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Figure 1: SMASH! We synthesize the violent fracture and impact sounds of a glass table setting smashed into over 300 pieces (see sound
spectrogram). We use time-varying rigid-body sound models to approximate this brittle fracture sound by a superposition of 4046 modal
vibrations (up to 14kHz). To avoid thousand-mode modal analysis and acoustic transfer costs for complex fracture geometry, we use sound
proxies sampled from Precomputed Rigid-Body Soundbanks, here producing plausible fracture sound models at almost 500× speedup.

Abstract

We propose a physically based algorithm for synthesizing sounds
synchronized with brittle fracture animations. Motivated by lab-
oratory experiments, we approximate brittle fracture sounds us-
ing time-varying rigid-body sound models. We extend methods
for fracturing rigid materials by proposing a fast quasistatic stress
solver to resolve near-audio-rate fracture events, energy-based frac-
ture pattern modeling and estimation of “crack”-related fracture im-
pulses. Multipole radiation models provide scalable sound radia-
tion for complex debris and level of detail control. To reduce sound-
model generation costs for complex fracture debris, we propose
Precomputed Rigid-Body Soundbanks comprised of precomputed
ellipsoidal sound proxies. Examples and experiments are presented
that demonstrate plausible and affordable brittle fracture sounds.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Physically based mod-
eling; I.6.8 [Simulation and Modeling]: Types of Simulation—
Animation; H.5.5 [Information Systems]: Information Interfaces
and Presentation—Sound and Music Computing

1 Introduction

Brittle fracture is an important and loud part of physically based
animation and interactive virtual environments. Unfortunately we
do not know how to procedurally synthesize fracture sounds auto-
matically and efficiently. Current sound production methods rely
instead on audio recordings of fracture events, which can inherit
shortcomings of implausibility, lack of physical synchronization,
and large memory footprints to avoid repetition.

In this paper, we propose the first physically based approach for au-
tomatic synthesis of synchronized brittle fracture sounds for com-
puter animation (see Figure 1). Despite the familiar complexity of
3D fracture animation, our fracture sound synthesis method inher-
its the simplicity of rigid-body sound synthesis. Based on observa-
tions from laboratory fracture experiments with high-speed video
and sound recordings (see Figure 2), we hypothesize that brittle
fracture sounds can be efficiently and effectively approximated by
time-varying rigid-body sound models (see Figure 3). Our rigid-
body fracture sound synthesis has three parts: (1) a fracture prepro-
cess which generates rigid-bodies with contact and “crack”-related
fracture impulses; (2) a parallel sound model generation phase con-
sisting of modal and acoustic transfer analysis; and (3) a sound syn-
thesis phase where sounds are rendered at the listener’s position.

We leverage prior work on fracturing rigid materials [Bao et al.
2007], and propose a sparse, direct, least-squares solver for the
rank-deficient elastostatic problem (Ku = f ) to resolve fracture
sound events at near audio rates. An energy-based fracture model
is used to model plausible fracture energy and sound generation,
and also to estimate stress-based fracture impulses which excite the
initially silent sound models of rigid-body debris to produce charac-
teristically loud “crack” sounds (see Figure 2). The fracture simu-
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Figure 2: Laboratory experiments reveal the time-varying modal sound structure of brittle fracture events, as shown by (Top) high-speed
video at 1200 Hz, (Bottom) 96 kHz sound recordings, and (Middle) frequency spectrograms (2048 bins & 93% overlap for frequency clarity).
In this experiment, a pre-scored ceramic tile dropped from two feet onto a concrete floor (a) impacts without breaking; (b) bounces and
vibrates with the spectrogram showing distinct tile vibration frequencies; (c) a second impact fractures the tile halfway, and produces louder
vibrations with higher relative half-tile frequencies; (d-f) additional post-fracture collision events further excite the half-tile frequencies.

lation’s fracture and contact impulses are used to excite each rigid-
body’s modal sound model. Frequency-domain acoustic transfer
functions are computed for all vibration modes, and represented
using high-order Helmholtz multipole expansions for efficient on-
the-fly model generation and level of detail control. Real-time au-
ralization and visualization of fracture simulations is possible, with
GPU-accelerated transfer evaluation.
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Figure 3: Time-varying rigid-body sound models are used to ap-
proximate fracture sounds. Discrete fracture events result in spec-
tral discontinuities due to modal sound model destruction (××) and
creation (•◦). Fracture impulses excite created sound models.

Unfortunately significant sound-model generation costs (due to
modal analysis and acoustic transfer) can be a bottleneck for violent
fracture processes generating hundreds of rigid-body sound models.
Sadly, many small debris sounds are difficult to discern, and can
be masked by larger objects or loud fracture events. We propose
Precomputed Rigid-Body Soundbanks to efficiently replace many
rigid-body sound models with simpler ellipsoidal sound proxies.
We sample the space of material-specific ellipsoidal sound models,
exploiting fundamental scale dependencies to reduce the problem

to a 2D lookup table. During sound synthesis, any rigid-body can
retrieve its precomputed ellipsoid proxy (indexed by its inertia ma-
trix), and scale it to have matching fundamental frequency. Rigid-
body fracture and contact impulses (from the correct geometry) are
then applied to the ellipsoid proxy to produce sound. Plausible frac-
ture sounds involving hundreds of rigid bodies can be synthesized
at a fraction of the cost (see Figure 1).

