom annotations used to designate a protocol’s peer selection and exchange up-

date behavior. We considered creating a domain-specific language for gossip,

but ultimately decided against it on the grounds that Java provides sufficient

extensibility to accomplish our goals, and many programmers are already fa-

miliar with Java. When a Java class is loaded, the Code-Partitioning Gossip

runtime uses reflection to search for members tagged with one of several spe-

cial gossip annotations. The annotation GossipExchangeUpdate on a method

causes the method to be partitioned and two new methods, representing the

two slices of the update method, are dynamically added to the class. These

functions are called to perform gossip exchanges by active and passive gossip

threads implemented by the Code-Partitioning Gossip runtime.

Our prototype implementation of CPG has two phases of analysis, both operat-

ing on the Java bytecode of a protocol class. Running this analysis on bytecode

rather than Java source was a pragmatic decision—we felt it would be easier to

write a prototype using existing bytecode manipulation tools—but it has some

additional benefits, such as the potential to write CPG gossip protocols in any

language that targets the JVM (e.g., Scala). For CPG, first the update method

is is sliced into active and passive methods that update the states of two lo-

cal node instances. Second, network code is injected to retrieve state from the

remote node when it is needed. Several annotations are provided for peer selec-

tion. GossipSelectPeerUniform selects a peer uniformly at random from a set of

addresses of other peers. GossipSelectPeerWeighted lets the developer specify

probability mass weights (for protocols that require non-uniform random selec-
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tion, e.g., spatial gossip[39]). GossipSelectMethod designates a method to call

directly for peer selection.

In order to use a gossip protocol, the developer creates an instance of its class

and instructs the Code-Partitioning Gossip runtime to begin gossiping. While

gossip proceeds quietly in the background, the protocol instance can be used

like any other Java object by the encompassing Java program. As a practical

matter, nodes in our prototype wait to finish one gossip exchange before engag-

ing in another. This mandates a system-imposed timeout for failed nodes (or

else a node would cease to gossip when it fails to receive a response).

Example

We now present a more sophisticated example. Sliver[27] is a slicing protocol.

In a network where nodes have varying capacities of some metric, Sliver as-

signs each node to one of k groups of approximately equal total capacity. Nodes

provide a getSlice method that returns an estimate of their current slice; this is

computed as follows:

All nodes keep a set of (node identifier, capacity, timestamp) triples. During a

gossip exchange, the sender transmits its capacity to the receiver, and the re-

ceiver records (sender, capacity, timestamp). To compute getSlice, a Sliver node

first purges any stale triples (either because they have been superseded by new

information about a node, or because their timestamps are too old). It then

computes the fraction of known nodes with lesser or equal capacity to itself.

The current slice is obtained by multiplying this fraction by the total number of

slices k and rounding to the nearest integer.
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Figure 3 shows Sliver as implemented under Code-Partitioning Gossip.

Related Work

We are aware of one API framework, GossipKit[44], that uses standard object-

oriented programming methodology to furnish the developers of gossip pro-

tocols with reusable, modular gossip abstractions. Such a framework serves

two purposes: It provides plug-and-play gossip protocols that can be used by

developers (e.g., peer sampling), and it facilitates development of gossip pro-

tocols by providing a skeletal gossip runtime that can be extended via inheri-

tance. We assert that CPG has an advantage over such a toolkit in that CPG lets

the programmer describe a protocol at a higher level of abstraction, namely the

pair-wise updates of system state. However, the toolkit approach may be eas-

ier to debug since the bytecode run by CPG has been transformed by program

slicing.

A second class of related work seeks to generalize specific kinds of gossip

protocols. Two such systems are T-Man[32] and Astrolabe[62]. T-Man is a con-

figurable gossip system for the creation and maintenance of structured overlays.

T-Man imposes a user-defined sort order � over all nodes in the system. Nodes

maintain views of fixed size, sorted in this order. When a T-Man node learns of

another node x such that x � y for some y ∈ view, x replaces y. The views of

each node define the overlay graph. By supplying different sorting functions,

T-Man can form a truly surprising variety of overlay topologies.

Astrolabe organizes its nodes into a tree. The tree’s inner nodes may contain

user-defined aggregation functions that compute some aggregate of the data
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stored in the node’s children. Users of Astrolabe can then execute database-

like queries to evaluate these aggregates. T-Man and Astrolabe do not have

the same goals as CPG, so a direct comparison is not possible. However, both

T-Man and Astrolabe would make excellent benchmarks if implemented using

CPG. Astrolabe, in particular, has a recursive structure that lends itself well to

CPG. Implementing these systems using CPG is left for future work.

MACE[53] is a domain-specific language for authoring overlay systems, in-

tended for writing overlays such as Chord[55], Pastry[54], etc. MACE compiles

into C++, and claims to save a great deal of programmer effort and attain reason-

able performance. While it is not gossip-specific, we see no reason that MACE

could not be used to implement gossip systems.

Regarding program slicing and automatic partitioning, Jif/Split[73] and

Swift[11] use such a technique to automatically partition programs to run be-

tween client and server according to information flow security labels on vari-

ables. If anything, Code-Partitioning Gossip is much less ambitious in the scope

of its partitioning scheme: Jif/Split and Swift must decide where and when to

move data based on a set of hard security constraints, whereas CPG has the lo-

cations of variables as a given from the start. CPG differs from these systems in

that its pair-wise program slicing implicitly defines the behavior for an n-node

system.
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3.1 A Pairwise Abstraction for Round-Based Protocols LADA

2012

Prior work in this area has produced diverse solutions. The DryadLINQ [72]

language expresses distributed computations using SQL-like queries. BLOOM [1]

also follows a data-centric approach, but assumes an unordered programming

model by default. MACEDON [53] provides constructs for describing overlay

networks. P2 [45] uses declarative syntax based on Datalog to express network

protocols. Bast [24] provides object-oriented, extensible, and composable proto-

cols. Lastly, Jini [68] offers a framework for extensible network services.

Two categories of related work differ in the kind of abstraction given to the

programmer: Languages based on a single-node perspective, including conven-

tional languages like C and Java, only provide programmers with access to a

local slice of the global system state. Hence, access to state on remote nodes

must be obtained using explicit communication. Writing distributed systems in

such languages is difficult, as the language and compiler are unaware that the

program is part of a larger system. Languages based on a whole-system perspec-

tive provide programmers with a broader view of system state. This allows im-

plementations to more closely resemble design, and makes reasoning about the

theoretical behavior of distributed systems simpler. However, these languages

must often make trade-offs between simplicity and power. Many whole-system

languages focus on a particular class of distributed system.

Our system, Code Partitioning Gossip (CPG), provides an abstraction that

lies between the single-node and whole-system perspectives. It is designed

specifically for synchronous, fault-tolerant systems—a class that includes many
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gossip and self-stabilization protocols. These are especially relevant to current

computing trends. Because of their passive, round-based nature, they tend to

be well-behaved and make predictable use of the network. As such, they are

“good neighbors” in massive multi-tenant data centers, such as those that drive

Amazon’s EC2. Many cloud computing services have relaxed consistency re-

quirements in favor of availability, and this also plays to the strengths of round-

based protocols.

Our goal with CPG is to design abstractions for describing these protocols

that make it easy to develop richer protocols via composition and code re-use.

The fundamental unit seen by programmers in CPG is a pair of nodes. A proto-

col in CPG is defined using a view function, which identifies pairs of nodes to

communicate in each round, and an update function, which takes the states of

the selected nodes as input and produces their updated states after communi-

cation as output. The global state of the system evolves by the repeated appli-

cation of the pairwise update function to selected states. If Σ denotes the set of

possible node states, the types of these functions can be written as follows:

view ∈ Σ2 → Address

update ∈ Σ2 → Σ2

Execution proceeds in rounds. In each round, every node uses the view function

to pick a partner to gossip with, and then executes update with the selected

node. We do not assume the existence of a central clock; rounds are approximate

and each node uses its own clock. We also assume that network communication

may time out and that nodes may fail or malfunction at any time. The protocol

specified by the programmer must be sufficiently fault tolerant, as many gossip

and self-stabilizing protocols are.
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CPG provides two operators for composing protocols, merge and

embed(., T )hese operators allow multiple protocols to be written separately and

then combined, in the same way that classes in object oriented languages can be

composed. In fact, our prototype implementation uses Java as its base, making

it literally possible for one protocol to inherit another, or for one protocol to use

instances of others. The Java type system can be used to express properties of

protocols. For example, protocols implementing the Overlay interface are ex-

pected to build and maintain a network overlay, and the TreeOverlay interface

is an extension with the additional constraint of a spanning tree. Protocols that

run on an overlay can reference the Overlay interface, allowing different overlay

implementations to be easily substituted. Additionally, it is possible to gener-

alize transformations on protocols. For example, [3] outlines a “pipelining”

procedure, by which an arbitrary self-stabilizing protocol can be imbued with

Byzantine fault tolerance. CPG’s abstractions make it possible to implement

pipelining as a function on protocols.

Our CPG prototype is implemented a Java bytecode post-processor. Pro-

tocols are written as Java classes, with special annotations used to denote the

update and view functions. The post processor splits update into two functions,

one for each node in a communicating pair. Networking code is added auto-

matically. To illustrate, Figure 1 presents the Java definitions of the view and

update functions for a simple gossip protocol that implements leader election

for an overlay network. The code on the left side of the figure presents the

gossip protocol itself; the code on the right side gives some supporting library

definitions. The view function chooses randomly from the collection of nodes in

the overlay. The update function compares the addresses of the leaders on the

two nodes being updated, and updates the node whose leader has the larger ad-
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dress. When the protocol eventually stabilizes, the overlay node with the least

address is elected leader.

Although CPG can express a diversity of gossip, peer-to-peer and self-

stabilizing protocols, the language model is inherently probabilistic. For exam-

ple, the leader election protocol exhibited above converges in logarithmic time

to a single leader, but lacks the stronger atomicity semantics of consensus-based

leader election solutions. A particularly interesting open problem is this: can

CPG be used to simulate the execution of that sort of consensus-based solution,

or is there a true separation between the class of programs CPG can express,

and the class that includes consensus? We hope to explore this in future work.

In our experience, CPG’s pairwise abstraction is not only sufficient to repre-

sent a broad range of real-world protocols, but also intuitive for the program-

mer. The pairwise abstraction helps bridge the gap between implementation

and design, and offers benefits through code re-use and composition.
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� �
public class Sliver {

private class Rumor {
public Long timestamp;
public Double capacity;
Rumor(Double capacity) {

timestamp = new Date().getTime();
this .capacity = capacity;
}
}
private Address address; // This node’s address
private int k; // Number of slices
private Double capacity;
private long timeout;
// Everything we know about other nodes’ capacities
private HashMap<Address, Rumor> rumors;
public Sliver(int k, Double capacity,

long timeout, Set<Address> view,
Address address) {

this . rumors = new HashMap<Address,Rumor>();
this .address = address;
this .k = k;
this .capacity = capacity;
this .view = view;
this . timeout = timeout;
}
@GossipSelectPeerUniform
public Set<Address> view; // known peers
@GossipExchangeUpdate
public void update(Sliver b) {

// Tell the other node about this node’s capacity
b.rumors.put(address, new Rumor(capacity));
}
// Called by user to determine this node’s slice
public long getSlice () {

purgeExpiredRumors();
long m = rumors.size();
long B = 0; // number of known peers with capacity not greater than ours
for(Rumor i : rumors.values() )

if ( i .capacity <= capacity)
B++;

return StrictMath.round(k ∗
(double) B / (double) m);

}
private void purgeExpiredRumors() {

long now = new Date().getTime(); // Delete expired rumors
for(HashMap.Entry<Address,Rumor> e :

rumors.entrySet() ) {
Address peer = e.getKey();
if (now − e.getValue().timestamp < timeout)

rumors.remove(peer);
}}}� �

Figure 3: Sliver implementation
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public class MinAddressLeader implements Protocol {

private Address leader;
public MinAddressLeader(Overlay overlay) {

Selector s = new RandomSelector(overlay.getView());
setSelector(s);

}

public Address getLeader() {

if(leader == null) { leader = getAddress(); }

return leader;
}

public void exchange(Protocol other) {

MinAddressLeader o = (MinAddressLeader) other;
Address a = getLeader();
Address b = o.getLeader();
// Set leader to smallest address
if(a.compareTo(b) > 0) { leader = b; }

else { o.leader = a }

}

...
}

public interface Protocol {

public void setSelector(Selector selector);
public Selector getSelector();
public void exchange(Protocol other);

}

public interface Overlay extends Protocol {

public Collection<Address> getView();
}

public interface Selector {

public Address selectHost();
}

public class RandomSelector implements Selector {

private Collection<Address> view;
public RandomSelector(Collection<Address> view) {

this.view = view;
}

public Address selectHost() { ... }

}

Figure 4: Simple leader election protocol in CPG. (Some boilerplate code elided
for brevity)
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CHAPTER 4

MICA: A COMPOSITIONAL ARCHITECTURE FOR GOSSIP

PROTOCOLS (ECOOP 2014)*

Abstract

The developers of today’s cloud computing systems are expected to not only

create applications that will work well at scale, but also to create management

services that will monitor run-time conditions and intervene to address prob-

lems as conditions evolve. Management tasks are generally not performance

intensive, but robustness is critical: when a large system becomes unstable,

the management infrastructure must remain reliable, predictable, and fault-

tolerant.

