
Dash: A Low Code Development Platform for AI
Applications in Industry

Yifan Wang
Department of Computer Science

Cornell University
Ithaca, New York, USA

yw2399@cornell.edu

Weijia Song
Department of Computer Science

Cornell University
Ithaca, New York, USA

ws393@cornell.edu

Yuting Yang
Department of Computer Science

Cornell University
Ithaca, New York, USA

yy354@cornell.edu

Charif Mahmoudi
Siemens Corporation, Technology

Princeton, New Jersey, USA
charif.mahmoudi@siemens.com

Shashank Shekhar
Siemens Corporation, Technology

Princeton, New Jersey, USA
shashankshekhar@siemens.com

Kenneth P. Birman
Department of Computer Science

Cornell University
Ithaca, New York, USA

ken@cs.cornell.edu

Abstract—Low Code Development (LCD) is a popular way
of creating database applications owing to its simplicity and
the resulting improvement in accessibility: the developer uses
gestures like drag and drop with icons representing existing
programs or data sources, then employs pull-down menus for
customization, and hence rarely needs to write new software.
Our work is motivated by a recent trend that seeks to move the
LCD methodology into AI settings, such as for product inspection
in industrial shop floors (factories). We start by showing that
LCD-created AIs (LCDAIs) for time-pressured tasks often need
so much customization that the deployment engineer ends up
needing a deep understanding of the application, subverting
the LCD philosophy. Dash introduces a new LCD platform
that focuses on LCDAIs for complex, time-sensitive distributed
systems. Beyond these basic goals, the technology optimizes both
development and deployment.

Index Terms—low-code programming, cloud computing, edge
computing, artificial intelligence

I. INTRODUCTION

Low-code development has obvious appeal for many end-
users. Rather than viewing coding as a prerequisite for ap-
plication development, LCD systems treat software creation
as a task centered on the creation of a data-flow logic dia-
gram. Developers drag, drop, and connect provided modules,
or customize generic ones using pull-down menus. Some
represent input or output; others correspond to standardized
computational actions.

LCDAIs bring artificial intelligence into what traditionally
would have been a data-centric task. In a typical use, an
LCDAI might capture imagery and then leverage ML for
image segmentation, identification of objects, scrutiny of the
identified objects, and so forth. This lets the deployment
specialist focus on the core logic of the application without
needing to create new AIs, dive deeply into data science or
machine learning, or perform other tasks that are typically
viewed as part of the coding process. The demand for such
solutions is strong, and software vendors are releasing a wave
of LCD platforms, such as three we will look at more closely:

Nvidia Composer [1], Azure ML Designer [2] and AWS
SageMaker Canvas [3].

LCDAI creation generally involves two stages. First, an AI
expert (using LCD platform tools but also doing a fair amount
of hands-on parameter tuning and perhaps some actual coding)
creates an AI application as a data-flow graph. The LCD
platform is helpful, but substantial expertise is still required:
this AI expert will be an expensive, highly trained individual.
The resulting LCDAIs are not, however, ready for instant
deployment. Instead, they should be viewed as templates that
will often need further customization at deployment time. A
stage in such a template, i.e., a node in the data-flow graph,
designates the AI programs to run, the names for file outputs
and inputs; edges represent data flow.

Accordingly, when it is time to install the LCDAI and
configure it for a specific use case, more work will be required:
in effect, the template needs to be instantiated. We consider
this to be the job of a deployment specialist, who must fine-
tune the LCDAI to create a customized version optimized for
use in a specific setting (such as a parts inspection station on
a shop floor). Customization may involve designating specific
cameras, selecting the best AI model for the general-purpose
AI components in the application, fine-tuning to deal with
specific lighting or conveyor-belt speeds or other, etc.

To maximize the return on investment, any company selling
LCDAI solutions will want to sell many instances of each of
its LCDAI templates, and hence aims to hire a small number
of AI experts, but then to sell large numbers of instances.
Because we are quite far from a science of self-configuring
and hence full-automated LCDAI deployment, the ratio of
deployment specialists to AI experts would be high. The
vendor will instead aim for a semi-automated LCDAI template
that guides the deployment expert through the needed tasks, in
the hope of minimizing the frequency of escalation, namely
tasks for which the AI expert themselves need to become
directly involved.

Our work started with a review of today’s commercial



options. We determined that LCDAI creation falls short in this
last respect by requiring too much back-and-forth in the two-
step development: too many issues require hands-on attention
from the AI expert. This leads to the three areas in which our
new system, Dash, innovates:

1) Dash provides better AI development support for the AI
expert, particularly in the area of AI model selection.

2) Dash recognizes that the AI deployment specialist is
not a coder or AI expert, and provides a friendlier
deployment experience that includes scripted support for
fine-tuning an AI (for example by training on example
images that accurately reflect lighting or other local
conditions) without forcing the deployment specialist to
deeply understand how ML training is implemented.

3) Dash provides better runtime support, enabling field di-
agnosis and correction of problems that might currently
occur to the AI expert.

The remainder of our paper is organized as follows. Section
2 amplifies on these points, illustrating them in the context
of a product inspection station for a factory (a ”shop floor”
scenario, to use standard terminology). This leads to a restate-
ment of the challenges confronting the current generation of
LCD platforms when applied to LCDAI creation. Section 3
reviews three popular LCD platforms relative to these goals
and challenges. In Section 4, we introduce the architecture and
features of Dash followed by a proof-of-concept evaluation in
Section 5. Section 6 summarizes our plans for future work,
and Section 7 concludes the paper.

