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Abstract 
Derecho is an RDMA-based distributed computing 
framework that unifies group membership management, 
consistent data replication and persistence.  
Applications are structured as top-level groups which 
can be split into subgroups or automatically sharded in 
a regular manner.  To preserve membership invariants, 
Derecho adjusts subgroup membership as parent-group 
membership evolves.  The resulting mix of features 
simplifies creation of cloud services.  

1 Introduction 
Zero-copy RDMA networking has the potential to 
revolutionize distributed computing, but isn't trivial to 
use in its native form.  We created Derecho to bridge 
this gap, offering scalable high speed RDMA 
communication in support of group-structured 
distributed applications.  

As a running example, consider a strongly consistent 
server holding data in a sharded back-end, which is 
replicated for persistence and availability (Figure 1; the 
“shards” are simply the blue subgroups shown, each 
holding a disjoint subset of the data in the store as a 
whole).  Clients access the service via a load balancer. 
The cache is sharded as well, but more aggressively 
distributed to soak up a large read load.  Because we 
desire strong consistency, the back-end performs 
updates as atomic transactions, and uses multicasts to 
invalidate cached data prior to performing transactions 
that modify the store. This design would be difficult to 
implement, especially if there are structural invariants, 
such as that the load-balancer accurately track the 
membership and subgroups of the cache and back-end. 

Derecho automates the hard parts, offering a way for 
the developer to specify a desired structure, then 
customize it by attaching event handlers.  A service like 
the one shown requires as little as a few dozen lines of 
application-specific logic, yet because data moves out-
of-band over zero-copy RDMA, could perform 
exceptionally well. 

Here we focus on datacenter use cases. Our existing 
implementation supports applications of sizes that range 
from just a few processes to thousands, and can scale to 
even larger deployments.  In future work, we will 

introduce an explicitly hierarchical structure that would 
enable georeplication (hopefully, with similar ease).  

 
Figure 1: A cached stateful service with three 
subgroups.  Two of the subgroups are additionally 
sharded, as occurs in distributed key-value stores. 

2 Derecho Basics 
The Derecho protocols and performance are discussed 
carefully in a companion paper, which has also been 
submitted to NSDI [8].  In that paper, we show how 
Derecho uses reliable unicast RDMA to implement 
both virtually synchronous (“atomic”) multicast and 
Paxos persistence in groups of varied sizes, and include 
experiments demonstrating that Derecho achieves 
record-breaking data rates and latencies at exceptionally 
low overheads.  As a multicast, Derecho is hundreds to 
thousands of times faster than systems like Zookeeper 
[38], libPaxos [22], and Vsync [37] when similarly 
configured.  Used for persistence in its Paxos mode 
Derecho offers similar performance to Corfu [7] or the 
Microsoft Azure Fabric storage [2], but can support 
larger numbers of replicas with little loss of speed. 

Key to this performance is an efficient data-relaying 
layer that builds an overlay and then uses RMDA 
unicasts to distribute updates within groups, which we 
control using an out-of-band framework that 
asynchronously enforces stronger properties such as 
totally ordered delivery.       

By group we mean a set of processes with membership 
managed by the Derecho system, and reported via new 
view events. We’ll use the term top-level group to 
explicitly refer to the full membership of an application. 
Derecho can support many side-by-side top-level 
groups.  However, and here we depart from prior 
systems, a Derecho group can also support subgroups 
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with customizable policies to determine membership.  
Subgroups (and shards, which for us are just a set of 
subgroups created using a pattern) can overlap in 
membership.  All types of groups offer the same 
functionality; our terminology (group, parent group, 
subgroup or shard) is primarily for clarity of exposition 
except in one sense: membership of a subgroup is 
strictly determined by the membership of the top-level 
group to which it belongs, updated atomically when the 
parent group membership changes. 

The Derecho execution model unifies virtually 
synchronous membership [29] with Paxos [28] state 
machine replication [18]. This style of integrated model 
was suggested by Malkhi [36] (for the theory see 
Chapter 22 in [16]),  and was first implemented in the 
Vsync system [37]. 

Executions run as a series of epochs. During any single 
epoch, membership of a top-level group (and its 
subgroups) remains stable.  An epoch starts when a new 
view in the top-level group becomes defined.  This 
induces new views in the subgroups, all reported via 
upcalls (a single process belonging to multiple groups 
gets multiple upcalls). Then the epoch becomes active, 
and new messages will be delivered, in accordance with 
the relevant level of guarantees.  An epoch ends when 
membership changes due to a join or leave/failure.   

When a process is added to a subgroup for the first 
time, it is initialized either from a constructor (if the 
group is being created), from the state of some existing 
member (if joining an active group), or from persisted 
storage (the Paxos case).   

Although any Derecho process can send point-to-point 
messages or point-to-point RPCs to any other Derecho 
process, only a group member can multicast to the 
group, or perform a multicast query. Derecho multicasts 
are virtually synchronous: they are delivered to all non-
failed members, in the same view, in a total ordering 
that also preserves sender  ordering.  If an epoch 
terminates, pending multicasts not delivered in the 
current epoch will automatically be reissued in the next 
one, preserving sender ordering. 

Each group has an associated protocol that it uses for 
multicasts.  In the Paxos case, a multicast is delivered 
only after it has been persisted into a set of logs (one 
per member) and totally ordered.  For the atomic 
multicast case, we deliver totally ordered messages 
after all members have an in-memory copy, but without 
logging them.  Last is a “raw” multicast called RDMC.  
Here, latency is minimized but there is no ordering 
across concurrent sends, no logging, and a failure can 
disrupt delivery.   

It is important to emphasize that even though our 
platform implements the Paxos specification, the 
protovol it the one from the classic Paxos paper [28].  
The classic Paxos runs a specific two-phase protocol 
implementing state machine replication.  Over time, 
this narrow view of Paxos has been supplanted by a 
generalized one, in which “Paxos” refers to any 
protocol that complies with the specification.  Today 
there are dozens of Paxos variants.  Derecho’s Paxos 
protocol satisfies durability and total ordering, but 
(unlike classic Paxos), every delivered message is 
received, in order, by every live group member.  Thus, 
with Derecho, every live group member has its own 
local copy of the full, consistent state.   