A wide range of management tasks can be expressed as gossip protocols where

nodes in the system periodically interact with random peers and exchange in-

formation about their respective states. Although individual gossip protocols

are typically very simple, by composing multiple protocols one can create a

wide variety of interesting, complex functionality with strong (albeit probabilis-

tic) robustness and convergence guarantees. For example, in a system with a

sufficiently dense topology, all nodes will learn the information being dissem-

inated in expected logarithmic time. Unfortunately, programmers today must

typically build gossip protocols by hand—an approach that makes their pro-

grams more complicated and error-prone, and hinders attempts to optimize

gossip implementations to achieve better performance.

∗Princehouse, L., Chenchu, R., Jiang, Z., Birman, K., Foster, N., Soulé, R. MiCA: A Compo-

sitional Architecture for Gossip Protocols. ECOOP 2014.
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MiCA is a new system for building gossip-based management tools that

are highly resistant to disruptions and make efficient use of system resources.

MiCA provides abstractions that enable expressing gossip protocols in terms

of functions on pairs of node states, along with a rich collection of composition

operators that facilitates constructing sophisticated protocols in a modular style.

The MiCA prototype realizes these abstractions on top of the Java Virtual Ma-

chine, and implements optimizations that greatly reduce the number and size

of messages used.

Introduction

Monitoring and management infrastructure is critical for ensuring the reliability

of modern cloud computing applications. In practice, each application typically

has a distinct notion of what constitutes a healthy system state. For example,

a scientific computing application might be especially sensitive to CPU utiliza-

tion, while a database application might depend on the size of buffer queues,

and the throughput of a streaming video service might be determined by avail-

able network capacity. Other examples include distributed hash tables, which

must build and maintain structured overlay networks, and data mining appli-

cations, which must ensure the convergence of results produced by iterative

computation.

Unfortunately, programmers today typically develop monitoring and man-

agement infrastructure by hand—a rudimentary approach that leads to a num-

ber of practical problems. First, because they lack tools that provide high-level

abstractions, programmers must deal with a host of low-level details such as
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setting up and maintaining network connections, serializing and deserializing

application data, and dealing with exceptions and failures. Second, because

standard infrastructure is not available, they must reimplement conventional

algorithms, such as computing the minimum value in the system, from scratch

in each new tool. Third, when several different tools are deployed on the same

platform, the aggregate behavior can be unpredictable and can produce unex-

pected errors—nullifying the very properties the tools were designed to ensure!

Clearly, there is a growing need for higher-level frameworks that would en-

able programmers to rapidly build robust monitoring and management tools.

To address this need, this paper presents MiCA (Microprotocol Composition

Architecture). Unlike frameworks based on pub-sub [24, 14] or any-cast [35, 8]

communication models, MiCA is based on gossip. In a gossip protocol, each

node exchanges information with a randomly selected peer at periodic inter-

vals. Because it is based on periodic peer-to-peer communication, gossip’s net-

work load tends to be well-behaved, scaling linearly with system size and not

prone to reactive feedback. Moreover, because peers are selected randomly, no

single node is indispensable, so tools built on gossip are extremely tolerant to

disruptions and able to rapidly recover from failures. Accordingly, gossip is

an attractive choice for system monitoring tools [62, 56, 63], network overlay

management [32], and even distributed storage systems [62, 18, 40, 42].

MiCA enables programmers to describe gossip protocols in terms of three

functions: a function view that is used to determine peers to gossip with; a

function update that takes states of gossiping nodes and computes the new

states following an exchange; and a function rate that determines how fre-

quently exchanges should occur. This abstraction exposes the essential charac-
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teristics of gossip protocols, but hides low-level implementation details such as

how random numbers are picked, how network connections are managed, and

how protocol messages are constructed. Because the MiCA run-time system

handles all these details, programmers are free to focus on higher-level issues.

To facilitate building more sophisticated protocols, MiCA also provides a

collection of composition operators that combine several smaller protocols into

a single larger one. These operators are made possible by MiCA’s abstractions,

which provide a clean interface for merging protocols while preserving their

essential behavior. As examples of protocol composition, a MiCA programmer

might develop a layered protocol that first creates a tree overlay on top of an

otherwise unstructured network and then aggregates data values up the tree.

Or, they might implement a transformation that takes an unreliable protocol and

makes it fault-tolerant by running multiple copies of the protocol concurrently

in a pipeline [4]. Protocol transformations of these kinds would be extremely

tedious to implement by hand but are easy to express in MiCA.

Describing gossip protocols using higher-level abstractions provides the

MiCA system with opportunities for optimizing implementations of protocols

automatically. For example, although the update function is defined on pairs of

node states, the compiler can often determine that only a portion of the state of

each node actually needs to be serialized and sent over the network using pro-

gram analysis. In composite protocols, the run-time system can often bundle

messages from different sub-protocols together, thereby reducing the commu-

nication cost of running those protocols simultaneously. Consequently, MiCA

programs can provide correct behavior and predictable performance, while sub-

stantially reducing overhead compared to hand-written code.
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We have built a prototype implementation of MiCA and used it to imple-

ment a wide range of standard protocols. To evaluate the performance of our

system, we have performed experiments using MiCA on a collection of micro-

benchmarks and simulations. Overall, these experiments demonstrate the effec-

tiveness and robustness of our approach—in particular, that MiCA effectively

bounds the costs of monitoring applications with hundreds of distinct compo-

nents.

In summary, the main contributions of this paper are as follows:

1. We design a novel framework for building gossip protocols that captures

their essential features while eliding tedious low-level implementation de-

tails.

2. We develop a collection of primitive gossip protocols and well-behaved

protocol composition operators that satisfy natural correctness criteria.

3. We present our implementation and results from experiments illustrating

the expressiveness and robustness of our framework.

The rest of the paper is structured as follows: § 4 and § 4 motivate MiCA’s de-

sign using intuitive examples and experimental results from a simple simula-

tion; § 4 describes operators for composing protocols and discusses correctness;

§ 4 discusses state management and an optimization; § 4 describes the MiCA

prototype; § 4 presents an evaluation; § 4 discusses related work; and § 4 con-

cludes.
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Overview

This section introduces MiCA, using an epidemic protocol as a running exam-

ple.

Assumptions. MiCA is based on a model of gossip in which the behavior of

the system emerges from frequent pairwise interactions between nodes in the

system. We call each interaction an exchange, and the nodes participating in an

exchange a gossip pair. The state of the system evolves as the result of repeated,

concurrent exchanges.

This model reflects several assumptions that hold in real-world cloud com-

puting and data center environments: messages may be reordered or lost by the

network, and the local clocks on each node all run at the same rate (though the

clocks need not be synchronized). The evolution of the system state proceeds in

loose rounds, with each correctly functioning node initiating a gossip exchange

once every unit of time. Although the probabilistic nature of this model means

that gossip protocols do not provide firm guarantees at fine-grained time scales,

the expected behavior of the system over time can be reasoned about accurately.

Failures are inevitable in any real-world system, and systems based on gos-

sip protocols are no exception. MiCA uses a failure model that includes both

fail-stop and Byzantine nodes: nodes may crash and messages may be forged

or lost, either due to network faults or malicious code executing on some of the

nodes in the system. We do assume, however, that all messages are well formed

and that malfunctioning nodes do not overwhelm the system by sending mes-

sages at arbitrary rates (an assumption that could be enforced by the network
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itself).

These assumptions mean that failures can prevent an otherwise correct node

from gossiping in any particular round, but over time, such failures are likely to

be vastly outnumbered by successful exchanges. Primitive gossip protocols are

expected to tolerate transient failures—e.g., selecting sufficiently long rounds

to prevent endemic timeouts—and programmers are expected to avoid patho-

logical topologies and communication patterns that could lead to partitions or

bottlenecks. In practice, most gossip protocols are designed to overcome tran-

sient faults and achieve convergence under less than ideal network conditions.

Programming model. The programming abstraction provided in MiCA

closely follows the informal model of gossip protocols just described. With

MiCA, programmers write gossip protocols by specifying the implementation

for one participant node. Each participant in a protocol is a Java object imple-

menting the following interface:� �
interface GossipParticipant {

ProbMassFunc<Address> view();

double rate() ;

void update(GossipParticipant other);

}� �
The first method, view, controls peer selection during gossip exchanges.

Unlike other gossip systems, which assume uniform random selection from

a set of neighboring nodes or the global set of nodes, MiCA allows the pro-

grammer to specify the view as a discrete probability distribution on the set of

network addresses. The MiCA run-time samples this distribution to select a

gossip peer. The view method returns a probability mass function object (i.e.,
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ProbMassFunc), which supports a sample method. As we will discuss in § 4,

MiCA composition operators ensure that the probability mass function is scaled

to provide a proper distribution over gossip nodes.

This approach has several advantages. First, working with probability dis-

tributions allows greater flexibility than uniform random selection. For exam-

ple, probabilities can be used to encode notions of locality (“gossip more fre-

quently with nearby neighbors”) and capacity (“gossip more frequently with

super-peers”), and even to encode overlay topologies [32]. Second, it allows de-

velopers to implement their protocols as if they were deterministic. Sources of

non-determinism (e.g., peer-selection) are abstracted away and handled by the

MiCA runtime. This makes programs simpler and eliminates a potential source

of bugs. Third, it retains precise information about distributions and makes

them available for analysis and manipulation by other operators. In particu-

lar, these distributions are used heavily by MiCA’s composition operators—e.g.,

composing two protocols with uniform random peer selection over different

sets of nodes yields a non-uniform distribution over the union of those sets—

unlike other systems, where views are sampled and discarded prior to compo-

sition, losing opportunities for optimization.

The view function also serves as a way to delegate overlay topology mainte-

nance to another software component. When populating the view, developers

often need to pay attention to the structure of the selected nodes: correctness

and convergence are usually tied to particular topological properties, which

may not hold for ad-hoc topologies. The MiCA programmer can use Java’s type

system to declare these requirements; for example, a protocol that outsources

its view to an overlay maintenance layer might accept this layer as an instance
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� �
class MinFinder implements GossipParticipant {

int value;
ProbMassFunc<Address> view;
MinFinder(int value, ProbMassFunc<Address> view) {

this .value = value;
this .view = view;
}
ProbMassFunc<Address> view() { return view; }
double rate() { return 1.0 }
void update(GossipParticipant other) {

MinFinder that = (MinFinder) other;
this .value = min(this.value, that .value);
that .value = this .value;

}
}� �

Figure 1: Anti-entropy protocol in MiCA

of the interface ExpanderGraphOverlay.