II. A PRODUCT INSPECTION STATION

To illustrate the challenges, consider the creation of a defect
detector using photos taken from a conveyor belt carrying
components from a Computer Numerical Control (CNC) fab-
rication unit. Often, the CNC machine takes input materials
like sheets of metal or plastic and uses a cut-and-stamp process
to create parts that will become input to later processes. To
minimize waste, a single piece of metal or plastic will often
yield many parts, and these parts may be of different types.
Thus the task arises of sorting the parts and assessing each for
quality.

The LCDAI task we considered arises when a batch of
parts in different shapes arrives at an inspection station on
a belt, with each part potentially having its own distinct part-
specification. The defect detector needs to first recognize parts
by their shapes, then route each image to a specialized AI
(or AI pipeline) designed to verify that the part is properly
fabricated. For example, if the part has holes drilled in it,
the LCDAI first checks that the part as a whole was properly
formed, then checks that the holes are in the proper locations,
and then checks for clinging chaff or cracks. These tasks
are most effectively performed using different machine vision
techniques, hence we will often expect that each check should
be done by a separate AI (running as a separate process). In
effect, the LCDAI will take the form of a distributed pipeline
or graph, with the first step determining part shape, and
subsequent steps doing shape-specific tasks. The distributed

nature of this LCDAI lends itself to improved performance
from parallelism and because each subtask is performed by
a different stage, can even draw on different ML packages:
perhaps, TensorFlow [4] for one, PyTorch [5] for another,
etc. Thus an LCDAI will often be a distributed program,
and will need to be mapped to suitable hosts. The AI expert
will create a flexible template able to accommodate a variety
of configurations, but even the number of part inspection
pipelines will depend on the details of the use scenario.

Accordingly, the template will include meta-logic, such as
”foreach” loop that in fact loops over information obtained
during deployment: when the deployment specialist is given
the specification of the CNC output, we learn how many
distinct parts are being created, how each looks, and which
quality checks to perform.

The AI expert would start by selecting or creating a general-
purpose AI for classifying parts: given an image of a bin
holding a mixture of parts, this entails using image recognition
to figure out which part is which (there might even be a prior
step of pushing the parts around to ensure that they are lying
flat in a single layer, rather then being piled one on another).

Next, for each part that was identified, the LCDAI would
route the image to the corresponding quality assurance and
defect analysis pipelines: the LCDAI would be a graph with
one of these pipelines per category of parts.

From this example, it should be clear that the template
created by AI experts leaves many unfinished LCDAI ”con-
figuration” tasks. These are intended to be performed by
the LCDAI deployment specialist: a person who understands
the shop floor domain, but in principle is not trained in
coding and related tasks. Thus it is only during deployment
that inspection-station-specific considerations enter the picture.
For example, the actual parts that might be examined at
one station using this template could be different from at
some other station (perhaps one is fabricating small stamped
metal parts and another, larger molded plastic parts). Vision
tools often must be fine-tuned to deal with color contrasts,
lighting, possible object orientation, the possibility of partial
occlusion (one part that happens to land on top of another),
etc. Indeed, many cameras need to be configured to tell the
camera itself what spectral settings to use (some flaws are
much more visible in UV light, or infrared light, or with
polarization filters). Some devices maybe used only as needed:
an ultrasound or X-ray unit, for example. The template will
thus contain general purpose AI modules that need to be fine-
tuned by the deployment specialist who will participate in
setting up the inspection station on the floor shop.

The overall approach thus poses three kinds of challenges.
• During the AI creation stage, the AI expert will be

faced with a lack of “compositional” off-the-shelf tools.
Knowing the best-of-breed solutions for each subtask
doesn’t imply that template creation will simply entail
snapping the stages together like lego parts. A task like
image segmentation (taking a photo and finding objects
within it) might not be able to send its output to a follow-
on task like object identification without work to ensure



compatibility between earlier AI stage and the follow-
in stage, in the sense of data being passes from one
to the other. This entails making choices about image
sizes, resolution, file formats, spectral data, and lighting
assumptions. It is not uncommon to introduce scripting
or coding to transform from one format to another, for
example to change the resolution of an image. Work
is also needed when parameterizing the LCD pipeline:
each step must run fast enough for a given task and yet
also must achieve required accuracy. Like any program,
a templated LCDAI would need to be tested, and this
entails mocking up some inspection stations, creating
various scenarios, deploying the LCDAI and making sure
it runs fast enough and achieves adequate accuracy. All
of these actions require deep insight into both the LCD
candidate and the application.

• No two factories are created the same, and the cus-
tomizations needed during deployment may involve a
wide range of ”runtime” considerations reflecting physi-
cal conditions on the shop-floor. In today’s approach to
AI creation, these physical constraints imply that the AI
expert must assume a hands-on role in deployment, look-
ing for an existing model with the proper characteristics
and creating a new one if needed. Our objective is to treat
customization as part of a two-stage activity in which the
second stage can be performed by a deployment specialist
who wouldn’t be trained in the AI technologies the AI
expert will have selected, and wouldn’t be able to create
code fragments – even simple scripts that simply resize
a photo. Lacking specific attention to such matters, each
deployment will encounter a dozen (or even dozens) of
such customization needs, and each time the deployment
specialist will end up escalating and waiting for help from
the AI expert.