2 Related Work

Sound synthesis from physically based animations has been ad-
dressed for rigid objects [van den Doel et al. 2001; O’Brien et al.
2002b; James et al. 2006], deformable objects [O’Brien et al. 2001],
and vortex- and bubble-based fluid sounds [Dobashi et al. 2003;
Zheng and James 2009]. However, to the best of our knowledge, no
prior work has addressed physically based sound synthesis directly
from 3D brittle fracture animations. Most fracture sounds in games
or computer-animated movies use data-driven approaches based on
pre-recorded fracture sound effects (e.g., see [Parker and O’Brien
2009]), with fracture events being natural candidates for event-
based sound rendering [Takala and Hahn 1992]. Unfortunately
such approaches have the usual limitations of lacking synchroniza-
tion, physical correctness, variability and/or requiring large sound
file databases. To improve the effectiveness of recorded sounds,
Picard et al. [2009] recorded, analyzed, and resynthesized impact
and breaking sounds using granular synthesis techniques. Plau-
sible contact sound clips were generated for a rigid-body simula-
tor, however no visual or acoustic simulations of 3D fracture pro-
cesses were considered. The physical characteristics of breaking
sounds are discussed briefly by Rath and Fontana [Rocchesso and
Fontana 2003]. In early psychophysical experiments, Warren and
Verbrugge [1984] explored bouncing and breaking sounds of a glass
bottle, and the ability of listeners to correctly identify between the
two stimuli. They also manually synthesized plausible sound clips
by identifying and editing impact/fracture sound events. Fracture
sound recordings can exploit the inability of listeners to tell which



fracture sound came from which fracture event, but lack variability
and synchronization for more complex scenarios. In contrast, we
maintain synchronization with object fracture and collision events,
while exploiting the limited ability of listeners to tell apart the
modal sound model of some debris from that of its representative
ellipsoid model.

The visual simulation of fracture has a long history in computer
animation [Terzopoulos and Fleischer 1988; Norton et al. 1991].
O’Brien and Hodgins [1999] animated brittle fracture, avoiding
mesh aliasing artifacts with tetrahedral remeshing of crack prop-
agation through an explicitly integrated finite element model. To
avoid time-step restrictions associated with fast acoustic waves in
stiff brittle materials, Smith et al.[2000] proposed a constraint-
based fracture approach, but lacked sub-element fracture. To ad-
dress remeshing challenges and time-step restrictions due to sliver
elements, the virtual node algorithm [Molino et al. 2004] and mesh-
less methods have been proposed [Pauly et al. 2005]. None of these
approaches address brittle fracture sounds, however most of these
time-domain methods could, in principle, be modified to apply con-
tact and fracture impulses to our rigid-body sound models.

Given our rigid-body-fracture-sound hypothesis, instantaneous
fracture models based on rigid bodies and quasistatic stress anal-
ysis are more convenient computational models for sound synthe-
sis. Müller et al. [2001] modeled brittle fracture using an approxi-
mate quasistatic stress analysis on a tetrahedra mesh in contact re-
gions of interest. This method was extended by Bao et al. [2007]
to fracture rigid materials (including shells) while eliminating the
quasistatic stiffness matrix’s null space to obtain better stress esti-
mates. Neither of these papers estimate fracture impulses explicitly,
in part since they do not model fracture sounds. Our fracture pat-
terns are based on Voronoi-based fracture pattern generation meth-
ods [Raghavachary 2002; Bao et al. 2007; Hellrung et al. 2009].

We approximate brittle fracture sounds using time-varying rigid-
body sound models based on linear modal sound synthesis [van den
Doel and Pai 1996]. Modal models have a long history in ani-
mation [Pentland and Williams 1989] and in physically informed
sonic modeling of complex multi-impact, percussive, and stochas-
tic sound sources [Cook 1997]. We precompute linear modal anal-
yses using finite element models [O’Brien et al. 2002b; Raghuvan-
shi and Lin 2006; James et al. 2006], since it is more efficient for
rigid-body sound than more general time-domain vibration analy-
ses [O’Brien et al. 2001]. Numerous simplified (modal) sound mod-
els have been proposed for rigid body contact. Hahn et al. [1998]
introduced timbre trees to model parameterized sound models. A
popular approach is to estimate modal sound model parameters
from impact recordings, and to texture modal sound models onto
virtual objects [Pai et al. 2001; van den Doel et al. 2001], thereby
avoiding modal analysis. Mode culling techniques are often used to
reduce modal synthesis costs for real-time applications [Doel et al.
2004; Raghuvanshi and Lin 2006], but synthesis costs are not a bot-
tleneck in our simulation, and it is difficult to pre-cull modes cor-
rectly to avoid modal analysis and acoustic transfer costs. In con-
trast, we precompute rigid-body soundbanks with acoustic trans-
fer for high-quality 3D sound. Methods exist for auditory culling
and spatial level-of-detail for hundreds of moving sources [Tsingos
et al. 2004], but would not avoid the fracture sound model computa-
tion. Frequency-domain methods can accelerate modal integration
(albeit with some impact sound degradation) [Bonneel et al. 2008],
but that is a negligible cost in fracture sound synthesis.

For improved sound quality, we use frequency-domain acoustic
transfer. Special attention is needed to deal with the large num-
bers of dynamically created and destroyed debris objects, for which
precomputation and reuse is limited. In Precomputed Acoustic
Transfer [James et al. 2006], acoustic transfer functions are pre-

computed and efficiently represented using multi-point multipole
expansions [Ochmann 1995], but the expensive model-specific pre-
computation and lack of level-of-detail control make them undesir-
able for fracture sound processing. Chadwick et al. [2009] intro-
duced Far-Field Acoustic Transfer (FFAT) Maps to achieve O(1)
acoustic transfer evaluation costs per mode, but their extensive pre-
computation and memory requirements are undesirable for on-the-
fly model generation—but could be used for precomputed sound-
banks. In our implementation, we exploit traditional single-point
multipole expansions with a simple precomputation step, and ex-
ploit GPU transfer evaluation for interactive performance.