The second method, rate, specifies the local node’s gossip rate relative to

the basic unit of time. A constant rate such as 1.0 is usually sufficient for non-

composite protocols, but variable rates are used by composition to multiplex

sub-protocols without slowing down their overall convergence rates against

wall-clock time. Per-node variable rates are also used by some gossip proto-

cols, for example, as a mechanism to compensate for dropped packets [60].

The third method, update, takes the state of the gossip peer as input and per-

forms an exchange, potentially modifying the states of the initiating node and

the peer. Due to failures, one or both of the nodes may not actually be updated—

modifications are not guaranteed to be atomic. However, the widespread suc-

cess of gossip protocols testifies to the utility of this abstraction, and its simplic-

ity: programmers are able to work with pairs of node states rather than having

to explicitly send and receive messages, and the tedious logic needed to manu-

ally deal with timeouts and failures is subsumed by the model.
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Example

As an example, consider the MiCA program in Figure 1. MinFinder nodes

implement a simple epidemic protocol that, given a system in which nodes ini-

tially contain arbitrary integer values, eventually converges to a global system

state where every (correctly functioning) node contains the minimum value in

the system. The view method returns a probability distribution on network ad-

dresses. For the purpose of this example, we assume the view is known in

advance and is supplied as a parameter to the constructor. The rate method re-

turns a constant indicating that 1.0 gossip exchanges should occur every round.

The update method implements a push-pull anti-entropy protocol: it compares

the values stored on the initiating node and the receiving node, and updates

both values to the minimum. It is worth pointing out that while the update

method allows developers to transmit data between nodes, it is ultimately the

MiCA runtime that determines which data is sent. As a result, the runtime can

optimize the exchange. For example, if it can determine that some data will

not be used by an update, it will only send the relevant subset of the data. It

is straightforward to show that MinFinder participants converge to the mini-

mum value in expected logarithmic time (in the absence of failures) on a com-

plete graph [19].

Naı̈ve Composition

Cloud computing platforms such as Amazon EC2, Microsoft Azure, IBM Web-

sphere, Google Compute Engine, and Facebook consist of tens or even hun-

dreds of thousands of individual components that must be monitored to ensure
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the health of the platform. Gossip protocols provide a simple way to ensure

that monitoring tools will behave predictably and have bounded communica-

tion costs. However, while it is not difficult to monitor multiple components

of a system simultaneously—one can fork a new process for each component—

combining tasks naı̈vely leads to increasing demands on system resources such

as CPU, memory, and network bandwidth. In large systems, these demands can

cause the cost of monitoring to rapidly dominate the very system being moni-

tored. Addressing this issue is one of the primary motivations for MiCA.

To quantify the cost of naı̈ve composition (and the potential for optimiza-

tion) we conducted an experiment in which we executed several monitoring

tasks simultaneously. We executed an increasing number of copies of an anti-

entropy protocol and measured CPU utilization, memory utilization, and net-

work latency. Intuitively, this experiment can be thought of as modeling the

situation where an administrator must monitor an aggregate value for each of

a large number of components. We ran the experiment on a testbed consist-

ing of 32 virtual machines on a Eucalyptus cluster. Each VM was configured

with an emulated 2.9GHz CPU, 4GB memory, 10GB ATA disk, and 1Gb/s NIC.

The physical nodes hosting the VMs were 15 Dell-R720 servers with two 8-core

2.9GHz E5-2690 CPUs, 96GB RAM, 2 × 900GB disks, and two 10Gb/s Ethernet

NICs each.

The results of the experiment are given in Figure 2. They show that CPU,

memory, and network utilization rapidly increased under naı̈ve composition,

whereas MiCA was able to scale out to hundreds of monitoring tasks with only

a little additional cost compared to running a single copy of the epidemic pro-

tocol. For example, with 200 monitoring components, CPU utilization on each
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Figure 2: The average CPU, memory, and network utilization when running an
increasing number of monitoring tasks with both naı̈ve composition and MiCA.

instance exceeded 50% and required 250MB of memory, and network latency for

other traffic was increased by a factor of two. Overall, this experiment demon-

strates how interactions between monitoring components can incur substantial

costs, and highlights the benefits that can be gained using optimized implemen-

tations of higher-level abstractions provided in systems such as MiCA.

Protocol Combinators

MiCA not only helps developers build complex monitoring tools out of sim-

pler reusable components—it also provides operators that combine protocols

while preserving semantics and guaranteeing predictable performance. As mo-

tivation for these operators, suppose that we want to execute two copies of the

MinFinder protocol: one copy to compute the minimum address in the sys-

tem, and a second copy to compute the smallest amount of free memory of any

node in the system. Why might we want to do this? Perhaps the first copy im-

plements leader election and the second implements a monitoring application.

Using the abstractions described in the last section, it would not be difficult

to construct a new MinFinderTwo protocol that implements both tasks. This

protocol would maintain a pair of values, and would update both components
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of the pair on each exchange. Of course, it would be even better if we could

simply reuse our existing implementation of MinFinder instead of building a

whole new protocol from scratch. This section presents composition operators

that do just this—merging one or more gossip protocols into a single protocol

that implements the behaviors of each sub-protocol.

There are many different ways of combining protocols. MiCA compositional

operators can be categorized along two axes: whether the state and communi-

cation of the composed protocols are isolated or shared. Table 4.1 presents an

overview of various approaches for protocol composition:

• Isolated state, isolated communication: This is the naı̈ve multiplexing ap-

proach discussed in § 4, in which each protocol executes completely in-

dependently. As demonstrated by our simulations, this approach does

not scale.

• Isolated state, shared communication: This approach provides communica-

tion primitives that can combine messages with the goal of reducing net-

work congestion. This approach is used in pub-sub message buses, like

TIBCO [59], and message-storage middleware, such as IBM WebSphere

MQ [69]. POSIX streams also provide a similar style of message multi-

plexing.

• Shared state, isolated communication: This approach enables a single applica-

tion to have many subsystems, each of which is monitored independently.

For example, each job in MapReduce [17] runs in its own thread and com-

municates independently, but the overall system state is shared. Examples

of this kind of system include JXTA [35] and Bast [24].

• Shared state, shared communication: This new approach combines the advan-
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Communication
Isolated Combined

State

Isolated
With this naı̈ve implementa-
tion strategy, each application
is completely independent.

Subsystems cannot share state,
but can multiplex messages
(e.g., MQ[69], TIBCO[59]).

Combined

An application can have many
shared subsystems, but each
communicates independently
(e.g, JXTA[35], Bast[24]).

Composition reduces the over-
head of executing multiple
monitoring applications simul-
taneously (e.g., MiCA).

Table 4.1: Forms of gossip protocol composition.

tages of the previous two, allowing a single application to be expressed in

terms of several sub-protocols whose state depends on each other, while

reducing communication overhead by bundling messages together.

Note that although Table 4.1 locates MiCA in the quadrant for shared-state

and shared-communication, MiCA actually provides a comprehensive suite of

composition operators that capture each of these forms of composition. The rest

of this section discusses correctness criteria for protocol composition operators,

and then presents the operators that we find most useful in applications in de-

tail.

Correctness Properties

To reason effectively about a composite protocol, programmers need assurance

that the semantics of the combined protocol faithfully encodes the behavior of

each sub-protocol. This section identifies essential properties for gossip compo-

sition:
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• View preservation: A view-preserving operator ensures that the ratio of

the frequencies with which it initiates gossip exchanges that update sub-

protocols are identical to the ratio (calculated pointwise) of the distribu-

tions generated by each sub-protocol’s view method. In other words, the

rate of events where the composite chooses to execute Pi.update may be

reduced or increased, but must be done so uniformly for all nodes in Pi’s

view.

• Rate preservation:

A rate-preserving operator ensures that each sub-protocol continues to run

at the same wall-clock rate as it would if run in isolation. Of course, there

is a tension between view preservation and rate preservation: to ensure

the former, a composite protocol must only execute each sub-protocol on

certain exchanges, while to ensure the latter, it must not delay the rate at

which the sub-protocol gossips.

• State preservation: A state-preserving operator ensures that the effect on the

state of each sub-protocol is either the outcome of executing the update

method of that sub-protocol or a no-op. In other words, composition does

not introduce any co-mingling of sub-protocol states. Note that deliberate

state sharing is still allowed—indeed, it is vital for building layered pro-

tocols where a lower-level protocol computes some form of state (such as

a mesh-overlay), which is imported as a read-only input by one or more

higher-level protocols layered over it. In the context of MiCA, state corre-

sponds to an instance of a GossipParticipant, and everything reach-

able from it.

Together, these properties facilitate reasoning about composite protocols in
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� �
class RoundRobinMerger implements GossipParticipant {

GossipParticipant g1, g2;
boolean g1Next; // if true , g1 gossips next
...

ProbMassFunc<Address> view() {
if (g1Next) return g1.view();
else return g2.view();
}
double rate() { return g1.rate () + g2.rate () ; }
void update(GossipParticipant other) {

RoundRobinMerger that = (RoundRobinMerger) other;
if (g1Next) g1.update(that.g1);
else g2.update(that.g2);
g1Next = !g1Next;
}� �

Figure 3: Round-robin merging. Note: assumes g1 and g2 to gossip at the same
rate.

a modular way: the programmer can write, reason about, and deploy a smaller

protocol within a larger composite, and understand the way that it will behave

without having to consider the entire program. They serve as guides while

designing and debugging the operators presented in the rest of this section.

Operators

We now define a few useful MiCA composition operators. We begin with an ob-

vious operator, round-robin merging, whose behavior is intuitive but restrictive

and inefficient, before moving on to more sophisticated probabilistic operators.

Round-robin merging. Arguably the most obvious way to merge multiple

protocols into a single protocol is to interleave their operations in round-robin

fashion. Figure 3 defines a simple composition operator that does exactly this:

given sub-protocols g1 and g2, it alternates between g1 exchanges and g2 ex-
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changes, using a boolean g1Next to keep track of the next sub-protocol to exe-

cute. For reasons discussed below, this operator assumes that the rate methods

of g1 and g2 are equivalent. The view method branches on g1Next and dis-

patches the view method from g1 or g2. The update method is similar, but also

updates g1Next so that the other protocol will execute on the next exchange.

The rate method is slightly different: it returns the sum of the rates for g1 and

g2. This is correct since doubling the rate of the combined protocol compensates

for the fact that each sub-protocol is only able to initiate an exchange every other

round. Hence, the rate at which each sub-protocol converges will be preserved

in the composite protocol. Note that if g1 and g2 have different rates, then it

would be incorrect to combine them using round-robin merging—a more so-

phisticated strategy would be needed to account for the rate disparity. The next

operator provides a possible approach.

Correlated merging. Another way to combine several protocols into one is to

do so probabilistically. That is, instead of alternating between the sub-protocols

in sequence, we can invoke the view methods to compute the probability distri-

butions for each sub-protocol and construct a composite distribution that rep-

resents the peer selection preferences of both. This approach takes advantage

of the fact that both sub-protocols may sometimes be willing to gossip with the

same peer, allowing execution of both update methods to be bundled into a single

exchange and reducing the overall number of messages sent without degrading

performance. The correlated merge operator (Figure 4) is aggressive in trying to

exploit this form of overlap—it bundles messages as often as possible while still

satisfying the view-preservation and rate-preservation properties. Because this

operator is somewhat involved, we step through each of its methods in detail.
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� �
class CorrelatedMerger implements GossipParticipant

GossipParticipant g1, g2;
...