This does not mean that members must behave 
identically: each member has its own rank in the 
membership view, and can play a distinct role, but they 
do share identical data (if members need just a subset of 
the updates, we would view that as a case for creating a 
subgroup or sharding the parent group, and then fully 
replicating data on a subgroup or per-shard basis).  
Derecho applications can thus perform consistent 
coordinated actions. 

Derecho tolerates halting failures, which can be 
detected by hardware, protocol timeouts, or application 
logic.  Membership of the top-level group is updated in 
a manner that prevents logical partitioning (split brain 
behavior): an isolated process or set of processes will 
be blocked from interacting with other healthy 
processes and rapidly shut down.  Importantly, this 
implies that logical partitions cannot arise in subgroups, 
but also that subgroups cannot make progress if a 
majority of the current top-level group members 
suddenly fail. 

3 Challenges Explored Here 
Our central innovation relative to prior group 
computing frameworks are the subgroup features of 
Derecho, which support multi-group structures, as 
illustrated in Figure 1.  Different elements can have 
different consistency needs.  For example, we may wish 
to use Paxos in the back-end, because it probably needs 
persistence.  In contrast, for invalidations and updates 
from the back-end to the cache, the best match is an 
atomic multicast: a cache is volatile,  so a protocol 
designed to persist data to SSD would add unnecessary 
overhead.   

Notice that in our figure, the cache shards are explicitly 
represented (green), and yet the multicasts to them only 
occur in the purple groups.  Why should Derecho even 
track these shards? One reason is to maintain 
consistency between the load balancer and the rest of 
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the system.  A second is that by explicitly creating these 
subgroups, the application benefits from state transfer: 
Derecho will automatically bring a joining process up 
to date by sending a serialized state snapshot from an 
active member to the joining one, transparently, at a 
suitable instant during the join protocol.   

A cached, stateful, data-management service is just one 
example among many.  We are in dialog with a 
company exploring the feasibility of creating provably 
correct control systems to run on clusters of computing 
devices in a self-driving car or other similar settings.  
Such applications will depend on the correctness of 
their group structures, membership will need to evolve 
in response to failure and changing conditions, and 
safety conditions will thus extend to structural aspects 
of the solution.  While our near-term goal focuses on 
datacenter uses, our API needs clean semantics that can 
eventually be used in safety analyses. 

Beyond consistency of membership between parent 
groups and their subgroups, there are also consistency 
questions when communication occurs internal to 
Derecho but between members of different groups.  For 
example, suppose that process A (not a member of 
group G) sends a point-to-point RPC to process B, 
which it selects on the basis of B’s rank in G (recall that 
all members of the top-level group can see the 
membership of all groups, subgroups and shards). 

Now, suppose that B fails without responding.  A, 
seeing the top-level view change, discovers that C now 
has B’s old role, and resends its request.  This triggers a 
race: view change notifications are concurrent, so 
perhaps C hasn’t yet seen the membership change and 
is not expecting such requests; it could crash or respond 
incorrectly.  We see this as a likely and common 
problem, hence to avoid such cases, Derecho delivers a 
message sent in view K only after the target has been 
notified of view K. The delay should be minimal 
(milliseconds), yet potentially tricky application logic is 
obviated.   

But not every such feature belongs in a core system.  
Over nearly three decades there have been many 
proposals for cross-group consistency guarantees. The 
Isis Toolkit guaranteed that multicasts sent in different 
groups would be totally ordered at any overlapping 
destinations [29].  The Totem system imposed a global 
total message order [34].   Several systems offer causal 
ordering between operations that span groups, and Lazy 
Replication [29] tracks causal paths external to the 
entire system. In the belief that an API should be 
minimal, rather than add features like these to the core 
Derecho platform, we prefer to offer them via optional 

library APIs (if at all: some proposals never saw wide 
adoption).  

Other challenges arise because of the raw speed of 
RDMA.  We noted that Derecho is faster than previous 
systems of this kind.  Derecho achieves this by 
separating control-plane from data-plane: its protocols 
move the data over a fast transport while running the 
logic that decides when stronger safety and ordering 
guarantees have been achieved out of band.  To fully 
benefit the application itself must also adhere to such a 
separation. The question then arises of how these kinds 
of control and synchronization policies are expressed. 

Looking at past work, one can distinguish classes of 
approaches to distributed application structuring.  One 
approach starts with a single specification and compiles 
a distributed system, as in Fabric [13] or Frenetic [15].  
This is  powerful because the code is effectively a 
single distributed program.  However, systems like 
Fabric and Frenetic have not been applied to complex 
multi-group structures of the kind considered here, and 
lack tools to assist in separating control from data 
movement. 

A second approach is evident in the MPI HPC library 
[25]: it assumes a long-running program with cloned on 
non-virtualized machines.  A leader is selected in a 
topology-aware manner; the clones are gang-scheduled. 
MPI’s startup can be slow (seconds or even minutes), 
and it performs poorly with scheduling delays, 
virtualization, or resource contention.  These are at best 
minor issues in large, batch-scheduled HPC clusters, 
but in our target setting would be cause for concern.  
On the other hand, MPI has a highly effective 
integration with RDMA and a number of mechanisms 
that facilitate the control-plane/data-plane separation 
we seek in Derecho applications. 

A final class of prior work is seen in libraries that offer 
groups as library-supported abstractions, but focus on 
one group at a time (for example the Isis Toolkit [29], 
Totem[34], Horus [17], Ensemble [4], JGroups [20], 
Vsync [37], LibPaxos [22] and Corfu [7]).  Some 
offered subgroup features [34][23][10], but those  often 
had weak semantics, limited functionality, or high 
overheads. None could easily leverage zero-copy 
RDMA: they all touch data at many stages of event 
processing.  