Acoustic emission (AE) of solid-borne acoustic waves due to rapid
micro-crack growth in brittle materials has been studied extensively
in engineering [Dunegan et al. 1968; Lockner et al. 1991]. AE
methods are important for understanding numerous fracture pro-
cesses, including those in rocks for earthquake, landslide, and rock
burst monitoring [Lockner 1993]; micro-fracture sounds have been
known for thousands of years to be important defect indicators for
clay pottery; and AE testing is widely used to analyze the integrity
of man-made structures [Grosse and Ohtsu 2008]. Brittle fracture
sounds have also been studied empirically in the quest for crunchier
and crispier foods [Luyten and Vliet 2006]. Numerical methods for
simulating elastic waves due to incremental crack growth also exist;
for example, time-domain AE simulation has been conducted ex-
tensively in seismology [Carpinteri and Lacidogna 2007], and also
for fracturing sea ice, e.g., using a 2D particle system model [Li and
Bazant 1998]. Unfortunately these brute-force time-domain meth-
ods are impractical for brittle fracture sound synthesis.

3 Rigid Fracture Simulation

Our sound synthesis pipeline uses rigid-body fracture simulation to
generate and animate fracture debris. Estimated contact and frac-
ture impulses are used to excite rigid-body sound models—readers
not familiar with rigid-body sound can find background on modal
analysis and acoustic transfer in Appendix A. Our fracture simula-
tor is closely related to the method for fracturing rigid materials of
Bao et al. [2007]. We also use an impulse-based rigid-body simula-
tor [Guendelman et al. 2003] since contact iteration costs amortize
well over small near-audio-rate timesteps, e.g., ∆t = 1/10000s
to 1/5000s in our examples. We propose three extensions for
rigid-fracture sound synthesis: (1) a sparse, direct, least-squares
solver for fast quasistatic stress analysis at high near-audio rates,
(2) an energy-based method for generating plausible fracture pat-
terns, which we used to (3) estimate stress-based fracture impulses
that produce fracture-related “crack” sounds.

3.1 Fast Quasistatic Stress Analysis

Quasistatic stress analysis is commonly used to approximate brittle
fracture [Müller et al. 2001; Bao et al. 2007]. Given an N node
tetrahedral mesh, it involves solving the elastostatic equation

Ku = f , (1)

for the quasistatic displacement, u ∈ R3N , resulting from exter-
nal contact forces, f , in order to compute element stresses using
standard methods [Bonet and Wood 1997]—we also compute the
elastic strain energy, ES , for energy-based fracture (§3.2). In con-
trast to computer animation where (1) is solved near or at graphics
rates [Müller et al. 2001; Bao et al. 2007; Su et al. 2009], for frac-
ture sound synthesis it is desirable to timestep the system at much
higher rates, e.g., 5 kHz, to resolve micro-collisions and fracture
events. In practice, large fracture simulations can request solves for
hundreds of thousands of micro-impact problems.



Figure 4: Fracture toughness dependent sound: (Top) A window
simulated with low fracture toughness (Gc = 50 J/m2) produces
smaller debris with overall higher pitch than (Bottom) a window
with higher fracture toughness (Gc=120 J/m2).

It is well known that K is sparse, symmetric, and also rank de-
ficient: its rank is always 3N − 6, due to a rank-6 null space
associated with translation and linearized rotation of the uncon-
strained rigid body. To calculate the linearized quasistatic stress
distribution, we can either compute the min-norm least-squares
solution to (1), or just solve the least-residual problem (1) since
the rigid component of u (or f ) produces no stress. The iterative
MINRES algorithm [Paige and Saunders 1975] can solve the least-
residual problem, but suffers from slow convergence. Müller et
al. [2001] approximated it by anchoring a number of points in the
objects, thereby enforcing extraneous constraints that break mo-
mentum conservation. Bao et al. [2007] solved (1) using a mod-
ified Conjugate Gradient method with an additional projection at
each iteration to remove the null space. Unfortunately this itera-
tive method converges slower than we would like, in part due to the
difficulty preconditioning the rank-deficient K matrix.

We propose a sparse, direct least-squares solver that ex-
ploits temporal coherence, and is faster and more robust for sound
applications. After a one-time setup/factorization cost per object,
solutions can be obtained essentially via back substitution. We
briefly sketch the method here, and defer solver details (on P and
V) to Appendix B. First, we project out the linearized rigid-body
motion using an orthogonal projection P to ensure that the system
is compatible, i.e., that Pf ∈ range(K). Next we construct a spe-
cial 3N × (3N − 6) sparse orthogonal matrix V, then premultiply
(1) by VT and substitute u=Vr, to obtain a sparse, symmetric and
full-rank (3N−6)×(3N−6) system which can be solved directly
with Cholesky factorization [Golub and Van Loan 1996]:

VTKV r = VTPf . (2)

Given that Vr is a least-residual solution of (1) for compatible RHS
(see Appendix C for a proof), we simply project out the particular
translation and rotation chosen by V, to obtain the min-norm least-
squares displacement solution, u∗=PVr. In summary, each time
a rigid object is created we compute and cache its sparse Cholesky
factorization, LLT = VTKV and data for P . For each simula-
tion timestep with nonzero contact forces, f , we evaluate the least-
squares quasistatic displacement incrementally (from right to left),

u∗ = PV(VTKV)−1VTP f , (3)

with the primary cost being the Cholesky backsubstitution for
(VTKV)−1; for our examples, one-time factorization costs were
0.18s–1.30s, whereas (3) solves cost only 0.007s–0.23s.