ProbMassFunc<Address> view() {
double r1 = g1.rate () ;
double r2 = g2.rate () ;
double w = r1 / (r1 + r2) ;
ProbMassFunc<Address> d1 = g1.view().scale(w);
ProbMassFunc<Address> d2 = g2.view().scale(1−w);
return ProbMassFunc.max(d1, d2).normalize();
}
double rate() {

double r1 = g1.rate () ;
double r2 = g2.rate () ;
ProbMassFunc<Address> d1 = g1.view().scale(r1);
ProbMassFunc<Address> d2 = g2.view().scale(r2);
return ProbMassFunc.max(d1, d2).magnitude();
}
void update(CorrelatedMerger other) {

CorrelatedMerger that = (CorrelatedMerger) other;
double r1 = g1.rate () ;
double r2 = g2.rate () ;
double w = r1 / (r1 + r2) ;
double pr1 = g1.view().get(that) ∗ w;
double pr2 = g2.view().get(that) ∗ (1−w);
double pmin = Math.min(pr1,pr2);
double pmax = Math.max(pr1,pr2);
double alpha = (pr1 − pmin) / pmax;
double beta = (pr2 − pmin) / pmax;
double gamma = pmin / pmax;
switch (weightedChoice({ alpha, beta, gamma })) {
case 0: // only g1 gossips

g1.update(that.g1); break;
case 1: // only g2 gossips

g2.update(that.g2); break;
case 2: // both g1 and g2 gossip

g1.update(that.g1);
g2.update(that.g2);
}
}
}� �

Figure 4: Correlated merging.

The view method works more or less in the way just described: it com-

putes the views for g1 and g2 and scales them by w and (1-w) respectively,

where w is the relative weight of g1’s rate with respect to g2. It then com-

putes the pointwise max of the scaled distributions and normalizes the result.

This produces a distribution that reflects the peer selection preferences of g1
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and g2 with respect to their relative rates. This is equivalent to summing the

two rate-scaled views and then subtracting their intersection, where the area of

the intersection represents the fraction of correlation between views that can be

exploited by bundling—two sub-protocols with identical views intersect com-

pletely, whereas two disjoint views have none. The rate method calculates the

views for g1 and g2, scales them by r1 and r2, and then takes the area under

the pointwise maximum of the resulting distributions. This calculation deter-

mines the rate needed to correctly execute both sub-protocols while preserving

their rates, and anticipating opportunistic bundling of messages. The update

method must decide whether to gossip g1, g2, or both. To do this, it uses the

sub-protocol views to compute three probabilities: given that a particular peer

was sampled from the composite view, let alpha be the probability that only

g1 chose to gossip with that peer, beta be the same for g2, and gamma be the

probability that both nodes choose to gossip—i.e., the view intersection for the

selected peer’s address. A pseudo-random choice selects one of these three pos-

sibilities and executes the respective update methods.

Correlated merge has two significant advantages over simple round-robin.

First, it is completely general, in that it does not make any assumptions about

the protocols being combined. This is unlike round-robin merge, which assumes

that the two sub-protocols gossip at the same rate. Second, it can greatly reduce

the number of messages needed to implement the composite protocol; this is

advantageous because it amortizes overheads over the messages in the bundle.

The degree to which the operator is able to bundle messages depends on the

amount of overlap in the peer selection preferences of g1 and g2—the greater

the overlap of their distributions, the greater the benefit.
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To illustrate correlated merging, consider the following abstract examples.

• Suppose that g1 gossips by selecting randomly from nodes with odd ad-

dresses, and g2 by selecting randomly from nodes with even addresses.

That is, if there are n nodes in total, g1’s view method returns a distri-

bution where odd nodes have probability mass 2/n and even nodes have

probability mass 0, and symmetrically for g2. Because these distributions

are disjoint, the view method for the merged protocol returns the uniform

distribution on all n addresses. For a given gossip partner b, the distri-

bution computed by g1 assigns probability mass 0 to b if b’s address is

even, and the distribution computed by g2 assigns probability mass 0 to

b if b’s address is odd. The combined update method invokes g1’s update

method when called with a partner b whose address is odd and otherwise

invokes g2’s update method. Importantly, it never invokes both update

functions as the peer selection preferences are disjoint. In a sense, prob-

abilistic merge operator subsumes round-robin merging when the sub-

protocol distributions are disjoint.

• Suppose instead that both g1 and g2 gossip by selecting randomly from

all nodes—i.e., the view method for both sub-protocols returns a uni-

form distribution where every node has probability mass 1/n. The com-

bined view method returns the same uniform distribution and the update

method evaluates g1 and g2 every round, where round length is a system-

wide constant. This example shows how probabilistic merge allows pro-

tocols with equivalent view methods to be combined without additional

messages or rate increases.

• Finally, suppose that g1 gossips randomly with odd nodes, and g2 gos-

sips randomly with all nodes. The combined view method returns a distri-
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� �
class IndependentMerger implements GossipParticipant

GossipParticipant g1, g2;
...

ProbMassFunc<Address> view() {
double r1 = g1.rate () ;
double r2 = g2.rate () ;
double w = r1 / (r1 + r2) ;
ProbMassFunc<Address> d1 = g1.view().scale(w);
ProbMassFunc<Address> d2 = g2.view().scale(1−w);
return d1.add(d2).normalize();
}
double rate() { return g1.rate () + g2.rate () ; }
void update(IndependentMerger other) {

IndependentMerger that = (IndependentMerger) other;
double r1 = this .g1.rate () ;x
double r2 = this .g2.rate () ;
double w = r1 / (r1 + r2) ;
double pr1 = g1.view().get(that) ∗ w;
double pr2 = g2.view().get(that) ∗ (1−w);
double alpha = pr1 / (pr1 + pr2);
double beta = pr2 / (pr1 + pr2);
switch (weightedChoice({ alpha, beta })) {
case 0: // Only g1 gossips

g1.update(that.g1); break;
case 1: // Only g2 gossips

g2.update(that.g2); break;
}
}� �

Figure 5: Independent merging.

bution in which nodes with odd addresses are assigned probability mass

4/(3 · n) and nodes with even addresses are assigned probability mass

2/(3 · n). Hence, the run-time chooses peers with odd addresses twice

as often as it chooses peers with even addresses. The combined update

method has two cases: if the node has an odd address, it always invokes

g1’s update method and additionally invokes g2’s update method with

probability 1/2. Or, if the node has an even address, then it only invokes

g2’s update method. Hence, the merged protocol distributes exchanges

evenly between g1 and g2, allowing many exchanges with odd peers to

execute both sub-protocols.
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Independent merging. Although it is often advantageous to bundle messages

from multiple sub-protocols together, there is also a downside to the correlated

merge operator: the peer selection preferences of the sub-protocols are no longer

independent. This could violate assumptions in a program that depends on in-

dependence. For example, the correctness of the random walk protocol devel-

oped by Massoulié et al. [47] depends on randomly sampling locations in the

system. If we mistakenly composed two copies of this protocol using the cor-

related merging operator just defined, believing that this would yield samples

from two distinct random walks, both instances would actually generate the

same walks. Such problems could have dire consequences in systems whose

robustness assumes independent peer selection. Another example involving

random walks comes from Broder et al. [10], who solve the problem of generat-

ing independent paths between pairs of nodes with a random walk approach.

More generally, any system relying on the independence of concurrent gossip

protocols could be inadvertently sabotaged by the correlated merge operator.

To address this concern, we present an independent probabilistic merge oper-

ator (Figure 5). Like correlated merge, independent merge makes probabilistic

gossip choices, and combines sub-protocol view and rate methods. However,

the independent merge ensures that the probabilistic decisions made by each

sub-protocol are independent.

Epoch pipelining. The final operator presented in this section implements a

completely different kind of composition. Rather than composing multiple sub-

protocols in parallel, it composes a single protocol with itself, running two in-

stances in a primary-backup configuration for enhanced fault tolerance.

As a motivating example, recall the MinFinder example from the previ-

51



� �
class EpochPipeliner<G extends GossipParticipant> extends CorrelatedMerger {

GossipParticipantFactory<G> factory = null;
int epochLength = 0;
int currentEpochStart = 0;
EpochPipeliner(GossipParticipantFactory<G> factory, int epochLength) {

super(factory.create () , factory . create () ) ;
...

}
void update(EpochPipeliner<G> other) {

int now = getRuntimeState().getSystemClockRounds();
if (now − currentEpochStart >= epochLength) {

g1 = g2; // promote backup to primary
g2 = factory . create () ;
currentEpochStart = now;
}
super.update(other);
}
}� �

Figure 6: Epoch-based “pipelining” operator.

ous section, which gossips the minimum value in the system using a simple

anti-entropy protocol. This protocol converges rapidly to a stable state and is

extremely robust—a small number of lost messages or transient failures have

little affect on overall convergence. However, it is susceptible to a particular

failure that can easily lead to unintuitive behavior. To illustrate, consider a sys-

tem in which each node executes MinFinder. Next, suppose that after running

the protocol for a while, the node that originally contained the minimum value

crashes. What should happen? We might want the system to converge to the

next smallest value in the system. But, assuming the crashed node successfully

communicated with at least one other node, this is not what will happen. In-

stead, the system will continue gossiping the old minimum value even though

none of the nodes in the system still have that value.

To address this problem, we can execute two copies of MinFinder side by

side. The primary protocol, by convention g1, contains the definitive copy of

the protocol while the backup protocol, g2, executes a second copy of the proto-
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col from a fresh state. The composite protocol executes the two copies in parallel

until a certain number of rounds have elapsed—sufficiently many to ensure that

the backup copy has converged to a stable value. At that point, the composite

protocol replaces the primary with the backup and resets the backup to a fresh

copy of the protocol. It is easy to see that this “pipelined” protocol does not

suffer from the anomaly described above, since the minimum value is recom-

puted from scratch in each epoch. Note that this implementation of pipeline

parallelism requires system-wide clock drift to be less than one half of a round,

to prevent possible contamination from the primary layer to the backup layer.

This is a reasonable constraint in a data center, where round-trip communica-

tion times between nodes are no more than a few milliseconds.

We can define pipelining on top of any of the merging operators just de-

fined. Figure 6 gives a definition using correlated merge operator. Note that

the view and rate functions are inherited from the super class. The definition

of a pipelining operator based on independent merge is similar, and prefer-

able in many scenarios since it makes completely independent choices when

selecting a peer. On the downside, however, it requires extra messages and an

increased rate, whereas the operator based on correlated merge only requires

larger messages since it can always bundle messages from each pipeline stage.

A more general EpochPipeliner implementation might admit other imple-

mentations of epoch-switching, for example, triggered by a consensus threshold

instead of a clock [20]. Finally, although we do not develop it here, one can de-

fine pipelining of k protocol copies at a time for higher levels of fault tolerance.
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n′1,msg1 = f1(n1)

n′2,msg2 = f2(n2,msg1)

n′′1 = f3(n
′
1,msg2)

Initiator n1 Receiver n2

msg1

msg2

Figure 7: Execution of a gossip exchange with the explicit messages used by
the low-level target of the MiCA compiler. Provided the synthesized functions
f1, f2, f3 are correct, the final states of both nodes are guaranteed to be the same
as if update had executed locally: (n′′1, n

′
2) = update(n1, n2).

State Management and Data Movement

MiCA is designed to abstract away the details of handling distributed state. In

particular, developers write the update function with the illusion that each par-

ticipating node is able to access the other’s state as if it were local. In actuality,

the update function is a distributed program that exchanges messages using

the communication pattern illustrated in Figure 7. The MiCA compiler trans-

forms the update function into the distributed implementation, and the MiCA

runtime manages the exchange of state between the nodes.

To transform update into the distributed equivalent, MiCA partitions the

function into three fragments, f1, f2, and f3, that cooperate to execute the gossip

exchange. First, the initiator of the exchange updates its own state by applying

f1, and sends its updated state to the receiver node in message msg1. Next, the

receiver executes its fragment, f2, using the initiator state and its own state, and

then returns its new state inmsg2. Finally, the initiator updates its state, using f3,

with the data from the receiver. Note that when partitioning the function into

fragments, the compiler must ensure that the fragments obey the constraints

imposed by the program dependence graph (PDG). So, f1 cannot execute code
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that may read state from n2, and f3 cannot execute code that may modify the

state of n2. This can be expressed as two cuts in the PDG, breaking update into

three regions corresponding to f1, f2, and f3.