Accordingly, in designing Derecho we set out to create 
a new option: a new way of promoting the control 
plane/data plane that would promote separation of roles 
and clarity of application intent. 
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4 Montonicity and Monotonic Reasoning  
“You can put your mind in order by focusing on one 
thing at a time, doing it well, and appreciating the 
opportunity that this doing offers.”   
― Unknown author 

The Derecho approach to control-plane/data-plane 
separation leverages monotonicity, which can be 
understood by thinking about the kinds of knowledge 
that can be acquired about a system as it runs.   In any 
distributed system, whether or not it uses RDMA, 
knowledge can be viewed as accumulating over time: as 
processes exchange messages, they learn about one-
another’s states, reach agreement on such things as 
event ordering or process health, and agree upon 
actions that they then carry out. 

Our insight was that if the flow of data is very rapid, 
potentially faster than the control protocol can track on 
an event-by-event basis, then a monotonic 
programming model can both encourage batching 
(needed if control actions lag the data rate) while also 
ensuring that once a condition is established, it will not 
promptly be invalidated by a subsequent event. In a 
monotonic setting, knowledge increases steadily: once a 
monotonic property is discovered to be true, it remains 
true, no matter what happens later.  Thus, if a system is 
monotonically safe, it suffices to prove correctness on a 
step by step basis, because no safe action will ever be 
invalidated by some subsequent event. Derecho’s 
protocols are safe in this monotonic sense.   

For example, think about the number of messages some 
receiver has received from a particular sender.  Even if 
the messages are arriving at an immense rate, the count 
of received messages only increases.  Now suppose that 
we take a group of known membership (namely, that 
defined in the current view for the current epoch), and 
impose a round-robin delivery order on the members.  
We can make the rule that a message is safe to deliver 
once (1) every member in a group has received it (and 
if in Paxos mode, has also logged it); and (2) the 
member evaluating the rule has delivered every prior 
message.  This is part of Derecho’s delivery rule, and is 
a good example of a property that, once true, remains 
true. (The full delivery rule contains additional aspects 
that come into play only during view changes.) 

When we set out to implement the Derecho multicast 
protocols in this manner, we were excited to discover 
that one can encode 2PC, aggregation protocols, 
virtually synchronous multicast and Paxos entirely as 
asynchronous monotonic predicates [8], even covering 
failure handling.  Only membership changes pause the 
data flow.  Our API is intended to help applications 

benefit from a similar style of asynchrony and 
monotonic reasoning. 

5 API Goals and Approach 
 “Everything should be made as simple as possible, but 
no simpler.” 
 ― Albert Einstein  

A tension is evident in our goals.  On the one hand, we 
want to support a powerful model and to promote a 
novel style of monotonic deductive reasoning.  
However, we also were intent on omitting extra bells 
and whistles.  Desired is the simplest and most flexible 
API possible: 

• The system should have a hierarchical namespace, 
allowing processes to create/join groups and 
subgroups without name conflicts.  

• The membership of subgroups should be 
coordinated and consistent with the membership of 
parent groups. 

• A joining process should be given a copy of the 
current state (state transfer).  

• Derecho guarantees should be customizable on a 
per-group (or per-set-of-shards) basis.  
 

6 Derecho P2P Sends and Group 
Multicasts 

Given these objectives, we start with the basic Derecho 
API for a single-group application. Consider the 
MemCacheD class outlined in the code sample above, 
which could be used to implement members of the 
“cache” groups in the service shown in Figure 1. Here 
is an example of a point-to-point send to a single 
process running the MemCacheD code: 

auto outcome = g.P2PSend<MemCacheD@put>(who, 
               “John Doe”, 22.7);  

Derecho’s job is to turn this function call into a 
message, and then to send it asynchronously to who. 
The target will then perform an upcall to a 
corresponding handler for put.  The marshalling 
scheme for the function arguments can handle any 
C++17 structure that serializes to a byte vector1. 

                                                           
1 We currently require that the sizes of all objects be 
statically fixed with one exception: if the application 
sends a single argument of type byte-array, we allow it 
to be of variable size. 
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class MemCacheD : public 
DerechoClass<MemCacheD>{ 
  unordered_map<string,double> underlying_map; 
  @P2PEntry-Point void put(string s, double v) 
                                  {code...} 
  @MCEntry-Point void put(string s, double v)  
                                    {code...}  
  @P2PEntry-Point const double get(string s) 
                                    {code...} 
  @MCEntry-Point const double get(string s) 
                                    {code...} 
  serializes(underlying_map); 
  void newView(View& new_view) override {...} 
  MemCacheD(group g) : DerechoClass<...>(g)  
                                    {code...} 
}; 
 
{... 
 
  Group<MemCacheD, CacheLayer ,...> g {  
  [args_for_first], [args_for_second]}; 
 
...} 
Code Sample: A skeleton of the MemCacheD class and 
an example of how it is constructed as part of a group. 

The MemCacheD class defines two put entry points, 
one for P2P requests and one for multicasts. These can 
be polymorphic; any invocation of put must provide 
matching argument types2. The outcome returned from 
a P2PSend is an object that the caller can check for 
errors (e.g. if who fails), and can also be used  to wait 
until the P2PSend is known to be stable.  

The code sample also shows how the top-level group 
(containing subgroups such as the cache nodes) is 
created. Notice that the top-level group has been 
associated with a list of classes, starting with 
MemCacheD. CacheLayer is a second class associated 
with the same group; we’ll use it shortly to illustrate the 
formation of subgroups. The arguments to the Group 
constructor will be passed to the respective constructors 
of the listed classes: first a set associated with 
MemCacheD, then a set for CacheLayer, and so forth.    