• Mistakes and surprises are inevitable in any software
undertaking. There will often be a need to troubleshoot
or even ”debug” the customized and deployed LCDAIs
in the actual factory. Again, we want to view this as
a routine part of the undertaking, and hence we would
want to do so without breaking the LCD model. In
our two-step methodology it is the deployment specialist
and not the AI expert who must “installs” (instantiates)
the template, and would become aware if the resulting
LCDAI is not sufficiently fast, sufficiently accurate, etc.
While major issues should escalate to the AI expert,
minor configuration errors should be resolvable without
requiring expert help.

Our project, Dash, aims at all three challenges described
above. This was a large set however, and we see Dash as
a multiyear undertaking that will yield a large prototype. The
present focuses mostly on the experience of the AI expert,
with follow-on papers planned that will do deep dives on
other aspects of the challenges. Dash itself is intended to be a
complete system: a fully realized research prototype suitable
for deployment and experimental use in real settings, but not a

product that we would sell: the hope is to learn to create such
a product, but to focus on fundamentals and leave ”polish”
such as fancy GUIs for future commercial follow-ons.

Accordingly, this paper focuses on Dash’s roles during AI
creation and how the AI expert can anticipate and facilitate
the deployment process, emphasizing mechanisms that free the
deployment specialist from the need to do extensive coding or
needing to deeply understand how the LCDAI works. At the
same time, Dash is intended to be a component of a software
ecosystem. Specifically, our work assumes that a shop floor
would typically have a cluster of standard compute servers
on which data and computation mostly occurs, configured as
an AI hub. Product inspection stations and other sensors or
actuators (such as robot arms with their own robotic control
units) would connect to the hub over standard fast, low-
latency, networking technology. The assumption that the edge
system is a reasonably powerful cluster allows us to assume
that the LCDAI applications Dash generates will run in a
standard ”scalable edge computing” execution environment
that can also include file systems, database systems, standard
connectors such as Kafka [6], cluster management tools like
Kubernetes [7] or Apache YARN [8], or entire data analytic
stacks such as the Apache framework. On the other hand, the
edge compute cluster will not have the incredible compute
power of a full-blown cloud: it might have 2 or 4 servers,
whereas a cloud could have hundreds of thousands.

The Dash prototype works particularly well over Cascade,
Cornell’s new data backplane and compute-hosting platform
[9]–[11]. Cascade was created to host time-sensitive AI tasks
on edge clusters of the sort just described, hence given
sufficiently performant AI and adequate low-latency band-
width, Dash on Cascade can offer unified development and
deployment environment appropriate for the shop-floor setting.

What timing constraints are seen in our defect detection
example? Clearly, inspection needs to be completed while
the product is still within the inspection station, and if a
malformed part should be removed from the conveyor belt the
robotic arm that will take that action needs to be in motion
soon enough to grab the part while it is within reach. Even
this example highlights a tradeoff: higher-resolution images
are larger, and hence will take more time to transmit, hence
potentially slowing the peak speed of the conveyor belt. The AI
expert will ultimately need to “control” those choices. Later,
though, at runtime, one can image a deployment that fails to
satisfy implicit assumption the AI expert made: perhaps, they
developed and tested on dedicated hardware but the compute
servers used in the deployed setting are actually shared, or
has a slower network or CPU, or there is some other relevant
difference. Some problems should simply be reported to the
deployment engineer; some may need work to fine-tune the
LCDAI in a way anticipated by the AI expert, and a few might
require escalation to that AI expert. Dash does not address all
such cases today, but our vision and research plan includes
tackling these and trying to automate as much as feasible,
using an LCDAI mindset throughout.



III. POPULAR LCDAI PLATFORM REVIEW

Before assuming that a new kind of LCDAI platform
is needed, we reviewed popular LCDAI products relative
to our target setting: Microsoft Azure ML Designer, AWS
SageMaker Canvas and Nvidia Composer1. We consider three
perspectives: runtime environment, image data support, and AI
programming.

A. Application Service Environment

A significant differentiator between these products involves
the servers on which the generated application runs. Designer
and Canvas are cloud-based solutions, integrated deeply with
the respective cloud infrastructures. Composer, in contrast, tar-
gets a containerized deployment that might run on a machine
external to the cloud.

Applications developed using Designer and Canvas are first
built in the LCD style outlined earlier, then deployed by
moving virtual machines into the cloud environment: Azure or
AWS respectively. The cloud makes deployment easy: users
only need to specify the target virtual machine name and with
a few mouse clicks, the application can be up and running.
However, this simplicity comes at a cost: high latency. For
our running defect detection example, in a typical shop floor
setting the image analysis stage must complete within a few
tens or hundreds of milliseconds to ensure that the robot arm
positioned a meter down the conveyor belt will have time
to position itself to pick up defective parts before the part
moves further down the conveyor towards the next stage in the
manufacturing process. Designer and Canvas offer no explicit
modelling of time and make extensive use of cloud services
that themselves lack real-time functionality. The AI expert
lacks the “hooks” that would be needed to describe deadlines
or priorities, and lacks ways to ensure that deadlines will be
respected.

Composer is less specific to cloud environments: It outputs
containers that can be managed by schedulers such as Ku-
bernetes or Apache YARN. This decision, however, brings a
different set of limitations: Composer must assume less about
the runtime environment than Designer and Canvas are able
to, and hence the deployment engineer will need hands-on
involvement if the LCDAI will interact with services of the
kinds we find in general clouds. The consequence is evident
when we think about easy of deployment: to install this sort
of LCDAI, the deployment specialist would often need a deep
understanding of the logic of the LCDAI in order to wire it
to the appropriate local files, databases, and other services.