3.2 Energy-based Debris Generation

We use an energy-based method for generating plausible fracture
patterns, with energy also used later for plausible sound generation
(§3.3). To determine when brittle fracture occurs, we use the Rank-
ine hypothesis [Gross and Seeling 2006] wherein material breaks
when any principal stress value exceeds a given threshold. We use
a Voronoi-based fracture pattern method similar to [Raghavachary
2002; Bao et al. 2007], however, in contrast, we incrementally con-
struct the fracture pattern to maintain bounded fracture energy. We
estimate the energy required to generate fracture surfaces of total
area AF by EF =GcAF , where Gc is the fracture toughness
material parameter (e.g., the critical strain energy release rate for
mode-I fracture) which describes the material’s ability to resist frac-
ture; Gc values used in this paper are given in Table 1. To avoid
excessive fracturing and uncontrolled sound generation, we require
the consumed fracture energy EF to be less than the quasistatic
strain energy, EF ≤η ES where the parameter η∈(0, 1) controls
how much strain energy is converted into fracture energy; we use
η=0.8 in our examples. The impact of fracture toughness on sound
generation is illustrated in Figure 4.

We generate Voronoi-like fracture patterns by incrementally sam-
pling region “seed” points pi (with probability proportional to
strain energy density) then using a region-growing strategy. Each
unassigned tetrahedral node x has prority-queue values for each
region i given by the weighted distance ki dist(x,pi) where ki
is the strain energy density at pi raised to the power α > 0; we
use α= 0.15. Tetrahedral nodes are captured by adjacent regions
with minimal queue values, and tend to produce smaller pieces in
regions of high strain energy density. To ensure regions are con-
nected, we use geodesic distances with edge-based approximations
computed with Dijkstra’s algorithm. After each point insertion, we
estimate EF , then continue adding points until EF ≤η ES can not
be satisfied. Multi-region elements are split [Bielser et al. 2004].
Fine region meshes are generated for rendering, modal analysis and
Helmholtz sound radiation analysis; our mesh edge lengths h sat-
isfy a 20 kHz sampling condition, h<λ/6 ≈ 5mm [Liu 2009].

3.3 Fracture Impulse Estimation

Previous rigid-body fracture simulations in computer ani-
mation ignore stress-based impulses introduced by fracture
events, relying instead on contact forces to push debris
apart [Müller et al. 2001; Bao et al. 2007]. While
this can be sufficient for animation, these additional “frac-
ture impulses” can be important contributors to debris sound.
For example, snapping a candy cane in two can pro-
duce audible fracture sound even when the pieces
separate cleanly without subsequent contact. We
propose an energy-based model to estimate im-
pulses from fracture events so that (1) explosive ef-
fects are introduced by the strain energy release,
and (2) impulses excite the modal sound models of
the initially silent debris (see Figure 5).

Our fracture-impulse model assumes that unused quasistatic
strain energy is converted into kinetic energy ∆EK = ES − EF
and introduced by stress-based fracture impulses. For each fracture-
surface triangle i, the exerted stress force si and torque ji are



Figure 5: Bigger “cracks” with fracture impulses: Our qua-
sistatic fracture impulses produce more explosive fractures, thereby
producing louder and more characteristic “crack” sounds. In
contrast, simulations without fracture impulses applied (see in-
set) lack fracture-released kinetic energy. This ceramic chessboard
(38cm×38cm) was dropped from one meter high onto the ground.

si = aiPini; ji = ri × aiPini (4)

where ai is the triangle area, ni is unit direction perpendicular to
the triangle, ri is the distance vector from the object’s center of
mass to the center of the questioned triangle, and P is the Piola-
Kirchhoff stress tensor of the tetrahedron on which the triangle is
contained [Bonet and Wood 1997].

Let τ denote the effective duration to exert fracture forces (4). Let
v−d and ω−d respectively denote the pre-fracture linear and angular
velocity of the material associated with the d-th piece of debris. The
post-fracture linear and angular velocity are
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d = v−d +

τ

md

X
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d

X
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where md and Id are the dth rigid body’s total mass and angular
inertia, respectively. We estimate τ by equating ∆EK with the
system’s change in kinetic energy,

∆EK =
1

2

X
debris d

“
md‖v+

d ‖
2 −md‖v−d ‖

2
+ (ω

+
d )

T
Idω

+
d − (ω

−
d )

T
Idω

−
d

”

which is a quadratic equation in τ , where only the smallest positive
solution is physically relevant. Each time an object is fractured, we
solve for τ and apply the fracture impulses to the debris.

4 Parallel All-Frequency Multipole Sound

We approximate each object’s acoustic transfer function, p(x), us-
ing a single-point multipole expansion for reliable estimates of far-
field sound [Gumerov and Duraiswami 2004]. This simple repre-
sentation also has three major benefits: (1) runtime level of detail
control for complex fracture sound simulations (unlike [James et al.
2006]), (2) an efficient parallel GPU implementation, and (3) con-
venient support for our Rigid-Body Soundbanks (in §5) to enable
scalable fracture sound synthesis.

Multipole Radiation Model: The spherical multipole wave ex-
pansion of each mode’s p(x) takes the form

p(x) ≈
n̄X
n=0

nX
m=−n

Smn (x− x0)Mm
n (6)

where Mm
n ∈ C are multipole expansion coefficients, and Smn

are multipole basis functions (singular, radiating solutions to the
Helmholtz equation),

Smn (r) = h(2)
n (kr)Y mn (θ, φ), (7)

where (r, θ, φ) are spherical coordinates of r; h(2)
n ∈C are spherical

Hankel functions of the second kind; and Y mn ∈ C are spherical
harmonics. We can precompute the multipole coefficients, Mm

n ,
for each object since they are independent of listening position x.
At runtime, only (n̄ + 1)2 summation terms need be computed,
which is independent of the object’s geometric complexity.

In our implementation, we place the multipole expansion point, x0,
at the object’s center of mass. Since the distance between the lis-
tener’s position and the center of mass, ‖x − x0‖, is much larger
than the object’s diameter, the series approximation typically con-
verges quickly to the accurate transfer function. However, conver-
gence is frequency dependent with higher n̄ required at higher fre-
quencies; we use the empirical formula, n̄ = max( 1

4
kL, 4) [Liu

2009], where the length scale, L, is the object diameter; fewer terms
can be used to reduce transfer-evaluation costs.