Finally, we see that each class defines a handler for 
“new view” events.  Within a process, Derecho 
instantiates each class once for each group or subgroup 
                                                           
2 The example is for communication internal to a 
Derecho application.  Clients external to the Derecho 
application would interact wih it through a standard 
load-balanced RPC layer such as RESTful RPC. 

to which the process belongs.  For each such instance, 
when its group’s membership changes, it will receive 
an upcall listing the members in rank order.   

The MemCacheD class explicitly defines its 
serialization state to be the object called 
underlying_map; it could also have other internal 
state that isn’t part of the serialized state.  A joining 
group member will be initialized from the 
underlying_map of an active member.  Derecho also 
uses the serialization state to compact Paxos logs: a log 
will have a checkpoint (one of these states) and then a 
series of updates. The const annotation on the get entry 
point tells Derecho not to log get operations and is thus 
equivalent to a “ReadOnly” annotation. 

A P2PQuery is similar to a P2PSend, but additionally 
returns a result: 

auto result = g.P2PQuery<MemCacheD@get>(who, 
              “Holly Hunter”); 

The result object is a future: a C++ class that can be 
used to track progress of the query (which is sent 
asynchronously, like the P2PSend) and eventually, to 
retrieve the result.  The result type will be that of the 
handler that accepted the incoming request, and type 
checking is done at compile time.   

These P2P examples have very similar analogues when 
using ordered, asynchronous, multicasts. Here is an 
example of a multicast send to a group of processes 
running MemCacheD: 

auto g = Join<Paxos>(“myGroup”);  
auto res = g.OrderedSend<MemCacheD@put> 
                     (“John Doe”, 22.7);  

First, the application joins a group called myGroup, 
selecting the Paxos protocol (other options being 
AtomicMulticast, and Raw; the latter has minimal 
latency but weak guarantees). As in the P2P case, 
OrderedSend returns a future (res) that can be used to 
wait until the message has become stable (that is, is 
certain to be delivered even if failures disrupt the 
system). 

Had the user specified AtomicMulticast or Raw rather 
than Paxos, the group consistency semantics would be 
configured accordingly. 

A multicast query returns a set of results: 

for(auto res : g.OrderedQuery<MemCachedD@get> 
                    (“John Doe”)) { code... } 

Notice that these two invocations of get actually map 
to different methods: the P2P method in the case of a 
P2PQuery, and the multicast version in the case of an 
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OrderedQuery.  An OrderedQuery is asynchronously 
enqueued for transmission (just like an OrderedSend).  
However, now the invoked methods return typed 
values.  These are automatically marshalled and passed 
to the initiator via P2PSend, where they are collected by 
the result object.  The for loop will iterate over the 
replies as they arrive (should a process fail without 
replying, all views of all groups will adjust to drop the 
failed member, and the result aggregator will just skip 
the failed member).  The caller can track progress 
through res, including determining the view in which 
the Query was done, which member sent each of the 
results, and which ones failed without replying.  This 
model maximizes asynchrony, yet preserves control.  

7 Multi-group Semantics 
Our multi-group approach extends a group by attaching 
a subgroup generator to it, which includes a function 
that maps the view to the desired subgroup 
membership.  A sharded subgroup generator takes a 
function from the view to the number of shards, and a 
second function that, for shard k, returns a vector of 
shard members. Here is an example of a (non-sharded) 
subgroup generator: 

g.generateSubgroup<LoadBalancer> 
  ([](View, ParentGroupState) -> 
   std::bitvec {return {true,true,true, 
   false... }; }); 

Here we see the sharded version, with its two lambdas: 

g.generateShardedSubgroup<CacheLayer> 
  ([](View, ParentGroupState){ return 250; }, 
   [](View, ParentGroupState, shardNumber) -> 
     std::bitvec {return {true/false,...};}); 

Thus with reference to Figure 1: 

1. Each layer shown is a subgroup, or sharded 
subgroup, of the parent group. 

2. For the load-balancer layer, the membership 
function shown above returns a boolean vector 
selecting the first three members of the current 
view for the load balancer role.  In practice, it 
would be unusual to just take the first three 
members this way.  A more typical selector would 
pick members based on the view and other criteria 
(including application-specific data replicated in 
the top-level group).   

3. For the sharded layers, such as the cache, the 
application decides how many shards to use, 250 in 
this example.  The second lambda will be called 
with a shardNumber ranging from 0..249, and for 

each shard, returns a vector designating the 
membership. 

We anticipate providing pre-designed subgroup 
membership selectors for common cases, as well as 
prebuilt subgroup generators.  For example, the 
simplest way of sharding a group is to just assign the 
member with rank k to shard k mod s, where s is the 
number of shards. But if we were to use this naïve 
approach, failure of a low-ranked member will shift the 
rank of any higher ranked member down, and in the 
next view almost every shard would change 
membership!  One can avoid such issues using more 
sophisticated sharding policies, which can also support 
shards of varying sizes (e.g. to handle hot spots), etc.  

Given such an approach, the entire service of Figure 1 
is largely solved.  We emphasize the point simply 
because it is surprising to realize that what would 
traditionally require tens or hundreds of thousands of 
lines of code to implement can be described with just 
tens of lines, and even more so that the solution will 
embody strong consistency and fault tolerance.  
Further, because Derecho itself is so fast, it is likely to 
outperform a typical hand-created version. 

Beyond the Derecho wrapper, what customization logic 
would be required?  For “one-shot” transactions 
(singleton reads or writes), our service might work as 
follows.  A request arrives from the external client, and 
because the load-balancer is a member of the top-level 
group, it knows the shard mapping, and can load-
balance over the shard members.  The request handler 
in the cache layer need only acquire a read lock, read 
the data, and then release the lock.  Write requests 
would be directed to the back-end, where the algorithm 
would first invalidate the cache entries by doing a 
multiquery within the appropriate group (the purple 
ovals in the figure), wait until all read locks have been 
released, and then perform the update itself.  The 
update is just a Paxos OrderedSend in the back-end 
(perhaps followed by a multicast in a cache- 
notification group to push the new value up to the cache 
layer).   We could then extend this to the case of multi-
operation transactions with a final commit, snapshot 
isolation, or other more sophisticated behaviors.   