B. Support for Large Image and Video Data Objects

Factory AI applications require large inputs (videos, photos,
ultrasound, etc) [12]. Typically one attaches the selected
imaging devices to a dedicated hosting computer running an
RTOS, with dedicated high-speed connectors and a specialized

1Notice that we are not considering graphical AI builders such as the Spark
or Apache application editing GUIs because both focus on assisting code
creators, rather than LCD development. Similarly, we do not consider database
visualization tools because those focus on data analysis, not AI actions.

camera-control application written just for the purpose. These
RTOS hosting units are limited to managing the device, doing
basic filtering tasks to discard unwanted images, and uploading
“interesting” ones. Heavier tasks such as the AI ones just
listed will thus run on a nearby cluster hosting the LCDAI
pipeline, accessible over a wired optical network with gigabit
bandwidths and low latencies. One can see why this should
work, but none of the three LCD AI products we examined
assumes this deployment style. Thus the deployment expert
would be involved at every step: establishing connectivity,
deciding how the LCDAI will be mapped to cluster hosts,
GPUs and FPGAs, loading any needed GPU kernel libraries,
etc.

The cloud-hosting of Designer and Canvas rule these prod-
ucts out for many use cases. Cloud data centers are generally
sited in settings with inexpensive power and cooling [13],
but factories are situated in settings selected for product-
specific reasons such as convenient raw materials or shipping,
local employee skill level [14], etc. As a result they may be
physically far from one-another, and this can preclude ultra-
low latency, high-bandwidth links to the cloud. If all images
must first be sent to a data center that is hundreds of miles
away, the game may be over before the image even reaches
Azure or AWS. Moreover, today’s clouds favor a store-then-
analyze model in which images are first stored into a repository
and the AI is triggered only after storage completes. Designer’s
storage is based on Azure’s big-data storage infrastructure,
such as Cosmos DB for structured (tabular) data, the Binary
Large Objects (BLOB) store for datasets like photos and
video, and the Azure Data Lake for huge collections of semi-
structured and unstructured content. This design inevitably
incurs substantial latency. Thus Designer is biased towards
maximizing throughput using pipelines and batching. While
Designer does support a real-time mode, that mode has limited
ability to base decisions on a changing context – indeed, it
can be recognized as an instance of the classic cloud model
in which scalable microservices respond to web queries with
low latency, but updates are streamed to backend systems that
might not push new versions of indices and models until after
a substantial delay. Some factories may be lucky enough to be
near a suitable cloud, and some shop floor applications could
work within this model, but there are many where it would be
impractical.

In our view, Designer’s batch mode is focused on what
would classically be the update pipeline in a cloud used to
provision web applications and web sites. In such a model
asynchronous events are collected and uploaded as a set – a
batch. To enable batch mode, Designer would be configured
to buffer data, for example in Kafka or in the Blob Storage.
When the batch fills, or if a timeout expires, the entire set
of requests is then processed. Batching is highly beneficial
from a throughput and bandwidth perspective, but simply isn’t
”about” minimizing latency, hence successful deployment in
a time-sensitive setting (at least one with deadlines in the
hundreds of milliseconds range) is very much a matter of luck.

In contrast to Designer and Canvas, Composer does not



provide built-in data backbone, nor does it provide any data
transmission support. Deployment specialists need to tune the
container cluster to run the Composer-generated applications
successfully and to meet any specific performance needs.

C. Support for AI

Given that these three products are all intended as LCD
development solutions for AI, what kinds of explicit AI
support to they offer? All three are compatible with libraries of
prebuilt AI models intended to meet the users’ general needs.
They then encourage users to fine-tune the general-purpose
models for their special down-stream tasks.

For instance, these platforms all support YOLO [15] in
different versions as a base model for object detection, which
can then be fine-tuned by the application developer (as in our
defection detector example, to identify parts by categorizing
their shapes, or to enable quality controls by locating drilled
holes). In addition to the built-in models, vendors also support
public libraries, e.g., Transformers [16], and hence users can
include the popular large models like ViT [17] in their work.
Here, though, we encounter an interesting new issue: the lack
of tools to help the users select the most suitable AI model
when a set of models are all potential candidates, and a lack
of tools to facilitate the debugging process if a problem arises.

Furthermore, none of the platforms acknowledges the two-
stage approach we outlined in the introduction, where an AI
expert creates a template that would later be specialized by
a team of deployment experts who need to customize the
solution without re-involving the AI expert who created the
template. In effect, they assume that the same AI expert who
designed the template will also be responsible for deployment
and any needed customization or tuning.

Indeed, thinking about this two-stage approach we find that
even with respect to the AI expert, existing LCD platforms fall
short. Let’s drill down on this question of picking the ideal AI.
Even if we hold the AI technique and codebase constant, an AI
also requires hyperparameters and a trained model, and may
depend on additional configuration actions. Model selection
(when a system has a set of available models all pretrained,
but differing by having been trained on different data sets)
is an often-overlooked aspect of AI deployment, but highly
relevant in our target settings.