Multipole Coefficient Solver: The Mm
n coefficients can be pre-

computed in various ways. For example, source simulation or
equivalent source methods [Ochmann 1995; James et al. 2006] di-
rectly estimate Mm

n by requiring that (6) matches the Neumann
boundary condition in a least squares sense (note that this requires
that x0 lies inside the object). In our implementation we use the
fast multipole boundary element method to first solve the associ-
ated Helmholtz boundary integral problem, and then evaluate the
multipole coefficients via their integral representations; we refer
the reader to Appendix D for implementation details. We exploit
mode-level parallelism by computing transfer models on a cluster.

Parallel Sound Evaluation: Evaluating the sound pressure from
all modes of all objects involves significant transfer evaluation
costs, but is a pleasantly parallel computation. The sound con-
tribution from an object’s vibration mode, i, is estimated using
pi(x, t) = |pi(x)| qi(t). The total fracture sound is the superposi-
tion of all object mode contributions:

sound(x, t) =
X

mode i

|pi(x)| qi(t) (8)

=
X

mode i

˛̨̨̨
˛
n̄iX
n=0

nX
m=−n

Smn (x− x0i; i)M
m
n (i)

˛̨̨̨
˛ qi(t)

where Mm
n (i) are precomputed for mode i using (22). In our

parallel implementation, we evaluate {pi(x)} on the GPU (using
NVIDIA’s CUDA API) sampled in time at high graphics rates ( 200
Hz), then copy it back to the CPU, and (optional) apply an HRTF
filter. Modal amplitudes qi(t) are computed using an IIR filter in
parallel on multi-core CPUs at audio sample rates (although GPU
implementations are possible [Trebien and Oliveira 2009]), then
each qi is multiplied by |pi(x)| (with p interpolated up to audio
rates) to obtain the mode’s sound contribution, |pi(x)|qi(t). The
GPU evaluation of pi(x) values exploits thread-level parallelism
across modes (i), and in pi’s (m,n)-summation using parallel re-
duction [Harris 2007]. Furthermore, all modes’ multipole basis
functions, Smn = h

(2)
n (kr)Y mn (θ, φ) are first computed in parallel

using a multi-pass GPU algorithm:

• In a first pass, one thread per mode computes the h(2)
n (kr)

values for n= 0 . . . n̄i (with kr= kiri) using the recurrence
relation, h(2)

n+1(kr)= 2n+1
kr

h
(2)
n (kr)− h(2)

n−1(kr).



• Next Y mn (θ, φ) is computed in two passes: (1) one thread per
mode computes Y mm (θ, φ),m = 0 . . . pi using the recurrence
relation between Y mm and Y m−1

m−1 [Press et al. 2007], then (2)
one thread per mode per m value computes Y mn , n = m +
1 . . . n̄i using the recurrence relation between Y mn and Y mn−1.

5 Precomputed Rigid-Body Soundbanks

Complex fracture sounds can involve very large numbers of rigid-
body sound sources, each of which requires computing an expen-
sive, object-specific sound model. For complex fracture scenarios,
the simulation bottleneck quickly becomes rigid-body sound model
generation (modal analysis, and multipole radiation analysis). Un-
fortunately the opportunities for precomputation are limited by the
unpredictable nature of fractured geometry generation.

Ironically, for complex fracture scenarios, it can be difficult to fully
discern each individual rigid-body sound, and sounds produced by
small objects can be masked partially by large pieces of debris.
We exploit this perceptual ambiguity by augmenting debris with
simple precomputed sound models of similar frequency content.
Specifically, we propose to use ellipsoid-shaped sound proxies dur-
ing sound synthesis (see Figure 6) since (i) ellipsoids provide the
smoothest shape matching the rigid-body inertial mass, and (ii) the
smooth surface allows us to parameterize the proxy contact loca-
tion using contact normal. While the rigid-body fracture simulation
and contact impulses are based on the original fractured geometry,
external forces can be applied to the proxy’s sound model, thereby
avoiding the bottleneck of model-specific sound model generation.

Figure 6: Fracture debris and ellipsoidal sound proxies

For each material we precompute a Rigid-Body Soundbank, where
each sound model has ellipsoidal geometry, mode shapes U, fre-
quencies ω, and precomputed multipole coefficients Mm

n . To gen-
erate object sounds, we first retrieve its closest soundbank proxy
based on an inertia tensor metric, and scale it to match our object’s
base frequency. Next we map the external forces to the proxy, load
precomputed eigendata and multipole Mm

n values, and synthesize
the sound at the relative position. This process is illustrated in Fig-
ure 7, and summarized in Algorithm 1.

Rf0

γRv
f0

v
ω0

f0

v
ω0

Figure 7: Ellipsoidal sound proxies are indexed by each object’s
inertia matrix, and scaled γ to have matching base frequency, ω0.
Contact forces f0 and relative listening positions v are rotated R
to the precomputed proxy frame for sound synthesis.