Consistency Model. A key challenge for maintaining MiCA’s local state ab-

straction is handling failures during the execution of update. Ideally, MiCA

would provide guarantees about an exchange, even if failures occur. Un-

fortunately, it is impossible to guarantee the obvious property—transactional

atomicity—because when a network fault is detected on a given node, that node

has no way of determining whether the remote node has successfully completed

its last phase. This means that the node cannot decide whether or not to roll back

its local state or not (this is an instance of the classic Two Generals’ problem).

To avoid these issues, MiCA employs a relaxed consistency model. MiCA

saves node state before executing calls to update. If a network error is detected

(including timeouts, which do not necessarily mean the message failed to reach

its destination), the state is rolled back. All state changes that occurred during

the unsuccessful update are erased by the rollback. This leaves four possible

outcomes for each gossip exchange: each node completes successfully, or one

or both revert to their original state. However, it precludes the possibility of

corrupting state by interrupting update in the middle of its execution.

Communication Optimization. The simplest strategy to exchange state be-

tween the participants would be to send the entire state of each node. In

contrast, MiCA uses an optimization to reduce the communication overhead.

Rather than send the entire state, the compiler performs a static analysis that

determines conservative sets of objects that may be read and may be modified
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by f1, f2, and f3. MiCA then generates custom serializers that send the rele-

vant objects in messages msg1 and msg2. This analysis is currently performed at

the granularity of fields of the root protocol objects. While coarse, this is a sig-

nificant improvement over the naı̈ve strategy, in that fields that will definitely

not be used are not exchanged. It would be natural to duplicate the execution

of side-effect-free code to further reduce the amount of state that needs to be

transmitted, but MiCA does not currently implement this extension.

Implementation

We have built a full working prototype of MiCA, implemented as an extension

to Java, and made it available under an open-source license. Our implemen-

tation can be obtained at: https://github.com/mica-gossip/mica. It

includes the compiler and runtime, as well as a library of primitive protocols

and implementations of the composition operators presented in this paper.

The MiCA compiler is implemented as a bytecode post-processor. Post-

processing allows MiCA to partition the update function into methods for each

node participating in the gossip exchange, and perform the static analysis for

the communication optimization.

The current implementation uses TCP/IP for network communication. One

connection is kept alive for the duration of the gossip exchange. However, the

communication layer of MiCA does not depend on this particular implementa-

tion choice. In ongoing work, we are exploring an alternative implementation

that uses UDP. Because gossip protocols are tolerant of failures, the unreliable

communication mechanism seems like a natural choice if some performance
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Figure 8: Convergence of all four layers. Arrows indicate (a) Convergence from
arbitrary starting state; (b) a transient fault: 10% of nodes crash; (c) failed nodes
recover; (d) a large artificial disruption of the bottom layer’s state. Note that the
leader election layer was not affected by the transient fault because the leader
did not crash.

benefit can be gained due to smaller packet headers, reduced connection state,

etc.

MiCA uses the Soot analysis framework [61] for analysis and transforma-

tion, and relies on Soot for computing the program dependence graph, points-

to sets, and call graph. For functions f1, f2, and f3, the remote node (either n1

or n2) is replaced with a custom-generated proxy class, inspired by the Uniform

Proxies of Eugster [22]. An instance of this proxy class may represent a local or

remote GossipParticipant object; in the case of a remote object, the proxy acts as

a container for the subset of fields that may be necessary for remote execution.

Experience and Case Studies

To evaluate our design and implementation of MiCA, we asked volunteers in

an undergraduate course to use MiCA for developing distributed applications.

To explore how MiCA performs in real-world scenarios, we performed two case
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studies in a simulated environment.

In the undergrad course, a number of students who had no connection to

our research efforts used MiCA to develop their projects. Using MiCA, they

developed a data replication protocol for use in coherent distributed caching, a

probabilistic consensus protocol, a scalable distributed denial-of-service (DDoS)

detection application, and a storage backend for a peer-to-peer social network.

The case studies were performed in a simulated runtime. This runtime sim-

ulates a gossip network of many logical nodes with a discrete event simulation

passing messages via message queues on a single machine. All of the MiCA

logic and state serialization is the same as in the TCP/IP runtime. The simu-

lated runtime allowed us to perform experiments faster than realtime. For the

first case study, we implemented a four-layer composite protocol that builds a

tree over an otherwise unstructured topology and then labels the nodes of the

tree according to a depth-first traversal. During execution, we introduced sev-

eral disruptions, and measured the time needed for each layer to converge back

to a stable state. This experiment demonstrates how MiCA facilitates building

sophisticated protocols out of simple components, as well as the resilience of

such composite protocols to various kinds of failures. For the second case study,

we studied the effect on convergence times for protocols built using probabilis-

tic merge. Because this operator changes the gossip rate for each sub-protocol

from a deterministic to an probabilistic value, the expected convergence time is

increased in certain topologies. This experiment illustrates this effect, which we

call dilation, using another simulation.
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Layered Protocol

The first case study is based on a four-layer composite protocol originally pro-

posed by Dolev [21]. The layers represent several standard varieties of gos-

sip, all working together: overlay maintenance, aggregation, and dissemination.

The lowest layer, leader, gossips on a fixed topology and executes a standard

leader election protocol. The leader selected by the lowest layer is then used by

the second layer, tree, to construct a spanning tree overlay. The third and fourth

layers, count and label, gossip over the tree overlay. The count layer recursively

counts the number of nodes in each sub-tree and aggregates the results up the

tree to the root, while label assigns a numeric label to each node, resulting in

a depth-first traversal ordering. The labeling is achieved using a dissemination

protocol: a parent assigns labels to its children based on its own label plus an

offset calculated from the sizes of the children’s sub-trees.

Unlike all the composite protocols we have seen so far, this layered proto-

col requires sharing state between the sub-protocols. For example, the protocol

for the tree layer depends on the state maintained by the leader layer. It is

straightforward to encode this behavior in MiCA—the programmer simply cre-

ates references between the sub-protocols using ordinary Java references. For

example the following code creates the layers needed for the case study:� �
LeaderElection leader = new LeaderElection(topology);

Tree tree = new Tree(leader, topology);

Count count = new Count(tree);

Label label = new Label(tree, count);

GossipParticipant g = new IndependentMerger(leader,

new IndependentMerger(label,

new IndependentMerger (tree, count)));� �
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Note that sharing state between sub-protocols using references obviously breaks

the state preservation property, albeit in a fairly innocuous way.

After implementing the layered protocol, we then executed it on a random

topology in a simulated environment and measured the amount of time needed

for each layer to converge under various disruptions. Figure 8 present the con-

vergence results for all four layers on a 100-node random graph of degree four,

starting from arbitrary initial states. To model failures, we introduced a tran-

sient disruption by crashing 10% of the nodes at t = 40 and restarting them

at t = 70. At t = 100, we introduced a major disruption by clobbering the

state of the leader layer with arbitrary values. We measured convergence as the

normalized per-round rate of change: a value of 1.0 indicates that 100% of the

nodes were changing in a given round while a value of 0.0 indicates the pro-

tocol has converged. As these graphs show, MiCA can be used to implement

protocols that will recover rapidly from transient failures, even major ones, and

even when several protocols are combined together.

We also ran the experiment using correlated merge instead of independent

merge. This resulted in similar convergence times, but each gossip exchange

bundled together the messages for 2.3 layers on average, dramatically reduc-

ing the total number of gossip exchanges by 56%. Note, however, that this is

not a general result: this particular layered protocol is amenable to correlation

because count and label always gossip together, as do leader and tree.
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Dilation

The second case study illustrates an effect that we call dilation, and that can

arise when protocols running at different rates are merged probabilistically. Re-

call that the rate of a gossip protocol controls the frequency at which the node

initiates exchanges with another node. When a protocol runs in isolation, rate is

deterministic: the node sleeps until the appropriate time, initiates an exchange

with that node, and then sleeps again. However, in a composite protocol imple-

mented using the probabilistic merge operator, a given sub-protocol will only

be able to initiate gossip at an expected rate. In particular, although the aver-

age rate will faithfully track the value specified by the rate method for that

sub-protocol, the variance of the distribution of the interval between gossip ex-

changes increases as sub-protocols are added to the composite.

To demonstrate this effect, we simulated the anti-entropy protocol from Fig-

ure 1, obtaining the results seen in Figure 9. The graph in the upper left cor-

ner gives the baseline: the protocol executes deterministically, and the distribu-

tion of intervals between exchanges is tightly clustered around 1.0 (because no

packet loss occurs in this experiment, it would be exactly 1.0 were it not for mea-

surement artifacts). The next graph, on the upper right, shows the effect when

the protocol is composed with another protocol using probabilistic merge. Now

the distribution contains values ranging from less than 1.0 all the way up to

5.0. That is, some exchanges occur faster than the stated rate, and some occur

slower, even though the average exactly matches the target rate. As additional

sub-protocols are added to the composite, shown by the graphs on the bottom

row, the dilation becomes increasingly evident.
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A natural question to ask is whether this phenomenon affects important

properties of a protocol, such as convergence. The answer is that it can, depend-

ing on the protocol and topology, but significant consequences are seen only in

somewhat artificial situations. Figure 10 depicts the convergence rate for the

anti-entropy protocol with various degrees of dilation on a system whose topol-

ogy is a complete graph.

The x-axis contains the number of gossip rounds and the y-axis contains

the number of changes induced on that round. A protocol converges when the

number of changes reaches 0. In a complete graph topology, the effect of dilation

is minimal: because we are executing an anti-entropy protocol and every node

is connected to every other node, overall convergence does not hinge on specific

nodes being able to gossip at particular moments. We believe that this would

be the most common case in real uses of MiCA.

Note that dilation does not imply probabilistic merge is incorrect—on the

contrary, all our operations correctly produce protocols that faithfully imple-

ment the sub-protocol, and faithfully run them at the correct average rate. The

point is somewhat more subtle: what we see here is that turning a determin-

istic behavior into a probabilistic one can sometimes slow convergence if the

underlying topology has a slow information-dissemination time, but would not

have this impact when running on a topology with the properties of an expander

graph, of which the complete graph is an extreme example. We plan to continue

studying dilation in the future, with the goal of fully characterizing the classes

of protocols and topologies that are guaranteed to be immune to this effect. We

are also exploring other ways to implement the composition operators that in-

corporate mechanisms for limiting or otherwise bounding the effects of dilation.
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Figure 9: Effect of dilation for an anti-entry protocol on intervals between gossip
exchanges. The labels indicate the degree of dilation: d0 is no dilation, d2 is two
nested operators, etc.
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Figure 10: Effect of dilation for an anti-entropy protocol in a complete topology.
The labels indicate the degree of dilation: d0 is no dilation, d2 is two nested
operators, etc.

Related Work

Work related to MiCA falls into several general categories: gossip-specific

frameworks (Opis [14], Gossip Objects [66]); object-oriented distributed system

libraries (Bast [24], Jini [68]); compositional network transport protocol systems
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(Appia [48], Cactus [71]); and languages and abstractions for distributed pro-

gramming (P2 [45], MACEDON [53], BLOOM [1]). In this section, we discuss

each of these in turn. It should also be noted that MiCA’s core abstraction—

the pairwise representation of gossip protocols—was originally presented in a

short workshop paper [51]. This earlier work did not define gossip protocols

precisely and did not include an implementation or experiments.

The first of these categories contains systems closest to MiCA, namely, those

concerned specifically with gossip. Opis [14] is an OCaml-based framework

for gossip. It offers a formal definition of gossip similar to that used in MiCA.