Consider our running defect-detection example. It does start
with image segmentation and object classification, but then
treats different objects in different ways: objects of type A will
be checked for defects by the A-component quality assurance
pipeline, objects of type B by the B-component pipeline,
etc. Moreover, many images might be captured but then
discarded immediately as “uninteresting”. For objects worth
examining, there are a whole series of configuration choices
that must be made: input format, resolution, etc. The target
environment, which may have its own lighting characteristics,
shadows, color choices, etc. Thus our setting seems to require
hyperparameter optimization and model training at deployment
time. But in our LCDAI goals, the deployment specialist is

assumed to lack the requisite training and coding ability, and
would not be able to perform this task.

Yet over time, an LCDAI vendor might quickly build up
a large ”library” of hyperparameter and model pairs. The
lighting and actions at this inspection may have been encoun-
tered at dozens or hundreds of other inspection stations in the
factor. Even the collection of parts being examined might be
common to a whole series of fabrication units. Thus, before
we escalate to the AI expert, the LCDAI deployment ”system”
really should check to see if the needed model already exists!
Yet this task could be subtle. It is not as simple as to say ”pick
a computer vision model for UV lighting with a polarizing
filter”. Very likely we would need the deployment specialist
to capture sample images, then run through a set of candidate
models to see if any of the ”off the shelf” options is suitable,
and we would only escalate to the AI expert in a genuinely
new situation. In fact the AI expert, anticipating this entire
situation, may want to create a script that would walk the
deployment specialist through the task. With such a script, the
AI expert could even design a case-specific quality metric so
that if there are a half dozen options that match in a superficial
sense, the LCDAI deployment will still opt for the very best
choice.

The model selection question arises when we hold the
choice of software (algorithm and implementation) constant,
but in many cases there are higher level choices to be
made, too. YOLO, as an example, has different versions
that are optimized towards different goals. For our sample
task of defect-detection, deployment specialists might choose
YOLOv7 [18] as the object detection model if accuracy is the
main concern, or they might choose YOLOv5 [19] instead to
achieve a shorter inference time. Thus there are multiple levels
of choices to be made. Unfortunately, none of the platforms
we reviewed offers effective tools to help users select among
a set of candidate models when this form of choice arises.
Once a developer makes a tentative choice there are no tools
to help verify the efficacy of their choice, such as its ability
to meet timing goals, its likely accuracy, etc. Designer does
include a catalog of example applications for the users to build
upon and customize but lacks any form of automated model
selection support.

Debugging exposes further needs. The major debugging
method in all three platforms is logging: the developer is
expected to run the application. The framework offers a
centralized logging feature, and the AI expert is supposed to
analyze the log from a problematic run to identify and interpret
errors that might have been reported. Here, Designer goes a
bit further: it includes a tool that will compare the log from
a failed run with a log from a successful run to help the user
understand what went wrong. But this form of “diff” would
not extend to subtle timing problems (for example, if stage 2
of a 3-stage pipeline was sometimes slow and this can cause
stage 3 to exceed a deadline, Designer would not point to stage
2 as the likely culprit).

The details of the 3 platforms are summarized in Table 1.
Notice that we have also included Dash, although this work



TABLE I
LCDAI PLATFORM FEATURE SUMMARY

Popular LCD Platforms Azure ML Designer AWS SageMaker Canvas Nvidia Composer Dash
Service Environment Cloud Cloud Local/Cloud Local/Cloud

Data Batch Mode ✓ ✓ ✗ ✓
Support Real-time Mode ✓ ✓ ✗ ✓

Data Transmission Protocol HTTPS HTTPS ✗ HTTPS / RDMA
Data Backbone Cosmos DB, Blob Storage Dynamo DB, S3 ✗ Cascade, Kafka

AI Model App Example ✗ ✗ Hyperparameter-based
Support Selection recommendation

Debug Log Log ✗ Log
Application Comparison Type Checking

is actually discussed in the next section.

IV. FEATURES AND IMPLEMENTATION

We now describe Dash, our experimental platform for
creating LCDAI solutions. Dash seeks to address all the
challenges discussed above. As noted earlier, our work to
date has focused on the AI expert. Dash features that focus
more on template instantiation by the deployment engineer
and on runtime monitoring and debugging will be discussed
in a future work.

A. Dash is the first LCD platform built on performant dis-
tributed data backbone.

Our work on Dash revolves around a premise that seems
evident, yet differentiates the system strongly from most other
projects. Whereas existing LCD platforms are often designed
to emit VMs, containers, or some form of database triggers that
will run when a trigger condition is satisfied, Dash treats the
LCD target as a distributed program that will be deployed into
a distributed edge infrastructure. This helps explain why we
focus on Cascade – a compute and storage hosting framework
designed for high speed edge systems – as our preferred Dash
infrastructure (we also support the Apache software stack).
When running on Cascade, all data flow logic (including the
AI models, data processing, conditional control, iteration) is
represented in a data flow graph (DFG). Nodes in the DFG
correspond to user-supplied AI that would typically run in
a dynamically loaded module (a DLL). Edges represent in-
formation sharing between AI modules through files, pub/sub
notifications or key-value puts – Cascade supports all three
models (mapping the first two into key-value operations and
treating the KVS API as its most fundamental one). Dash,
then, has the role of constructing a new DFG and assisting
the deployment expert by properly registering the AI expert’s
selected UDLs within Cascade so that when a triggering event
occurs, Cascade can schedule the DFG within the cluster in
a manner designed to prioritize real-time responsiveness as a
primary goal, but to maximize utilization when doing so will
not compromise latency.