5.1 Exploiting Scale Dependence

Naı̈ve sampling of sound models over the 3D space of ellipsoidal
shapes will lead to significant memory requirements and/or poor

Algorithm 1: Runtime use of Rigid-Body Soundbanks
input: The soundbank S; external forces f
foreach sounding object obj do

if use proxy(obj) then // §5.4
a←find best proxy(obj,S) // §5.4
γ ←scale factor(obj,a) // §5.4
R←rotation(obj,a) // §5.2
f ′ ←map forces(γ,R,f) // §5.2
(ω,U)←load eigen(a,S)
(ω′,U′)←scale eigen(ω,U,γ) // §5.1
M ←load moments(a,S)
M ′ ←scale moments(M , γ) // §5.1
generate proxy sound(ω, U′,M ′,f ′)

else
directly generate sound(obj)

end
end

shape resolution. We therefore exploit the fact that uniformly scal-
ing a rigid-body model does not fundamentally alter its modal vi-
bration and multipole radiation models, but only induces power-law
scalings. By precomputing a sound model for one rigid-body shape,
we obtain sound models for all scaled versions. In particular, if the
geometry of an object is scaled by γ, then the following scalings
result (see Appendix E for derivations):

x ω kx α+βω2 U Mm
n

↓ ↓ ↓ ↓ ↓ ↓
γ x γ−1ω kx α+βγ−2ω2 γ−3/2U γ−5/2Mm

n

(9)

In order to guarantee all-frequency sound up to a high-frequency
cutoff, e.g., 16 kHz, we note that shrinking models (γ < 1) in-
creases their frequency range since [ωmin, ωmax]→ [ωmin

γ
, ωmax

γ
],

and therefore will preserve the all-frequency property. In contrast,
enlarging (γ > 1) may not since ωmax

γ
may drop below the high-

frequency cutoff. We therefore precompute all-frequency models
which are as large as needed to ensure γ<1.

5.2 Ellipsoidal Sound Proxies

Normalized ellipsoids: Our soundbank is based on precomput-
ing sound models for axis-aligned ellipsoids,

x2

a2
+
y2

b2
+
z2

c2
= 1, (10)

where the ellipsoid’s shape is parameterized by the lengths of the
principal axes, â = (a, b, c)T . To avoid sampling this three-
dimensional (a, b, c) parameter space, we exploit scaling depen-
dences (§5.1) to eliminate scale via the normalization,

‖â‖2 = 1meter ⇔ a2 + b2 + c2 = 1, (11)

effectively reducing the dimensionality from three to two. Further-
more, we can assume that a ≤ b ≤ c, to reduce the parameter space
to a small triangular patch on the unit sphere (see Figure 8(Left)).
For each ellipsoid, we conduct the modal analysis, and solve the
boundary integral problems to precompute Mm

n values; the eigen-
modes, frequencies, and Mm

n values are stored in the soundbank.

Inertia-matrix parameterization: Given a rigid body’s symmet-
ric inertia matrix, I ∈ R3×3, we identify the rigid-body’s ellipsoidal
sound proxy using the principal moments of inertia. These are ob-
tained from the eigenvalue decomposition, I = VI ΛI V T

I , where
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Figure 8: Ellipsoid sampling on the unit sphere

VI are the orthogonal eigenvectors (specifying the principal axes
of inertia), and the principal moments of inertia are the diagonal
values of ΛI = diag(I1, I2, I3), with I1 ≥ I2 ≥ I3. The ΛI

are directly related to the normalized ellipsoid parameters, â: the
corresponding unit ellipsoid proxy is parameterized by1

â =
1√

I1 + I2 + I3

0@√−I1 + I2 + I3√
+I1 − I2 + I3√
+I1 + I2 − I3

1A ∈ R3. (12)

Proxy contact forces are estimated by mapping rigid-body con-
tact forces to the proxy as follows. Let f0 denote an external rigid-
body force defined in the object’s material frame. The equivalent
proxy contact force is fp = Rf0, where the precomputed rotation
matrix R = V T

I maps forces from the object’s material frame to
the proxy’s material frame. The proxy contact point is estimated
uniquely by assuming that the contact force is applied in the nor-
mal direction, which is easily computed by solving a 3 × 3 linear
equation (see Appendix F).

Proxy sound mapping: We evaluate each proxy’s sound in its
axis-aligned frame. Given the listening position vector in the rigid-
body’s center-of-mass frame, v, we simply rotate and scale the vec-
tor into the proxy frame, v → γRv, and evaluate the proxy sound
there (see Figure 7).

5.3 Soundbank Sampling

In practice it is desirable to precompute and store as little sound-
bank information as possible. To avoid uniformly sampling the
spherical patch in ellipsoid parameter space, we use a simple adap-
tive strategy to resolve faster modal frequency variations in ellip-
soid samples near shape singularities at the “pancake” and “cigar”
vertices (see Figure 8(Right)).

Material-specific Soundbanks: In theory, a different soundbank
must be precomputed for each homogeneous material, e.g., for our
glass and ceramic material parameters (see Table 1). Runtime ad-
justments can still be made to scale, and Rayleigh damping param-
eters, α and β. However, often plausible material parameters are
similar, e.g., glass and ceramic, and we precompute a single “glass”
soundbank and scale the models appropriately.

5.4 Proxy Retrieval and Scaling

Proxy use criterion: In practice, we use sound proxies for suf-
ficiently small debris with base frequencies above a user-specified

1This follows from the ellipsoid’s principal moments of inertia,
I1 = m

5
(b2 + c2), I2 = m

5
(a2 + c2), I3 = m

5
(a2 + b2).

Material Density Young’s mod. Poisson Gc

Glass 2600 kg/m3 6.2× 1010 GPa 0.2 80 J/m2

Ceramic 2700 kg/m3 7.2× 1010 GPa 0.19 200 J/m2

Table 1: Material Parameters

threshold, ωproxy . Given a rigid-body candidate for proxy replace-
ment, we first compute the lowest eigen-frequency ω0 of the object.
A rigid body will only use the proxy when ω0>ωproxy is satisfied.
Note that this single-frequency ω0 calculation is far cheaper than
computing the object’s modal sound model.

Proxy retrieval: Given a rigid body for proxy replacement, we
first compute its normalized parameter vector, â, then select the
soundbank ellipsoid, a′, with the minimum Euclidean distance,
‖a′ − â‖2. We use a kd-tree to accelerate this closest-point query.
Simulation-specific proxy values are shown in Figure 9.