8 A Step-By-Step Walk Through 
To illustrate how this service would behave, we can 
walk through a typical run.  Some aspects are actually 
implemented in Derecho itself, but are included for 
completeness. 

1) After a data center shutdown, the service is 
relaunched on 1000 nodes, including six that 
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previously held the backing store.  One node is 
started first, and only later are the others started. 

2) The first process to restart recreates the top-level 
application group, which will initially have just one 
member.  It recovers the view sequence used in its 
last run, needed in step 4a.  

The owner designed the service to run at larger 
sizes, so no other action is taken: the service 
isn't  yet ready to activate.  Subgroup selectors are 
called via the new view event handler, but return a 
vector of boolean false, of the same length as the 
top-level view.    

3) More processes start.  Each discovers the active 
service instance and sends it a join request (via 
standard RPC).  This causes a series of new 
epochs, in which batches of as few as 1 and as 
many as 999 are added to each new view.  State 
transfers in the top-level group send an initial top-
level view to each joining process, but again, all 
the selectors return false and no subgroups are 
formed. 

4) As the top-level count reaches 1000, behavior 
changes.  Now the selector methods return patterns 
that populate the load-balancer, cache and back-
end store layers.  (a) The back-end store is 
restarting from a total shutdown, so for each of its 
shards (two are shown in Figure 1) Derecho 
inspects the SSD logs of the last active view of the 
back-end store, which is persistently tracked as part 
of the group state of the top-level view (see step 
2).   (b) Logs are trimmed to include only on intact, 
completely logged messages, discarding partially 
writing suffixes.  The longest of these logs can 
safely be used as the initial state for the back-end 
shard (see the Derecho protocols paper for a 
detailed discussion of this point, which is tied to 
the precise way that Derecho terminates an epoch 
in persistent mode).  (c) Some of the restarting 
shard members may have short logs: ones 
that  crashed in the prior run before receiving those 
messages.  Accordingly, point-to-point sends are 
used to transfer any missing suffix to a shard 
member with a shorter log.  Now the back-end 
shard becomes active and is ready for new 
transactions, or read-requests triggered by cache 
misses. (d) The load balancer, cache and event 
notification subgroups are all stateless and hence 
are initialized using constructors. (e) The load 
balancer exposes IP endpoints and registers them 
with the DNS.   

5) Incoming requests will be vectored using Derecho 
point-to-point and RPC messaging, directed to the 
cache, or back-end, as per Section 2.  Because 

steps 4a-4c were concurrent, a request could be 
forwarded by the load balancer before the target is 
finished initializing.  However, the rule of Section 
3 ensures that if so, the delivery of that request 
would delay until startup finishes (the restart 
actions required occur in the new view event 
handles, hence the new view event doesn't end 
until recovery is finished). 

Notice that very little application logic enters into any 
of the startup steps, or even into the normal routing of 
requests once the service is operational.  Nonetheless, 
there is additional application-specific decision making 
to be done.  This relates to the longer term life cycle of 
the service, and in particular, its behavior when 
degraded by failures. 

The simple case involves faults that leave all shards 
populated but simply reduce the shard sizes.   For the 
stateless roles, one option is to hold some nodes in 
reserve as spares.  For example, we could use 995 of 
our thousand nodes for the running service, but hold 
back 5 as hot standby backups.  If one is needed, state 
transfer would initialize it.  In fact for our stateless 
layers this can work even if the impacted shard became 
totally depopulated: in that case, it would restart with an 
empty initial state. 

But crashes that depopulate shards in the back-end will 
require more thought.  Here, loss of a whole shard 
might require temporarily shutting down aspects of the 
service touching data on that shard: otherwise, we lack 
required strongly consistent state.  Because the top-
level view is known to all members of the service, the 
needed rule is easily implemented in the load balancer. 

9 Would Such a Service Perform Well? 
We emphasized earlier that Derecho achieves 
remarkable speedups compared to prior group 
communication systems, but a hand-coded design might 
lack the enclosing top-level group seen in Figure 1.  
Could the top-level group become so large as to result 
in high overheads?   

The answer is that it will not be an issue.  First, notice 
that in our service, the real “work” occurs in small 
groups of just a few members, via point-to-point sends 
and RPC operations and subgroup multicast.  Derecho 
at that scale can run at the full line rate: making 4 or 8 
replicas costs almost no more than just 1, and the 
system sustains throughputs as high as 115 Gb/s with 
single-event latencies as low as 2µs on 100Gb/s RDMA 
[8].  For a service like the one in a Figure 1, this would 
be an impressive level of speed, far higher than in any 
prior system of which we are aware.  At the backend, 
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update rates will be limited by the speed of the 
persistent storage substrate.  On our cluster, the 
Derecho Paxos is about twice the speed of Corfu and 
about 4x faster than the Azure fabric storage solution in 
its Paxos mode.  Further, while those prior solutions 
used protocols that slow down sharply with scale, the 
Derecho Paxos protocol has flat performance, with no 
slowdown evident even in groups of 16 or more 
members. 

What about communication loads in the top-level group 
itself?  The Derecho protocols scale to large groups 
without much loss of performance (in one experiment 
on the LLNL Sierra cluster with 20Gbps Infiniband 
(technically, 40Gbps but using a NIC limited to 20Gbps 
per socket), Derecho ran at 18.5Gbps in 4-node groups.  
At 64 nodes, only a 25% slowdown was seen, and with 
256, multicasts were still running at   6Gbps), hence the 
top-level group has capacity for a great deal of traffic.  
But in this design, the top-level group would see little 
traffic, mostly pertaining to small “metadata” updates: 
membership tracking, updates to parameters used to 
carry out the sharding policy, etc. Even configuration 
changes need not involve the top-level group; for 
example, updates to load-balancing parameters only 
require multicasts in the load-balancing group. 