Both Dash LCDAI templates and LCDAI deployments use
the same DFG model; the primary difference is that for a tem-
plate, the hyperparameters, model parameters and additional
inputs to the UFG nodes are considered to be “initial” versions
but perhaps not the final versions that will be used in the

deployed system. A semi-automated instantiation procedure,
defined by the AI expert, is used to guide the deployment
engineer through the more detailed setup and testing that
must occur when the template is brought into a concrete
environment. This work is still in progress, but our plan is that
node by node, Dash would assist the deployment engineer in
connecting the AI component to its inputs (for example by
dragging the proper camera onto a “required input” node in
the DFG), configuring the camera (for example by sending a
JSON configuration file to the camera-hosting program), and
then testing the setup (for example by capturing test images
with known content). The script could then self-evaluate to
determine whether the UDL is performing adequately, and if
not, direct the deployment engineer to run a few-shot training
procedure or to make other adjustments to the deployment
scenario.

To maximize compatibility with the Apache software stack,
Dash treats publish-subscribe as its primary tool for imple-
menting edges between UDL nodes in the LCDAI DFG. When
an event will trigger a pipeline of AIs – a sequence of UDLs –
Dash publishes the event as an input to the first UDL, and then
assists by configuring that UDL to publish its output as input
to the next UDL in the DFG, etc. This chain of publication-
subscription goes on to form the entire dataflow logics, as
represented in the grey area of Dash Data Flow in Fig. 1.

Notice that in the figure, Dash is shown as being “outside”
the Cascade hosted service, and also distinct from network
management and edge client infrastructure (the edge clients
are the nodes hosting input devices). Dash per-se is best
understood as a kind of GUI, used in an offline role: active
during AI design, and active during deployment, but staying
out of the way during production. Down the road we do expect
to add a variety of on-the-fly monitoring options aimed at
assessing LCDAI performance, but we are wary of slowing
down latency-focused LCDAIs in order to instrument them.
In our initial implementation, Dash has no runtime overheads
of any kind.

The Cascade publish-subscribe layer maps to a KVS im-
plementation, but looks and behaves exactly like Kafka, the
widely popular publish-subscribe tool. This enables Dash to
interoperate seamlessly with Kafka-based applications, and
also enables Dash to benefit from high quality network man-
agement. Because Dash is not on the runtime critical path,



the LCDAI can benefit from the full performance of the
factory network. Cascade supports local deployment using
both RDMA and TCP as options for data transmission; the
former is capable of fully loading a 100Gb (12.5 GB) optical
network and adequate even for transmission of large, high-
resolution files. Because Dash is aware of deadlines, data
formats and throughout requirements, it can export this kind
of information as JSON files suitable for use as inputs to
network monitoring tools, network management tools, and
other frameworks.

B. Integration of model composition with type checking.

The process of selecting the correct models and picking their
parameters (including both hyperparameters and configurable
parameters) and to populate templates is time-consuming and
error prone, and in some situations the needed model may not
exist: the AI expert might need to step back in and train a
new model using data from the runtime setting. Dash seeks to
ease this step by recommending the closest fitting models or a
most suitable set of parameters. Dash also considers feasible
ways for deployment engineers to run experiments, evaluating
the effectiveness of the solution, and perhaps reverting to the
application developer for help retraining certain components.

To recommend the most closely fitting model, Dash uses
a weighted distance to determine the similarities between
training environments and real environments. The equation is
as follows.

d =

n∑
k=0

wk(rk–tk)2 (1)

In the equation, n is the number of parameters. rk is the
real parameter value measured from the shop floor, e.g., the
ambient light has a color temperature of 5000K, as a common
factory lighting condition. tk is the expected parameter value
from the model, e.g., a vision model might be trained with
pictures taken from outdoor settings where the color temper-
ature is 7000K. wk is the non-negative weight designated by
the AI experts. The bigger the weight, the more important
a parameter is. If the AI experts believe color temperature
should not impact the model’s performance, they can set the
value to 0. So, the smaller the distance is, the closer a working
environment is to the model. In this way, Dash can recommend
models from the ensemble provided by the AI experts.

Fig. 1. Dash Architecture.

We recognize that the weighted distance algorithm is not
perfect. The first issue is that it cannot handle the scales
well. The rparameters come in vastly different scales, like the
color temperature is at the magnitude of thousand, while the
learning rate is tuned at the step size of thousandth. Widely
accepted mathematical transformation methods like unification
don’t work well either since parameters might not have a clear
range or the range is too broad. Another drawback is that
a simple addition of the squared distance hides the physical
meaning behind the parameters. For computer vision models, it
doesn’t make sense to add the difference in color temperature
to the difference in image resolution. To solve the issue and
offer a general solution, Dash allows AI experts to provide
their model picking methods. We’ll discuss the model picking
mechanism in future work too.

In addition to the model recommendation feature, Dash
also helps debug the AI application by offering type checking
mechanism at program module level. When there is a change
made in the data flow, Dash checks and makes sure that the
changed module type checks with its previous and next module
in the pipeline. To perform the type checking, Dash checks
both the primitive data type and the data matrix dimension.
Type checking can effectively reduce the number of runtime
errors that the deployment specialists might encounter.