Equi-frequency scaling: The retrieved ellipsoid proxy is un-
scaled. Instead of using inertia to scale the object, which can be a
poor indicator of sound frequency, we select the proxy scale γ such
that the proxy and rigid body have the same base eigen-frequency,
ω0, since it is an important perceptual attribute to match [McAdams
et al. 2004]. Specifically, if the unscaled proxy’s lowest eigen-
frequency is ωp0, then the desired scale is γ = ωp0/ω0. We then
scale the proxy’s mode shapes, frequencies, multipole coefficients,
Mm
n , etc., as described in section 5.1.

Glass Slab Window (Fig4,Top) Window (Fig4,Bot) Table

Figure 9: Soundbank access patterns colored by object mass.
Note the massive “pancake” shapes for thin glass debris.

6 Results

For information on simulation cost versus fracture debris complex-
ity, please see example statistics in Table 3. Representative stills are
provided in Figure 10. Please see our video for all sound and anima-
tion results, including comparisons to reference laboratory fracture
experiments (see Figure 11). Rigid-Body Soundbank performance
improvements are described in Table 2.

Figure 11: Fracture experiments were recorded using high-speed
video (1200 FPS) and stereo audio recordings (96 kHz).

Ground sound model: Ground vibrations can play an important
role in sound generation when smashing objects onto it, especially
given the ground’s large size and wide frequency range. For exam-
ple, a small piece of glass with extremely high pitch can produce
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Figure 10: Fracture simulation images

Model Complexity Timings (min)
time 1/∆t Objects Triangles Tetrahedra Modes Solves freqRange Frac Modal∗ Trnsfr∗ Audio

Plate 5s 10kHz 1→17 100k→342k 404k→967k 76 91k 20-20k 1.41hr 19.8 8.4 1.2
Tile 0.9s 5 kHz 1→3 47k→109k 201k→419k 81 1.2k 20-20k 0.05hr 12.2 6.2 0.1
WindowHiGc 5s 5 kHz 1→57 50k→287k 120k→467k 611 252k 20-20k 3.1hr 18.6 31.2 3.1
WindowLoGc 5s 5 kHz 1→89 50k→344k 120k→528k 586 302k 20-20k 3.4hr 20.4 50.4 3.3
Glass Slab 2s 10kHz 1→72 50k→407k 121k→634k 377 237k 20-20k 3.6hr 24.7 38.4 2.4
Wine Glass 3.2s 10kHz 1→83 101k→674k 372k→1391k 57 538k 20-20k 4.7hr 40.6 55.2 4.6
Poor Piggy 3.2s 10kHz 17→64 405k→752k 1628k→2190k 240 384k 20-20k 6.4hr 33.6 49.2 8.2
Rich Piggy 2s 10kHz 301→358 6743k→7131k 27191k→27801k 1411 413k 20-20k 26.4hr 37.2 56.6 12
Table 5s 5 kHz 62→328 1972k→6048k 6816k→15781k 4046 1138k 20-14k 12.2hr 66.3 73.8 20

Table 3: Example Statistics for simulation duration, rigid-body timestep size, and input and total geometric complexity; total number of
scene modes; number of quastistatic stress solves. Serial timings are provided for fracture dynamics simulation and audio synthesis, whereas
parallel timings (∗) are given for modal analysis and acoustic transfer computations on a 16-node cluster of 8-core Xeons. Fortunately, most
of the latter costs can be avoided using Rigid-Body Soundbanks (see Table 2).

Example ωproxy
%Modes CPU Sound Time (min)
Replaced Direct With Proxies

Glass Slab
4000 Hz 36.4%

5631
3944

2000 Hz 64.8% 2323
0 Hz 100% 5.2

Window (low Gc)
3400 Hz 49.1% 4262 2202

0 Hz 100% 9.2

Window (high Gc)
2000 Hz 45.2% 6023 3029

0 Hz 100% 12.2

Table
2000 Hz 22.8%

17792
12980

600 Hz 62.7% 7103
140 Hz 95.7% 36.2

Table 2: Rigid-Body Soundbank Performance: Increasing ellip-
soid proxy use (by lowering ωproxy) leads to dramatic reductions in
expensive sound model generation costs (modal+transfer+audio)
over direct computation (serial timings). By replacing all fragment
sound models by proxies, sound differences were barely audible,
and roughly 500× speedups were observed in some cases—limited
by disk I/O in our implementation.

low-frequency sound responses when dropped on the ground. We
approximate ground sounds by first precomputing a modal model
of a large concrete slab (9m× 9m× 0.9m) with 1000 modes with
frequencies from 700Hz to 4kHz, and each modes’ correspond-
ing multipole coefficients. Next we estimate the ground vibration
response q(t) due to a unit impulse applied at the center of the slab.
To synthesize ground sounds for simulations, we simply convolve
the ground response with ground contact forces, and emanate mul-
tipole radiation from the appropriate contact position.

Example (Ceramic dinner plate): We simulated the fracture of
a ceramic plate (see Figure 10). Laboratory experiments of plates
dropped on the ground produced qualitatively similar fracture pat-

terns and sounds. For reference, we also provide a fracture-free
simulation of a spolling (spinning + rolling) plate.

Example (Ceramic tile): To compare against our laboratory tile
experiments (see Figure 2), we synthesized sounds for a pre-
scored virtual tile fracture experiment (see Figure 12). Our rigid-
body restitution model produced faster bouncing behavior and our
tile had slightly higher pitch, however qualitatively similar time-
varying rigid-body sounds were observed.

1 kHz

2 kHz

5 kHz

4 kHz

3 kHz

time (s)

Missing low-freq modes

Debris base frequencies

Tile base frequency

Figure 12: Simulated tile fracture experiments

Example (Glass slab): We dropped a glass slab which shattered
into about 70 pieces (see Figure 10). This example was particu-
larly well approximated by Soundbank proxies, and sounded simi-
lar even for 100% replacement.