In Opis, gossip protocols are event-driven programs that react to user-defined

external network events and internal timer events. This is an interesting con-

trast to MiCA’s protocol representation, which could also be regarded as using

events to drive state changes, but has only a small, fixed number of state tran-

sitions exposed to the programmer. Like MiCA, Opis leverages object-oriented

composition for protocols, but with added benefit from OCaml’s rich type sys-

tem. However, Opis offers no analog to MiCA’s compositions, which consider

not only the object-oriented composition of classes, but also explore strategies

for semantic-preserving combination of protocol views.

The Gossip Objects framework [66] offers a compositional infrastructure for

publish-subscribe gossip protocols. Unlike MiCA, Gossip Objects is an imple-

mentation specifically for publish-subscribe gossip, and not a general frame-

work. Like MiCA, Gossip Objects has optimizations for running many con-

current systems. Composition takes the form of speculative message delivery,

bundling messages to non-subscribers in an effort to have them delivered indi-

rectly and accelerate the overall gossip rate. Gossip Objects does not preserve
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the relative rates of protocols being combined. This is a design decision, not a

bug: Gossip Objects’ purpose is to improve the efficiency of message delivery.

The next category of related work consists of general-purpose, object-

oriented approaches to building distributed systems. These frameworks do not

provide MiCA’s gossip-centric world view, but do share a common philosophy

for protocol composition. Bast [24] is an object-oriented library of distributed

system components, whose main goals were modular composition and code

reuse. The platform introduced a primitive group type and allowed developers

to define subtypes supporting additional properties. The primary focus in Bast

was on atomic broadcast with various levels of ordering and durability. For

example, a database built using Bast might obtain ACID guarantees by exploit-

ing ordering and other atomicity properties of the underlying groups (e.g., in

implementations of locking or propagation of updates to replicas). However,

while Bast’s Java implementation is similar to MiCA’s in that both represent

protocols as classes and use object-oriented composition mechanisms such as in-

heritance, MiCA focuses on gossip protocols, and on optimizations that reduce

communication while preserving semantics. To the best of our knowledge, Bast

never explored gossip protocols, and generally avoided transformations where

knowledge of protocol semantics would be needed.

Apache River [68] (originally Jini) is a Java framework for client-server dis-

tributed services, originally created by Sun Microsystems. It provides extensi-

ble components for service registration and discovery for distributed systems,

and other utilities to facilitate distributed systems programming such as remote

method invocation and mobile code. Less broad than Bast, it is a good example

of an off-the-shelf component available to Java developers building distributed
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systems. River’s services are good examples of the protocol layers that could be

implemented in a MiCA stack.

Cactus [71] and Appia [48] both undertake the challenge of transport proto-

col composition. Recognizing that transports like TCP and UDP are not ideal for

all situations, these two systems provide ways to modularly compose a trans-

port protocol that has desired properties; for example, Cactus could be used to

satisfy the statement “I need a transport protocol with congestion control, but

I don’t need reliable ordering”. Cactus includes a library of “micro-protocols”,

each of which implements a particular functionality; the philosophy of com-

position is similar to MiCA’s. Although MiCA gossip protocols run at a layer

above the transport, some functionality, such as quality-of-service, could be im-

plemented either in transport or as a MiCA gossip layer.

Finally, there are languages designed for directly programming an entire

distributed system. Although MiCA is not a language, its distribution of the

update function onto a pair of nodes is similar to what these whole-system

languages accomplish. P2 [45] and Bloom [1] are declarative languages that

approach distributed systems programming from a databases perspective. P2

allows programmers to specify properties of distributed system state and com-

piles to a dataflow-oriented runtime system. Bloom is a Ruby-like language,

designed for efficient and concise query execution on distributed data tables.

MACEDON [53] is a language for building P2P-style overlay networks. Like

MiCA, it uses a domain-specific language extension to describe its systems; un-

like MiCA, its domain is not gossip, but overlay networks. The programmer

writes from a single-node perspective, but MACEDON includes tools for ana-

lyzing whole-system behavior.
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Future Work

Today’s data center operators lack tools for creating new services to manage

networks and applications, both within enterprise networks and even in the

new class of wide-area enterprise VLANs that span between today’s massive

cloud-computing data center systems. This paper presents MiCA, a new com-

positional architecture and system for building network management protocols.

The system assists developers in creating applications from micro-protocols im-

plemented using gossip or self-stabilization mechanisms, which can then be

composed in a property-preserving manner to build sophisticated function-

alities. Unlike protocols built in a more classical manner, which have been

known to misbehave in unexpected and disruptive ways when deployed on

a very large scale, MiCA yields scalable solutions with absolutely predictable,

operator-controlled, worst-case message rates and sizes. Using the techniques

of the gossip and self-stabilization communities, the developer creates compo-

nents that are provably convergent under the MiCA run-time model. Moreover,

the framework provides abstractions for composing protocols while preserv-

ing semantics and optimizing across components to make the best possible use

of available communication resources. In this manner, MiCA makes it easy to

build the massively scalable applications needed to efficiently operate today’s

data centers.

Conclusions

The essential idea of Code-Partitioning Gossip is that of writing a gossip ex-

change as a single atomic function, and then automatically partitioning this
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function into code for the roles of sender and receiver. We believe this technique

offers several advantages.

Composition

A distributed hash table system might make use of several gossip protocols:

A peer sampling protocol to draw adequately random samples from its mem-

bers, an overlay maintenance protocol to adjust the overlay according to node

arrival and departure, a counting protocol to estimate the number of nodes in

the system, and an aggregation protocol to estimate the most popular objects to

allow nodes to make better caching decisions. The status quo would implement

this bundle of protocols in one of two ways: Either as a single monolithic pro-

tocol, or as four separate protocols that operate independently, each running

its own active and passive threads. In this situation it is difficult to reap any

benefit from commonality in communication or computation without signifi-

cant code rewriting, unless perhaps all four protocols have been written using

a middleware layer that abstracts away low-level network code. Using Code-

Partitioning Gossip, however, the protocols are composed prior to partitioning.

Instead of trying to merge multiple active and passive threads, we invoke each

protocol’s update method from within the a single superior update method,

which is then partitioned CPG allows protocols to be composed in much the

same way functions and objects are composed in object oriented programming.

This composition can take the form of a top-level update function that calls the

update functions of sub-protocols, or of extending a protocol by inheriting it.

We have a cursory implementation layered self-stabilizing protocols[21] using

CPG, but more work is needed to evaluate the real utility of CPG.
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Analysis

Code-Partitioning Gossip also offers the possibility of using program analysis

tools to analyze the behavior of gossip protocols. Gossip protocols in the liter-

ature are often presented with dual representations: One as a low-level imple-

mentation proof-of-concept, and one high-level theoretical representation used

for analysis. Code-Partitioning Gossip unifies these two representations by pro-

viding a representation that can be partitioned into a working implementation,

but also is abstract enough to facilitate formal reasoning, notably by containing

all stateful effects of a gossip exchange within a single deterministic function.

Program analysis tools could be used to prove, for example, that if some pred-

icate P holds for an pair of node states before a gossip exchange, it also holds

afterwards, where predicate P would be written in the same language as the

protocol’s implementation. We leave this as future work.
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CHAPTER 5

IMPLEMENTATION

Chapter chapter 4 gives a summary of the MiCA proof-of-concept imple-

mentation. This chapter goes into greater detail.

The proof-of-concept MiCA implementation consists of more than 13,000

lines of Java code, implementing a runtime and simulator for MiCA, and over

3,000 lines of Python analysis tools.

The MiCA Runtime

Each MiCA session instantiates a Runtime class. MiCA protocol instances are

created via this runtime, which stores the state for all MiCA instances on a node.

In a true TCP/IP experiment with many real or virtual servers, each runtime

will typically only host one MiCA instance, but it is convenient to host more

than one in a single runtime for experiments and simulation. The MiCA runtime

is the consumer of the functions that define a MiCA protocol: update, view,

rate. The runtime is responsible for creating the illusion that MiCA’s compiled

JVM bytecode is being executed as a conversation between two nodes.

There are three Runtime back-end implementations:

• Code Partitioning Runtime, which employs Soot [61] as describe earlier to

statically determine a conservative set of protocol instance members that

may be needed to compute update on the other node in a gossip exchange

pair. Code partitioning seeks to use static analysis to reduce the amount of

state that must be communicated in order to compute a protocol’s update
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function during a gossip exchange. The MiCA implementation performs

this analysis on the members of gossip classes. It is unsound, in that cer-

tain Java idioms (such as use of static members) will cause it to execute

update incorrectly.

• Simple Runtime. For testing, this runtime does not perform and optimiza-

tions; it simply serializes every instance that gossips and sends the serial-

ized object to the remote node so the remote can compute the update.

• Simulated Runtime. The simulation can simulate MiCA either with or

without code partitioning. Network communication and time are both

simulated, allowing simulations to execute much faster than real time.

MiCA nodes write log files detailing who they gossiped with, the vari-

ous states of gossip they undergo, and documenting their own state changes.

Graphs in this dissertation are produced by analyzing these logs.

Visualization and Analysis

MiCA’s Python tools include a GUI event visualizer for MiCA’s copious log

files, and a set of Jupyter modules that let a researcher quickly query and plot

information derived from MiCA logs. The visualizer, named “Micavis”, oper-

ates on event traces represented in logs collected from a gossip system execu-

tion. It is able to scroll backwards and forwards through time, replaying the log

traces as appropriate to show some facet of global system behavior. It makes the

assumption that node clocks are synchronized, or at least synchronized “well

enough”—to a much closer value than the time between gossips.
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Figure 1: Micavis log visualization tool showing the gossip exchanges (purple)
occurring at a moment in time. The current view graph is showing below in
green.

The micavis visualizer is able to generate graphs of convergence, visually

graph nodes according to their view at a point in time, and zoom in on protocol

state before or after any kind of gossip event.
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Figure 2: The Micavis log visualization tool plots convergence rates for subpro-
tocols of a composite protocol.
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CHAPTER 6

EVALUATION

In addition to the results presented in chapter 4, this chapter shares some

additional results related to topology management, composition, and a phe-

nomenon we call “dilation”.

6.1 Topology Experiments

One feature that distinguishes MiCA’s model of gossip is that a MiCA proto-

col defines how to derive view from node state, rather than keeping the view

separate from other ”payload” data. This makes it natural to build protocols

that modify their own views. In practice, MiCA compound protocols with self-

modifying views generally take the form of hierarchies of subprotocols, where

each level consumes a view from the previous one, computes a new view, and

exports it to the next level. We refer to these protocols as overlays.

In this section, we construct a compound protocol with several layers of

topology overlays. The objective of the protocol is this: starting from an unstruc-

tured, connected communication graph, divide nodes into k groups of equal

size. Then build a ring overlay for each group.

Peer sampling overlay Constructs an ever-changing, random topology, as de-

scribed by Massoulié et al [47]. Nodes gossip about other known nodes

in the extended network, retaining a constantly changing, fixed-size view

that approximates random selection from the whole graph. The peer sam-

pling overlay never stabilizes.
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Distributed slicing algorithm Distributed slicing is the problem of dividing

a group of nodes into equally-sized subgroups, without central coordi-

nation. We implement the Sliver[27] distributed slicing algorithm with

MiCA. It gossips over the peer sampling overlay, computing a node’s slice

membership is by measuring where it sits relative to its peers in some pre-

determined sort order.

Filter overlay A filter overlay is simple MiCA primitive that imports another

overlay (in this case, the peer sampler) and exports a filtered view that

excludes some nodes. Here, we have each filter overlay node gossip about

its peers’ Sliver slice ID. The exported view for a node contains only the

peers that occupy the same slice.