C. Dash eases deployment, especially in complex settings.

There are 2 major sources of complexity that slow down
the pace of application creation and deployment. The first is
a failure to acknowledge and embrace the huge differences
between development and deployment of LCD solutions, while
the second stems from heterogeneity among the “action sites”
in the deployment environments (aspects such as lighting,
specifics of the product to be examined, etc). Yet unless these
sources of complexity are accepted, they block deployment
specialists from duplicating success stories that the application
developer may have used when creating their solution. Instead,
we end up with an LCD example that will often require major
changes from the AI experts’ original designs. Moreover, while
our examples focused on environmental and use-case diversity,
we should also acknowledge that there are non-trivial resource
diversity issues too.

For instance, on a shop floor, the available computational
resources, like the type and power of AI accelerators, or even
the number of CPU threads, can be completely different from
those in the AI experts’ labs, requiring that the pipeline be
reengineered to run in the new environment. This will surely
be more than a deployment engineer can handle, so the AI
expert will have to step back in, reevaluate and change each
model’s hardware requirement to support the now-much-more-
complex deployment needs. To make the matter more compli-
cated, some dedicated tuning, like assigning more resources
to the models working in critical data path, is needed. All
these require the AI experts to be equally familiar with the
deployment environments, which is a duplicate of deployment
specialists’ work.



Fig. 2. Sample application data flow graph.

Dash responds to this challenge by separating the data
flow logic, i.e., how the program should run, from the data
placement logic, i.e., where should a piece of data or an AI
model should reside, a task that is left to the Cascade scheduler
(an algorithm called Navigator, which evolved from an earlier
version referred to as TIDE [20]). A paper on Navigator is in
preparation.

V. EXPERIMENTAL USE OF DASH

The Dash prototype was used to design and deploy two AI
applications. The first (Fig. 2-A) is a simple defect detector
of the kind introduced early in the paper. The application
consists of two object detection models (“obj” in the graph)
concatenated in series. The first object detection model is
a fine-tuned ResNet-50 model [21] to determine the parts’
shapes and the second is a DETR model [22] to find the
location of drilled holes on the parts. Data preprocessing and
conforming logics are all added to the models.

The second (Fig. 2-B) is intended to locate a part on a
conveyor belt. It consists of two models: a depth detector
model (“Depth” in the data flow graph) to tell how far the
item is from the camera and an object detection model (“obj”)
to identify the part category. The depth detection model is a
fine-tuned GLPN model [23], and the object detection model
is another fine-tuned DETR model. Different from defect
detector, now the two models are working in parallel and their
respective analyzing results are aggregated together in the user-
provided aggregation logics (the “Customized” module in the
graph).

Recall that Dash itself runs as a GUI on an AI expert’s
computer, targeting Cascade as its lowest-latency data and
compute hosting framework. In the experiments we now
describe Cascade is deployed on a small cluster configured to
mimic a typical industrial edge server cluster; Dash interacts
with Cascade as an external client, communicating over a
high speed network. Our cluster has six Intel hosts, five of
which are equipped with Nvidia Tesla T4 GPU to carry out

the inference tasks with AI models. We installed Cascade on
all six: although the sixth lacks a GPU, it can still support host
computing, and the Cascade task scheduler is smart enough
to not place applications dependent on GPU computing on
it. All nodes have substantial memory and storage capacity,
and support high-speed reliable communication (RDMA) for
node to node data movement. Readers unfamiliar with this
hardware can understand it as a form of TCP offloaded to
hardware: it enables reliable, ordered data passing with data
fetched and written directly from end-host or GPU memory
via DMA. Our RDMA hardware runs at 100 Gb/s (12.5 GB/s)
with one-way latency of 0.75us. For the experiments described
here, we chose not to emulate edge clients, and instead select
images from a Microsoft image database of “common objects
in context” (COCO [24]), using these as application input
sources (the circled “I” in Fig. 2). Industrial shop floor cameras
often use 1080 pixel image width, hence we limit ourselves
to color images of size 1920 pixels * 1080 pixels. Every
application is tested with 200 invocations, and at the end of
each run, the result is written to the output location specified
by the output module (the circled “O” module in Fig. 2).

Our focus is on the reactive delay of the AI pipelines. We
measured two data pathways: end to end latency, which is
the total time needed to run the entire data flow logic in one
invocation; and module latency, which is the time spent on
each single module, including the Dash-provided AI modules
and the user-provided data processing module. The results are
shown in Fig. 3.

In Fig. 3, the box area represents the latency range where
50% of experiment results fall in. The lower edge of the
box is the lower quartile, and the upper edge is the higher
quartile. The yellow line in the box is the median value. The
error bar represents the standard deviation, centering around
the average value, which is the black dot in the figure. The
color blue (left-most boxes) represent total end-to-end latency
using the scale shown on the left Y axes. The color green
(right) represents time spent in each individual module. In
a real shop-floor environment we would need to add in the
latency of the camera used to acquire the images and the data
transfer time from camera to the edge client host, and then
from edge client host to the Cascade server. We believe that
10-to-15-millisecond one-way latencies would be incurred for
the input step. A further 1 to 2 milliseconds delay then could
be incurred to initiate an action based on the model output,
for example to instruct a robot to remove a defective part.

From discussion with domain experts, we learned that a
total end-to-end latency of 400 milliseconds or less would
meet typical product inspection requirements. As we can see
from the results, Dash-generated applications can complete the
needed computation within hundreds of milliseconds.