Derecho recomputes subgroup and shard membership 
when the top-level group view is updated (on a join, 
leave, failure, or if the application requests a new view 
to trigger a reevaluation of membership).  This process 
completes in 100-150ms.  With huge numbers of 
members, the frequency of such events might become 
an issue, but Facebook’s blob store [1] and its Tao 
systems [33], including caches, are described as having 
just a few thousand members per datacenter.  When 
Google first described Chubby [6] the service was 
purely a back-end one with just 5 members or so, but 
since then Chubby has added a caching layer similar to 
the one we’ve described.  Thus at the normal scale of 
today’s important cloud platforms, our server should be 
highly competitive.   

It is interesting to realize that even with this very 
compact API, Derecho is doing a great deal of work on 
behalf of the application.  In summary: 

• Derecho is managing the entire multi-group 
structure, using just a few lines of definition and a 
few pre-constructed subgroup membership 
selection functions. 

• Derecho initiates state transfers to new members, 
automatically serializing the state of some active 
member and using it to initialize the new member. 

• After a complete shutdown of a group, Derecho 
will reinitialize it, either to the ground state or by 
loading state automatically from the appropriate 
Paxos log (this involves loading a checkpoint and 
then replaying subsequent updates). 

• Derecho implements the multicasts needed to 
replicate state in a consistent manner, moving data 
with a zero-copy protocol that runs out of band 
from the Derecho control logic. 

• The system manages membership in a consistent 
manner, enabling safe system-wide use of the top-
level membership and subgroup membership in 
user code. 

• Views are consistent and reported to all group 
members, which can use the data in them and the 
ranking on members to subdivide work or take on 
distinct roles. 

• Failure handling is automatic, and causes a 
graceful cleanup and finalization of any multicasts 
in progress (those that need to be reissued are 
automatically restarted in the next view, preserving 
the sender ordering). 

10 Insights Gained Developing Derecho 
We conclude with a review of insights gained designing 
the new Derecho API. 

10.1 Runtime polymorphism via static analysis 

 “The victorious general makes many calculations long 
before the battle is fought.” 
― Sun Tzu 

The Derecho API looks polymorphic, but this is 
actually an illusion.  Polymorphic APIs are convenient, 
but polymorphism is expensive at runtime in languages 
like Java and C#.  To offer polymorphism cheaply we 
use a C++ 17 form of compile-time reflection called 
variadic templating, creating a form of stub that handles 
all the polymorphic aspects of the call statically.  At 
runtime, the stub already knows how many bytes will 
be sent, how much memory will be required, and how it 
will be laid out; it simply stores arguments into the 
memory region (a step that involves copying) and 
transmits.  Derecho will then unpack the incoming 
message on the remote side, passing the handler 
pointers right into the message object.  Marshalling is 
avoided if a caller specifies a single byte-vector 
argument. For this case, we transmit data unmarshalled, 
and deliver it exactly as received, with zero copying.    

All type checking occurs at compile time.  The Derecho 
Join protocol “knows” the full set of APIs and can 
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confirm that the running group is using the same 
version of the API as the joining member.   Static 
analysis also lets us determine the sizes of marshalled 
objects: Derecho can preallocate and pin memory 
before the memory is needed, avoiding last-
microsecond delays.  

10.2 A control-plane / data-plane separation 
demands asynchrony 

“E la nave va.” (“And the ship sailed on.”) 
 ― Frederico Fellini 

The key to performance is involves ensuring that the 
steady transmission of data is never disrupted by 
control actions such as multicast ordering decisions.  
Our API treats application code as a control plane, 
allowing the application to asynchronously stream data 
and to asynchronously processing incoming messages.  
An application with a heavy, steady data flow (such as 
an online Internet of Things system, or a television 
server) can thus continuously move bytes while 
tracking the status of the data flow in near synchrony, 
learning of events a few microseconds after the bytes 
actually arrive.   In this way the RDMA data plane is 
kept continuously active. Disruptions to the data flow 
only occur on membership changes, or if the 
application introduces additional locking. 

10.3 Make (but don’t rigidly keep) promises 

“Among the fields of gold, I never made promises 
lightly, and there are some that I’ve broken.” 
― Sting 

Asynchronous executions confront a peculiar tension.  
Many actions need information that, in an asynchronous 
run, won’t become available until later.  If one dives 
deep into past implementations of multicast and Paxos 
libraries, these are common sources of synchronization 
barriers that can limit performance.  For example, in the 
Vsync library, it is not unusual for a thread to be 
created just to wait for information such as the actual 
membership view in which a multicast was sent (for 
example, this information is needed to construct the 
reply iterator used in a query). 

In Derecho, we represent such information as a future 
or promise: a pointer to an object that will be filled in 
later from a data structure that is known to be correct;  
“As soon as it is known, you can find out from whom to 
expect replies.  Iterate to access those replies.” Only 
failures trigger exceptions in which a promise might not 
be fulfilled. 

A query that will iterate over results is actually just one 
of many cases where futures arise within Derecho, and 

we believe this will also be the case for applications 
layered over the Derecho platform.  For example, a 
multicast sender supplies a future that the Derecho 
platform calls each time it requires the next message 
from that source.  If the sender is sending continuously, 
it always has a next message; if not, it sends a null 
message.  By delaying the decision until the message is 
actually needed by the transmission layer, we maximize 
the likelihood that if data is available to send, we won’t 
needlessly force the sender to wait until its next turn. 

10.4 Monotonicity facilitates reasoning about 
correctness 

“To know what you know and what you do not know, 
that is true knowledge.” 
― Confucius 

Derecho encourages developers to leverage knowledge 
by designing algorithms that steadily gain increased 
knowledge as they execute.   