We use T-Man[32]’s topology construction to build a ring overlay for each

group. T-Man is a simple, but powerful, gossip protocol: Every round, each

node adds random peers to its view (sourced from the filter overlay). Then a

node-specific ranking function is used to sort the view, and the top c peers are

kept as the new view. To build a ring in this way, T-man uses c = 2 and requires

each node to have a unique integer ID, where all N nodes participating in the

ring are represented by N contiguous IDs. The ranking function computes the

ring distance between two nodes’ IDs. The T-Man ring becomes stable when all

nodes know about their peers with ring IDs that immediately precede and su-

persede their own. Some observations about T-Man: First, the distance function

needs to know N , the number of nodes in the network. Second, any gap in a

node’s view will break the ring. For example, suppose node id 3 tries to rank a

view of {1, 2, 6}. The closest c = 2 nodes both precede 3 in the ring, causing the

node to have two pointers in the id-descending direction and none ascending.

As a result, we must ensure that every node knows the network size, and that
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there are no gaps in the ring address space. These two conditions are difficult

to achieve in the presence of churn. Fortunately, the self-stabilizing spanning

tree protocol stack from earlier chapters can achieve these goals. To recap, the

constituents of that stack are:

Leader election Using an intrinsic, totally ordered property (like node ad-

dress), choose the minimum node as the leader.

Spanning tree overlay Using the chosen leader as the root of a spanning tree,

each node gossips with its peers to find the peer closest to the root. That

peer then becomes the node’s parent in the tree.

Tree count nodes Gossip over the spanning tree, using the designated leader

as the root and counting how many nodes exist in each subtree.

Label nodes Using subtree node counts, assign integer labels to each node,

with the tree’s root assigned 0 and the rest of the tree assigned ascend-

ing labels in pre-fix depth first search order.

T-Man nodes need to know the size of the network in order to compute the

ring distance function. The tree count nodes component ensures that each node

knows the size of its own subtree within the spanning tree, so the root node

will know the size of the network. We add a tree size broadcast component that

propagates this number among peers reachable via the filter overlay. The com-

bination of the tree size broadcast and node labeling enables nodes to construct

a T-Man ring. The final two protocol layers are:

Tree size broadcast The spanning tree root node disseminates its current tree

size count.
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T-Man Ring Nodes use the tree size broadcast and label nodes layers to identify

peers with adjacent ring IDs.

Substrate (arbitrary connected graph)

Peer sampling overlay

Slicing algorithm

Filter overlay

Leader election

Spanning tree overlay

Broadcast tree size

T-Man ring overlay

Count subtree nodes

Label subtree nodes

Figure 1: Dependencies between protocol layers for the topology demo stack.

Figure 2: Overlays over 30 nodes before and after self-stabilization (30 and 100
rounds). T-Man ring overlay (black), spanning tree overlay (light blue), peer
sampling overlay (light green). Not shown: Filter overlay, substrate graph.
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6.1.1 Information Retention in Layered Gossip Protocols

A simple leader election protocol is used as a running example throughout this

paper. In this example, every node has a unique descriptor. Nodes use a pre-

determined sort order over descriptors to agree that the least node is the leader.

When nodes gossip, they tell each other about the least node they know of, up-

dating their leader belief as necessary when they learn about a new least node.

This simple protocol fails spectacularly when the leader leaves the system: other

nodes continue to believe in the vanished leader because they have no way to

forget.

This can be addressed by introducing information retention timestamps. Ev-

ery piece of information shared in the system is given a timestamp by its orig-

inator. Other nodes discard or discount information with stale timestamps. In

the case of the leader election example, when a node shares its own descriptor

with a peer, the descriptor is timestamped. Because a node that is active in the

system is constantly broadcasting its own descriptor, the timestamp attached to

this descriptor with other peers stays fresh, as they keep the most recent times-

tamp they’ve seen for this information. However, if a node leaves the system,

the timestamp attached to its descriptor as known by its peers will grow stale.

This strategy is used by Sliver and others to handle network churn. In the

MiCA layered topology protocol, we use retention timestamps for all of the self-

stabilizing constituent protocols: slicing (Sliver), filter overlay, leader election,

spanning tree overlay, subtree node counting and labeling, tree size broadcast,

and the T-Man ring overlay. Whenever a self-stabilizing protocol’s input proto-

col is not self-stabilizing (e.g., our slicing algorithm’s dependency the random

peer sampling overlay), a fine balance exists between retention time and con-
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vergence. This is especially true for what we will call curator protocols.

A curator protocol is one that must wait to receive a certain amount of con-

sistent information before it converges; for example, an individual node of the

T-Man Ring protocol reaches its converged state only after it has gossiped with

the two peers that should be adjacent to it in the ring overlay. With the introduc-

tion of retention timestamps, it must have gossiped with these two peers within

the maximum retention time, or it will forget them. This condition must be met

by all of the nodes in the system for a curator protocol to converge. If retention

time is too short, the protocol will fail to stabilize. On the other hand, if retention

time is too long, stabilization will be delayed. In the case of our leader election

protocol, a too-long retention window causes the system to retain an incorrect

leader belief long after the old leader has left the system.

6.2 Experiments at Scale

This chapter details results from experiments at scale with our compositional

gossip model. Recall that we have a choice of two binary operators to com-

pose protocols: correlated merge, which gossips its operand protocols in tandem

whenever possible while still respecting their gossip rate and view preferences,

and independent merge, which multiplexes its operands.

Our demonstration composite protocol is built from five inter-dependent

subprotocols, intended to represent common gossip use cases. The subproto-

cols are:

MinAddressLeaderElection A simple leader election protocol that leads all
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nodes in the system to agree on a leader based on an intrinsic property

such as address.

SpanningTreeOverlay Using the elected leader as root, this protocol constructs

a spanning tree overlay that can be used by downstream protocols. It

demonstrates overlay construction.

TreeCountNodes A typical aggregation protocol. Gossiping over the spanning

tree overlay, each node aggregates the number of nodes in its subtree.

TreeLabelNodes A broadcast protocol; recursively assigns unique labels to all

nodes using the spanning tree.

RandomWalkCoinCollector Nodes constantly exchange random walk tokens

with their neighbors. This protocol never stabilizes, but a snapshot of

system state indicatives well-connected nodes (where tokens accumulate)

and poorly-connected nodes (where tokens are scarce).

The first four subprotocols listed above are all self-stabilizing. We expect

them to eventually converge to a steady state in the absence of externally trig-

gered system state changes. Because each depends on the state of the previous,

they should converge in a cascade. We refer to these protocols collectively as

the “self-stabilizing stack”. The fifth protocol, RandomWalkCoinCollector, does

not stabilize; it endlessly circulates random walk tokens.

The correlated and independent composition operators are associative with

respect to correctness and convergence, but not performance. A correlated

merge is more effective when used on operands that have significant overlap

in their views.

Our experimental setup uses two composition structures, each run twice:
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once exclusively with correlated merge, and once with independent, for a to-

tal of four variations. Of the five subprotocols, MinAddressLeaderElection

and Tree gossip over a bootstrapped static overlay, and the remaining three

(Count, Label, Walk) gossip over the constructed spanning tree. The first struc-

ture, shown in Figure 3, merges subprotocols that do not share a common gossip

substrate. The second structure, Figure 4, merges those that do. We expect the

second structure to perform better for correlated merges.

(RandomWalkCoinCollector⊕ (MinAddressLeaderElection⊕ TreeLabelNodes))
⊕

(SpanningTreeOverlay⊕ TreeCountNodes)

Figure 3: Composition Structure 1

(RandomWalkCoinCollector⊕ (TreeLabelNodes⊕ TreeCountNodes))
⊕

(MinAddressLeaderElection⊕ SpanningTreeOverlay)

Figure 4: Composition Structure 2

We refer to the four combinations of merge operator and structure as

correlated-struc1, correlated-struc2, independent-struc1, and independent-struc2.

Experimental setup

Experiments were run on on Amazon EC2, using 45 m3.medium instances, all

within the same datacenter. Each EC2 virtual machine hosted ten virtual MiCA

gossip nodes, for a total of 450 effective nodes.

Each of the four experimental variants was run for 300 rounds of gossip∗.

∗Recall that a MiCA gossip round is no more than a unit of time. Unlike synchronous for-

mulations of gossip, there is no guarantee such as “all nodes gossip exactly once during each
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This is long enough for the self-stabilizing stack to converge. Rounds were

set to one second; a conservative interval that allowed gossip exchanges to com-

plete without timeouts†due to serialization or compute time.

Each node writes a detailed log of its activities: gossip exchanges, merge

operator decisions, state changes, etc. After each run, logs were aggregated and

sorted by host timestamp. Although this is not generally a sound way to order

events in a distributed system, our particular analyses are tolerant of a small

amount of error. Clock skew among our fleet of recently-launched EC2 hosts

is orders of magnitude smaller than our gossip round length, so misordered

events should be rare.

Results: Convergence and Gossip Rates

Convergence of the self-stabilizing stack is measured by counting the frequency

of state changes for subprotocol state. Although nodes continue to gossip af-

ter they have stabilized, their state has reached a fixed point. 5 shows the

rate of state change for the five subprotocols for correlated-struc1. The cascad-

ing convergence of the four self-stabilizing protocols is visually obvious: First

MinAddressLeaderElection stabilizes, then SpanningTreeOverlay, followed by

TreeCountNodes and TreeLabelNodes. RandomWalkCoinCollector maintains a

steady rate after its overlay SpanningTreeOverlay has stabilized.

Figure 6 shows the convergence of all four variants side by side. Only a small

round”. A protocol that specifies its rate as 1.0 will gossip, on average, once per round.
†MiCA serializes gossip exchanges on each node, leaving it susceptible to gossip backups if

gossip requests arrive too quickly.
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Figure 5: correlated-struc1 subprotocol convergence tracks the number of nodes
with changed subprotocol state in each round. When this reaches and stays at
zero for a self-stabilizing protocol, the protocol has converged.

Figure 6: Self-stabilizing stack convergence comparison.

difference in convergence rate is evident, with correlated variants converging

slightly slower than independent variants. This seems like a modest result until

we see that the actual gossip rates (Figure 7)‡of the compound protocols differed

by substantially.

‡Gossip rate plots are smoothed with LOWESS[12] unless otherwise noted, to make trends

more easily discernible to readers. Figure 9 is an example of an un-smoothed rate graph.
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Figure 7: Gossip rate of the compound protocol using correlated vs. indepen-
dent merge. The correlated merge operator uses significantly fewer messages
than independent merge, but still converges more rapidly.

Here, actual gossip rate refers to the number of messages sent by the com-

pound protocol, and effective rate is the number of subprotocols represented by

a message. E.g., if a compound merge operator gossips two subprotocols si-

multaneously every round, this is an actual rate of one and an effective rate of

two. Both correlated-struc1 and correlated-struc2 achieved the same convergence

as their independent counterparts, but did so with nearly a 70% reduction in the

number of messages used.

Figure 8 highlights the difference between actual and effective rates for cor-

related and independent merges. Comparison of effective gossip exchange rates

for each variant, defined as the sum of gossip rates of subprotocols, confirms

that correlated and independent runs had nearly identical effective rates. The

difference is explained by a kind of joint failure scenario: The MiCA runtime

occasionally drops a gossip exchange because it times out on the receiver queue.

With correlated gossip, dropping an exchange impacts more subprotocols

than it does with an independent merge. Compounding the problem, under
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Figure 8: Difference between actual gossip rate (“root”) and effective subproto-
col rates for independent-struc1 (top) and correlated-struc1 (bottom). In the bottom
graph, the three correlated tree-gossiping protocols are perfectly aligned by cor-
related gossip.

correlated merge, these events are more likely to happen due to higher variance

in gossip rate; see Figure 9 and compare the spread between highs and lows

for correlated versus independent trials. MiCA could compensate for this by

attempting to gossip slightly faster than the nominal rate when it notices ex-

changes being dropped, although this is not implemented. Doing so would also

come with a risk of creating feedback.
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Figure 9: Effective gossip rates of all variants. Not smoothed. Greater variance
is evident for correlated merges.