VI. FUTURE WORK

Our future work is directed at making Dash easier to use.
To enhance user experience we are working on improving
model recommendation and hyperparameter auto-fill, based
on information collected from edge clients. In the future,



Fig. 3. Sample application latency analysis.

by leveraging powerful AI models we hope to achieve a
high-quality and easy-to-ease recommendation process. The
expectation is that with minimum deployment specialists’
input and abundant information automatically collected from
the deployment environments, Dash can efficiently populate
the templates that AI experts have provided.

We are also considering other features, including enhanced
“AI library” support so that an AI expert could easily select a
containerized AI appropriate for a given task from a collection
of options, on-the-air debugging features aimed at deployment
specialists to assist them in verifying that their deployment
will match requirements without needing the help of the AI
expert for this task, and debugging tools to assist the team in
localizing problems that do arise.

VII. CONCLUSIONS

There is tremendous demand for low-code solutions in mod-
ern computing, a reflect both of the huge scope of platforms
for tasks like AI computing and cloud deployment, and a shift
of CS emphasis: in many AI settings, the innovation resides
in the design of the AI itself, whereas the implementation is
often modular and extensively reuses existing AIs or existing
computational kernels. Dash examines the idea of low code for

AI (LCDAI), showing that by acknowledging the differences
in roles between AI expert (who designs a kind of template
for the AI application) and deployment specialist (who takes
the template and then instantiates it in a concrete setting), we
can improve both experiences. Doing so yields a more scalable
LCDAI product, in which fewer AI experts are needed, while
deployment experts are guided to more successful outcomes
with less need to escalate questions back to the original AI
design team. Dash is a large system and some parts are still
under development, but our prototype is already demonstrating
development and performance benefits.

ACKNOWLEDGMENT

We appreciate Tiancheng Yuan’s suggestions on AI model
selection. This work is supported in part by funding from
Siemens Technology. Any opinions, findings, and conclusions
or recommendations expressed in this material are of the
author(s) and do not necessarily reflect the views of the
sponsor. Additional support for our effort was received from
AFRL/RY under the SWEC program and Microsoft Research.

REFERENCES

[1] Nvidia. Graph composer user guide.
https://docs.nvidia.com/metropolis/deepstream/dev-guide/graphtools-
docs/docs/.

[2] Microsoft. Azure machine learning designer: visually build, test,
and deploy machine learning models. https://azure.microsoft.com/en-
us/products/machine-learning/designer/.

[3] Amazon. Amazon sagemaker canvas user guide.
https://docs.aws.amazon.com/sagemaker/.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, and et al.
TensorFlow: large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[5] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, and et al. Pytorch:
an imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[6] Apache Kafka. Kafka 3.5 documentation.
https://kafka.apache.org/documentation/.

[7] Kubernetes. Kubernetes documentation.
https://kubernetes.io/docs/home/.

[8] Apache Yarn. Apache hadoop yarn documentation.
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-
site/YARN.html.

[9] S. Jha, J. Behrens, T. Gkountouvas, M. Milano, W. Song, and et al.
Derecho: fast state machine replication for cloud services. ACM
Transactions on Computer Systems, Volume 36 Issue 2 Article No. 4,
2019.

[10] L. Rosa, S. Jha, and K. Birman. DerechoDDS: efficiently leveraging
rdma for fast and consistent data distribution. 6th International Work-
shop on Critical Automotive Applications: Robustness Safety, 2021.

[11] W. Song, Y. Yang, T. Liu, A. Merlina, T. Garrett, and et al. Cascade: an
edge computing platform for real-time machine intelligence. ApPLIED
2022, 2022.

[12] J. F. Arinez, Q. Chang, R.X. Gao, C. Xu, and J. Zhang. Artificial in-
telligence in advanced manufacturing: current status and future outlook.
Journal of Manufacturing Science and Engineering, 142(11):110804, 08
2020.

[13] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a
cloud: research problems in data center networks. SIGCOMM Comput.
Commun. Rev., 39(1):68–73, dec 2009.

[14] A. D. Maccormack, L. J. Newman III, and D. B. Rosenfield. The new
dynamics of global manufacturing site location. Sloan Management
Review, Vol. 35, No. 4:69–80, 1994.

[15] J. Redmon, S. Divvala, R. B. Girshick, and A. Farhadi. You only look
once: unified, real-time object detection. CoRR, abs/1506.02640, 2015.



[16] Hugging Face. State-of-the-art machine learning for pytorch, tensorflow,
and jax. https://huggingface.co/docs/transformers/index.

[17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
and et al. An image is worth 16x16 words: transformers for image
recognition at scale. CoRR, abs/2010.11929, 2020.

[18] C. Wang, A. Bochkovskiy, and H. M. Liao. Yolov7: trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors, 2022.

[19] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, Y. Kwon, and et al.
Ultralytics/yolov5: v7.0 - yolov5 sota realtime instance segmentation,
November 2022.

[20] Y. Yang, W. Song, and K. Birman. Navigator: decentralized scheduler
for latency-sensitive dag structured ml workflows. unpublished.

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[22] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and et al.
End-to-end object detection with transformers. CoRR, abs/2005.12872,
2020.

[23] D. Kim, W. Ga, P. Ahn, D. Joo, S. Chun, and et al. Global-local path
networks for monocular depth estimation with vertical cutdepth. CoRR,
abs/2201.07436, 2022.

[24] T. Y. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick,
and et al. Microsoft COCO: common objects in context. CoRR,
abs/1405.0312, 2014.