Monotonic safety, and more broadly, the design of 
systems that employ monotonicity as a design principle, 
pervades our thinking in Derecho itself, and we believe 
that applications will similarly rely upon this style of 
computing.  Monotonicity does force the developer to 
select a manner of expressing code that will lend itself 
to a monotonic implementation, but the benefit is that 
once expressed in this manner, reasoning about the 
correctness of a solution is reduced to step-by-step 
proofs of safety, as mentioned above.    

Earlier we illustrated the idea of monotonicity using 
examples such as counters that steadily increase within 
an epoch, resetting only when a new epoch starts.  This 
is just one of many forms of monotonic information.  
The membership views of the groups used in an 
application are monotonic and consistent across all 
members, enabling sophisticated behaviors that use 
membership as an input, enabling the load balancer of 
Figure 1 to behave consistently with respect to shard 
mappings.  When data is sent asynchronously, Derecho 
preserves sender ordering and also ensures that the 
receiver is in a knowledge state at least as complete as 
that of the sender.  If the sender has reacted to a failure, 
the receiver will also know about it: monotonicity! 

Monotonic designs leverage a powerful theory: the 
logic of knowledge, in which one reasons in terms of 
information built up incrementally over time, as it runs.  
There is a natural fit between the intuition used when 
creating a distributed system and this notion of 
monotonic knowledge: a system runs, and the processes 
within it learn more and more about one-another’s past 
states.  While it is impossible for asynchronous 
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processes to have instantaneous shared knowledge of 
each-other’s states, a monotonic perspective in which 
reasoning and decisions (such as the order in which to 
deliver a message, or the point at which it is safe to 
deliver a message) are based on this evolving frontier of 
information that is stable and will not change offers a 
natural basis for safe protocol and application design.  
Indeed, arguably, monotonic knowledge is the only 
form of knowledge with this property, and hence 
protocols such as the Paxos protocols, or the virtual 
synchrony ones, were always fundamentally concerned 
with monotonic safety, whether previously expressed 
this way or not.  By making that linkage explicit, we’ve 
ended up with simpler protocols, and by encouraging 
applications to follow our example, those will be easier 
to conceive, implement, and prove correct. 

10.5 A group is a distributed module 

 “I've looked at clouds from both sides now. From up 
and down, and still somehow its cloud illusions I recall. 
I really don't know clouds at all.”  
― Joni Mitchell 

The modern cloud treats cloud-hosted services as 
modules, in the sense that the external client accesses 
them using load-balanced RESTful RPC (or a similar 
method) and is oblivious to implementation details such 
as how many instances are running, where they run, or 
how they coordinate their actions.   

Derecho treat the group as a modularity construct even 
relative to other components of the same application: 
each group has a visible membership, but a hidden 
internal state and algorithm.  The broad principle is that 
the group implementation owns its state and carries out 
needed coordination.  Non-members can talk to 
members, but cannot directly access or mutate state. 

This policy has non-trivial implications:  

1. All group members must implement the identical 
functionality.  Derecho checks this, to the extent 
feasible, by verifying that a joining member 
implements the same type signatures and software 
revision level as other members.   

2. Only a group member can initiate group multicasts 
or multicast-queries.  For a non-member to talk to a 
group, it must use a P2P request to some member, 
which will then need to relay the request on behalf 
of the real caller.   

3. Group membership information is shared, hence 
point to point communication via P2PSend and 
P2PQuery is straightforward. For consistency, if a 

message was sent in view K, it will be delivered in 
view K’ ≥ K.  

10.6 Reduce complex join/leave/failure scenarios 
to sequences of safe steps   

“Success consists of going from failure to failure 
without loss of enthusiasm.” 
― Sir Winston Churchill  

In Derecho, we view failures much like other kinds of 
state-mutating events, using groups as a barrier within 
which the module can contain failures, replicate state to 
ensure that needed information will still be available, 
compensate, and restore functionality.  By treating 
failures as events, we reduce complex event sequences 
to a series of new-view upcalls.   Each successive event 
can be handled one by one, and the proof obligation is 
reduced to that of showing a successive of single-step 
safety properties.   In our experience, distributed 
applications are easier to design if the program only 
needs to handle one event at a time.  Complex 
situations do arise, yet the developer isn’t forced to 
reason about multi-event execution cases. 

10.7 Trust members to detect failures 

 “Ask not for whom the bell tolls.  It tolls for thee”. 
― John Donne 

Our failure model is trusting: components of the system 
sense and report failures, and we immediately act on 
those reports.  In some sense, just as a process can leave 
voluntarily, it can also be asked to leave by any other 
component that has reason to suspect an issue.  Of 
course we wouldn’t be able to sustain a high rate of 
mistaken detections, but in a well-tested application, 
such determinations won’t often be wrong.  To avoid 
risk of partitioning (split-brain behavior), the top-level 
group must retain a majority of its most recent 
membership to switch to a new epoch, and otherwise 
quickly shuts down. 

10.8 One group can host another 

“Any problem in computer science can be solved with 
another level of indirection.”  
― David Wheeler 

Derecho seems to be the first system to offer its full 
semantics through a subgroup API.  While prior 
systems had subgroup features, they offered very 
reduced subsets of the full-group functionality.  
Although our choice is aesthetically appealing, and 
responds to a style of application development needed 
in cloud environments, Derecho’s  monotonic design 
made it easy to offer this layering: all that was needed 
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was a form of indirection over the basic Derecho logic 
(since the protocols are presented elsewhere, the reader 
of this paper should either trust us, or refer to [8] for 
details).  The deeper insight is that monotonic protocols 
lend themselves to stepwise refinements in which one 
layer extends a preexisting one by adding additional 
logic while preserving the safety and liveness properties  
of the original code.  

 

11 Geo-Distributed Services 
“Don’t try to do everything. Do one thing well.”  
 ― Steve Jobs 

Modern cloud computing systems run in wide area 
deployments and hence the issue arises of whether 
direct support for georeplication to Derecho would 
break the relatively elegant and simple datacenter 
model we’ve described here.  This is really a topic for 
future work, but we do want to explain why it seems 
feasible to add such a capability without harm to the 
system. 