6.3 Dilation Experiments

The below graphs show the effect of varying degrees of dilation on two topo-

logical extremes, a ring and a complete graph. The sample protocol used was a

basic PUSH/PULL find-minimum-value protocol. The degree of dilation (writ-

ten “dilation-D”) indicates the number of coin flips that must all be successful

for the protocol to gossip when its update method is executed: “dilation-0” in-

dicates no dilation, and “dilation-2” means that a node has only a 1/4 chance

of doing anything when it gossips. The rate of dilated protocols is adjusted

accordingly, to preserve the average rate of gossip.

Both experiments were run on a MiCA simulator with 1000 nodes, num-

bered 0 through 999. The find-min protocol has converged when every node

has learned the minimal node number.

The gossip round length was set to a large value, 100 seconds, to prevent

high-dilation (hence, high-rate) trials from experiencing backups waiting for
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the protocol update function (which takes several milliseconds) to complete. No

such backups occurred during the experiments; this is important because such

backups would muddy the performance effects caused directly by dilation.

Convergence is measured by the rate of “change” events, which are gener-

ated whenever a node’s minimum-value belief changes.

Dilation histograms measure the time between gossiping on a per-node ba-

sis; for example, if node n1 gossips at time 1.3 seconds and next at 11.3 seconds,

then a 10-second interval data point is included in the histogram calculation.
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Figure 10: Convergence on a complete graph. The effect of dilation is mini-
mal — in fact, dilation-3 converges before dilation-2 (although not faster than
dilation-1 or dilation-0, but this is difficult to see), making us suspect that differ-
ent random seeds could produce different convergence orderings, and that all
of these convergence rates are essentially the same.
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Figure 11: A histogram of the interval between successive gossips shows the
degree of dilation the complete graph and confirms that the total number of
gossip events is roughly unchanged by dilation.
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Figure 12: Convergence on a ring topology. The effect of dilation is dramatic,
although there appears to be little difference between dilation-2 and dilation-4.
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Figure 13: A histogram of the interval between successive gossips shows the
degree of dilation the ring, and confirms that the total number of gossip events
is roughly unchanged by dilation.
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CHAPTER 7

CONCLUSION

The research represented in this dissertation began with a question: Can we

build a programming language for gossip? Gossip is a powerful mechanism,

but it is built from simple elements: Periodic communication and stochastic

peer selection. The first step was to decide on the right gossip model.

Early analysis of the spread of epidemics used what we would now call uni-

form gossip over a complete graph. That is, peers chose their communication

partners uniformly at random from the entire population. With this simple

model, it’s trivial to show that epidemics spread in logarithmic time with re-

spect to the number of nodes [25]. Based on this, one model of gossip might

look like this: A gossip system consists of a set of nodes and a function that

defines what happens when two peers gossip. However, if we tried to imple-

ment this model in a practical system, we would quickly discover a limitation:

Real systems need to accommodate node churn. If all pairs of nodes are poten-

tial gossip partners, this means that every change in system membership needs

to be broadcast to all nodes. When a new node joins, it must be bootstrapped

with a complete membership set. This is fine for small systems, but does not

transfer well to internet-scale, in which the burden of maintaining correct mem-

bership will overwhelm other activity of the system. This can be avoided by

gossiping over sparser topologies, where every node needs to keep only a sub-

set of group membership in its local state. Thus, if we want our gossip model

to admit large-scale systems, it will need to handle diverse topologies. Further,

alternate topologies are required for some gossip algorithms [39, 62], and others

are intended for arbitrary or even dynamic topologies [33]. Convergence rates
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in some cases may even be improved over those of uniform gossip [38].

Two subsequent design decisions about the gossip model heavily influenced

the direction that MiCA would take. First, that a node’s view (e.g., set of peers

to choose from) should not be separate from the rest of its protocol state. MiCA

protocols are asked at each round what their view is, as a function of their state.

They can use this to compute any view they wish, including dynamic views that

change over time. Second, that views would be represented not as a set of peer

addresses, but as a discrete probability distribution. This allows a protocol to

weight some peers more heavily than others. Not only is this useful for concepts

like spatial gossip, but it would turn out to be crucial to our goal of protocol

composition— two overlapping but non-identical views can be combined into

one, as described in chapter 3, with adjusted probability weights preserving the

gossip frequency preferences of constituent protocols.

Consideration of the language itself settled on a DSL embedded into Java.

The gossip model could mostly be represented using ordinary Java classes and

semantics, but the update function member of a gossip protocol was designed

to operate on system state spanning two nodes. The DSL took the form of an

annotation to the update function that indicated its special semantics to a byte-

code post-processor, which would weave in network code to give the effect of a

distributed program. Other annotations provided syntactic sugar for common

features, for example, uniform gossip on a Java collection could be specified

through an annotation instead of forcing the programmer to write a boilerplate

view function.

The choice of Java as a base for this implementation was, in retrospect, not

ideal. The implementation has always had to have caveats attached; for exam-
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ple, “Don’t access static class members from inside a gossip update function.”

Bytecode transformation proved to be somewhat awkward, and maybe too low-

level to achieve best results. JVM type erasure caused headaches. update func-

tions were implemented as overrides of a base class method, and as such had

to perform some unsightly type-casting to cast arguments as the correct classes.

Erlang might have been a better choice.

Early versions of this research focused on the compiler problem of how to

distribute the pair-wise update function. Although the gossip model remained

unchanged into later versions, that focus gradually gave way to more concen-

tration on composition and the gossip model itself. In retrospect, I feel these are

greater contributions than clever program partitioning. a No other work in the

literature survey has treated a gossip protocol as an abstract entity that can be

used as a building block to build more sophisticated gossip systems.

When thinking of distributed programming applied to gossip, it’s natural

to think about composition and encapsulation; gossip algorithms serve precise

purposes, and if you want to use more than one in an application, it’s logical to

think you should be able to instantiate one gossip runtime and then run both

gossip protocols side by side. One success of MiCA is that it really does allow

the programmer to use gossip protocols as building blocks to assemble more

complex systems. For example, gossip-based group membership protocols [16,

63] typically need to implement failure detection. MiCA makes it natural to

implement failure detection and group membership separately, in such a way

that the group membership protocol can instantiate and use failure detection.

The contributions of this body of research are as follows:
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A novel model for gossip. Capable of admitting most, possibly all, gossip al-

gorithms from the literature. Functions on local node state to determine

rate, pair-wise update, and peer selection; view represented as a discrete

probability distribution offers new possibilities.

Pair-wise distributed programming model. A novel system model for dis-

tributed programming that captures precisely the nature of gossip and al-

lows new gossip protocols to be written without any explicit network com-

munication, which is handled automatically by the post-processor run-

time.

Proof of concept implementation and simulator. MiCA experiments were con-

ducted with a Java runtime implementation capable of running MiCA pro-

tocols on a local simulator and on a real network of machines. In simula-

tion, time is simulated as well, leading to results of experiments much

faster than realtime.

Library of gossip components. MiCA’s prototype includes Java interfaces and

implementations of rumor mongering, topological overlay construction,

aggregation, anti-entropy, and random peer selection, among others. Ex-

amples demonstrate the easy of building complex protocols from these

basic building blocks.

MiCA represents a new point in the design space of distributed program-

ming. Nothing similar precedes it; it is the first distributed programming at-

tempt specifically aimed at gossip systems, and the first to target a pair-wise

programming model. Other gossip frameworks exist, but with more conven-

tional programming models.
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Future work and open questions

MiCA’s examples are, admittedly, contrived. Implementing a realistic system

could bring strong validation of our approach, either by building a system from

scratch using MiCA, or by substituting MiCA-based gossip for the gossip func-

tionality of an existing system. For example, Cassandra [42] is widely used,

open source, uses gossip for anti-entropy, and happens to be written in Java.

These facts make it an excellent candidate. After duplicating Cassandra’s exist-

ing anti-entropy functionality, MiCA could be used to enhance it in a number

of ways. Replication messages between replicas hosted on the same node could

be bundled together for network savings. Gossip rates and view probability

weights could be adjusted to prioritize gossip to replicas that lag behind.

MiCA could also be explored as a general platform for gossip research. One

advantage it offers is that it can implement platform effects as adapter classes,

such as Gossip Objects [65]’s speculative message bundling, in addition to con-

ventional gossip protocols.

Further research could enhance MiCA’s code partitioning for its update func-

tions, as well. The static analysis currently used is naive, and does not match

well with MiCA’s composition. Improved code partitioning might choose to

break each gossip exchange into variable numbers of messages sent between a

gossip pair, instead of only one send and one receive message, or simply imple-

ment a MiCA runtime that runs an update function by transparently proxying

one peer.

Gossip composition has many open questions remaining. We have proposed

two composition operators: a correlated merge that saves space, but increases
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the change of correlated failure; and an independent merge that approximates

running two independent, concurrent protocols. Both of these operators are bi-

nary: they take two protocols and combine them into one. Because of this, any

large compound protocol is achieved through an entire binary tree of compo-

sition operators. Although the correctness of the operators is not affected by

the order of composition, does. In other words, the operators do not commute

with respect to performance. Two merged protocols will see a higher degree

of network savings if their respective views overlap substantially. Implemen-

tation of an n − ary composition operator could achieve greater efficiency that

binary operators cannot, because truly computing optimal overlap sets for gos-

sip bundling is only possible as a global problem (and, to be fair, arriving at an

optimal solution is probably NP-complete, so approximations would be more

practical for systems with large numbers of protocols and nodes).

A fourth open research idea is to further explore the idea of gossip adapters

and transformers. These are MiCA gossip protocols that wrap another protocol

and subtly change its behavior. For example, one currently implemented trans-

former type is an EpochDelimiter. This takes a protocol factory as its input.

The transformer runs k concurrent instances of the input protocol, periodically

deleting the oldest and instantiating a new one. Normal operations of the tar-

get protocol are served by the oldest copy. When consumers of the protocol

state interact with it, they see information from a protocol that has only been

running for, at most, a known, finite length of time. This can be used to imple-

ment forgetfulness, e.g., of self-stabilizing protocols that do not have a built-in

mechanism for forgetting. The Epoch interface could also be used to implement

group membership epochs as called for by [7]. In the future, these transformers

could include mechanisms to add new properties to existing protocols, such as
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Byzantine Fault Tolerance as is added in [34]; or speculative rumor delivery, as

implemented by [66]; or adding checksums to gossiped messages, such as could

have prevented [57].

Finally, one last idea for future work would be to extend our MiCA gossip

model with a concept of “amnesia”. Gossip protocols learn about information

from the wider system in two ways. The first is affirmation, where a peer com-

municates a belief; for example, a heartbeat “ping” that indicates the peer is still

alive. The second is silence, where something about the system can be inferred

because nothing has been received; for example, if a heartbeat is not received

after a grace period, then it may be inferred that the missing peer has either

failed or a network partition has occurred. Absence is often used to expire stale

information. In a group membership protocol, nodes might rely on affirmation

to learn about new group members, but rely on silence to purge stale members.

A common pattern emerged while writing example protocols for MiCA: times-

tamps must be attached to every piece of information that might become stale

according to the protocol logic. Policies for marking something stale must be de-

fined, and may be parametric with the size of the network, the rate of incoming

updates, or other factors. Convergence and correctness may hinge on having

reasonable expiration policy. A system that never forgets risks being always out

of date; one that forgets too quickly will not be correct. As an example, self-

stabilizing protocols will fail to stabilize if they expire data too quickly. With

MiCA, this “amnesia sensitivity” is compounded by composition. Multiple lay-

ers of self-stabilizing protocols, composed together, are extremely sensitive to

having reasonable expiration policies. In practice, for MiCA’s examples, we

tuned these parameters manually until the compound protocols worked cor-

rectly. This is not a satisfying approach, and the first step to a better solution is
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to step back and consider adding amnesia as a core concept to MiCA’s model of

gossip.
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