RDMA datacenter systems benefit from uniformly low 
latency and zero-copy RDMA, whereas enterprise 
WAN systems have high latencies and run over 
specially-tuned versions of TCP.  Further, rather than 
allowing casual end-point to end-point communication 
(which can create a high level of redundant WAN 
traffic), it is important to deduplicate and funnel WAN 
traffic through some form of gateways. At WAN scale 
cryptographic data protection is increasingly necessary, 
whereas cryptography can be avoided in zero-copy 
RDMA settings that run over trusted hardware.  Thus, 
we believe that for the foreseeable future wide-area 
services will need to operate hierarchically: by defining 
data center service instances and then interconnecting 
them via wide area network links, with those links used 
only by the gateway service representatives.   Google’s 
Spanner [32] is a state-of-the-art example of the model 
we have in mind.  

One can easily imagine a new form of WAN structure 
that could be introduced as a geo-scale top-level group 
construct in Derecho, but differing in its capabilities 
from the current top-level group.  This layer would add 
WAN-specific functionality, but could also remove 
some unnecessary or inappropriate existing 
functionality.  For example, there is no reason to track 
fine-grained membership of a service running on the far 
side of a WAN link: all that matters is to know the TCP 
address of the gateway processes.   

In our future work, we are motivated by scenarios that 
might extend Figure 1 to also support geo-scale 

caching: rather than caching San Francisco data only in 
a California datacenter, the cache layer in Spain, or 
Kenya might also cache read-only versions of data 
which is primarily hosted elsewhere, either holding true 
read locks or with some form of timed leases (for the 
latter, Spanner’s concept of true-time would be an 
example of functionality that a geoscale top-level group 
could support).  It would also be interesting to explore 
ways of dynamically migrating the hosting role across 
geo-distributed datacenters.  

12 Other Relevant Prior Work 
Theoretical work on monotonicity, notions of 
knowledge in distributed systems, and the power of 
reasoning about stable properties is a rich area explored 
by many prior efforts.  Well known examples include 
the knowledge logic of Moses and Halpern[21] and the 
stable predicate detection research done by Marzullo 
and Neiger[11] and Marzullo and Sabel [35]. 

The DHT model emerged when researchers extended 
the MemCacheD [24] API for use in distributed 
services.  Widely known examples include CAN [31], 
Chord [5], Pastry [27], Dynamo [12]; all replicate 
(key,value) tuples within some form of shard to which 
the key maps.  Derecho could standardize the 
communication infrastructures of such systems.  

Particularly relevant is the FaRM DHT [14], which 
builds a DSM that employs RDMA for high 
performance and implements what one can think of as a 
distributed transactional memory model.  Our Derecho 
protocols equal FaRMs performance for unicast, and 
introduce multicast, which FaRM lacks.  Unlike FaRM, 
however, Derecho also exposes application structure in 
useful ways: every member knows the membership of 
every other group and shard, state transfer is automated, 
and data can be replicated where desired.  This enables 
the developer to build a scalable storage structure 
specialized to a particular use case, arranging that 
computational tasks will have needed data directly in 
local storage. In contrast, FaRM only has a single 
sharded structure, and runs some risk of unwanted 
copying because data is stored at the location selected 
by the DHT hash function, which might potentially 
select an inconvenient DHT node.  For small objects 
this wouldn’t matter, but if the data is very large, the 
extra copying is a potential issue.  

The implementations differ, too.  FaRM is optimized 
for transactional key-value operations, implemented 
using a novel lock-free approach that guarantees 
atomicity even if a request updates or reads many keys. 
Derecho does have totally ordered and persistent 
updates, but it lacks built-in transactions that would 
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require multiple multicasts, because we perceive 
transaction mechanisms as a functionality that only 
some users would want. The deeper distinction is that 
we view Derecho as a library for structuring 
applications into groups and replicating data, while 
FaRM is intended as a scalable DSM for applications 
that operate more autonomously, collaborating through 
FaRM as a shared intermediary.   

Publish-subscribe was first proposed in the 1980’s, and 
early implementations mapped publish-subscribe 
communication patterns to group multicast: V [26], the 
Isis Toolkit [29], and TIBCO Rendezvous [19].  
Unfortunately, those early implementations scaled 
poorly, and it was ultimately determined that they 
overloaded IP-multicast routers and create instabilities 
[9].  Modern pub-sub technologies like Kafka and 
OpenSplice run primarily on unicast TCP.   By 
implementing our own scalable multicast layer over 
unicast RDMA, we avoid these pitfalls, and because 
Derecho has efficient support for subgroups, we offer 
functionality not seen in prior systems.  Pub-sub would 
be a natural functionality to layer over our API.  

13 Conclusions 
Derecho is a library for RDMA group communications, 
offering exceptionally high performance through a 
control/data separation.  The goal is to extend today's 
cloud computing model by making it much easier to 
build cooperative distributed services with fault 
tolerance and strong consistency.  Complex, large-
scale, high-performance application can be created with 
a few lines of code. 

Derecho complements today’s prevailing cloud 
programming model, which favors stateless 
applications run on behalf of a single external client (a 
mobile device, a web browser, etc), which store data in 
a shared persistent structure such as a key-value store or 
backend database.  Growing availability of RDMA, 
including the new RDMA-on-Ethernet option (RoCE) 
should enable Derecho’s use in a growing range of 
settings (a software emulation of RDMA called 
SoftRoCE would permit use of Derecho in non-RDMA 
settings, albeit with heavy performance impacts). The 
project is open-source.   

Here, we focused on features that automate generation 
and management of multi-group structures.  Our work 
is also unusual for mapping all communication to zero-
copy RDMA and for promoting monotonic reasoning as 
a design tool: this allows us to promote asynchrony 
while also supporting a style of reasoning in which one 
thinks about behavior and correctness in a rigorous 
step-by-step manner.   

Our open-source code-base is hosted at 
Derecho.codeplex.com. 
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