Example (Glass window): We smashed two thick glass windows
of differing fracture toughness (see Figure 4), which also fared well
with proxy replacement.



Figure 13: Breaking the bank! A piggy bank is smashed into 58 pieces, and releases 300 coins.

Example (Wine glass): We dropped a wine glass onto its bowl,
which exploded and left its stem behind (see Figure 10). Similar
laboratory experiments produced qualitatively similar sounds.

Example (Piggy bank): We simulated two piggy banks: “Poor
Piggy” contained only a few coins, whereas “Rich Piggy” contained
many coins (see Figure 13). The latter example had the most expen-
sive fracture dynamics due primarily to the impulse-based solver’s
handling of hundreds of coins stacked inside.

Example (Table): The smashed table setting (see Figure 1) is our
largest example, with over 4000 modes, and over a million qua-
sistatic stress solves. Given the high model-generation costs, the
Rigid-Body Soundbank is particularly useful on this example. The
video also provides a with/without acoustic transfer comparison.

Comparison (With/without fracture impulses): Without frac-
ture impulses (§3.3), excitations are only due to rigid-body con-
tact forces (recall Figure 5). We synthesized the sound of the glass
slab falling onto the ground with and without fracture impulses (see
video), to demonstrate the more distinct “crack” obtained when us-
ing fracture impulses.

Example (Interactive GPU-accelerated demonstrations):
Real-time demonstrations were performed for the dinner plate
and the piggy bank. For the spolling and smashing dinner plate
(with

P
modei n̄i = 2176 expansions) our OpenMP 8-core CPU

implementation required 0.156s to compute all-mode transfer,
whereas our GPU-based transfer implementation (§4) only required
0.0003s (3.3kHz) on an NVIDIA Tesla card—a 520× speedup.

Soundbank Comparisons (Varying proxy-replacement thresh-
old): To evaluate results produced by varying degrees of rigid-
body soundbank use, we simulated the glass window, glass slab,
and table examples with varying proxy-replacement thresholds—
as controlled by the frequency-based ωproxy proxy-use criterion.
Surprisingly, replacing even all the object sound models with the
ellipsoidal proxies (for large reductions in sound model computa-
tions) still produced plausible sounds. See the video for these com-
parisons, and Table 2 for model-generation speedups.

7 Limitations and Future Work

Physically based fracture sound synthesis is a new area, and signif-
icant challenges remain. One significant challenge is the approx-
imation of fracture sounds for very large objects, such as build-
ings, which pose many difficulties: expensive stress/modal analy-
ses, complex debris, dense frequency spectra with huge numbers of

eigenmodes, and more complex sound radiation, e.g., simple mul-
tipole sound models are invalid for large objects where the listener
is inside the object.

Rigid-body sound is a convenient abstraction of brittle fracture, but
not all fracture processes are so instantaneous or conveniently mod-
eled. Gradual cracking, such as cracking lake ice or tearing, can
require time-domain modeling of crack propagation which compli-
cates modal sound modeling. Our quasistatic fracture impulse is
a simple approximation of the effective fracture impulse resulting
from complex time-dependent fracture processes. Since crack prop-
agation speeds in brittle materials can be close to the Rayleigh wave
speed (typically several km/s) the physical fracture impulses are
determined by an extremely rapid process [Gross et al. 1993], e.g.,
brittle fracture of 10 cm scale objects can occur on the time-scale
of a 20 kHz wave period. Due to the ill-posed nature of fracture-
impulse estimation with a quasistatic model, we instead proposed
an energy-based fracture-impulse model using quasistatic stress.

Ductile objects, such as metals, can undergo visible deformation
during the fracture process [O’Brien et al. 2002a] and require ad-
ditional investigation. Quasistatic fracture modeling works well
for contact forces, but dynamic resonance-based fracture and fluid-
solid coupling can also be important, e.g., a soprano smashing a
wine glass with her voice. Contact coupling can significantly af-
fect vibration-based sounds, and was only approximated by ad hoc
contact damping. “Hair-line” fractures may not fully separate the
object, and can affect vibration-based sounds. In general, modal vi-
brations should also be coupled with frictional contact mechanics,
and pose collision detection challenges [James and Pai 2004].

Thin objects require special care for fracture simulation [Bao et al.
2007], as well as for sound modeling. For example, our wine glass
involved both thin shell-like regions, and volumetric regions which
proved difficult to mesh using tetrahedra. Thin-shell models also
require special treatment for multipole radiation evaluation. Thin
objects, such as glass panes, might also exhibit nonlinear vibrations
during violent fracture processes [Chadwick et al. 2009]. Our frac-
ture pattern generation does not produce fine debris and dust [Ima-
gire et al. 2009], however precomputed soundbanks could be used
to model their sounds.

We have modeled debris radiation using a linear superposition of
non-interacting rigid-body sources, but real simulations can involve
significant inter-object scattering effects. Our frequency-domain ra-
diation model simplifies the time-domain nature of fracture. For ex-
ample, far-field sound involves significant time-delay effects, and is
also more complicated for large and also fast-moving and spinning
objects [Morse and Ingard 1986].

Our rigid-body soundbank is based on homogeneous ellipsoidal
primitives for simplicity and convenience, but audible differences



can occur for nonconvex geometry (see video). However, it remains
to be seen if other geometric primitives, e.g., fracture shards, pro-
vide more realistic results. In general, understanding the percepti-
ble shape space for sound proxies, and the extent to which precom-
puted soundbanks can be used to replace general geometry are open
problems. Finally, far more agressive speed-accuracy trade-offs can
be made for interactive applications.

A Background on Rigid-Body Sound

This appendix briefly summarizes background material on rigid-
body sound synthesis needed for rigid-body fracture sounds. The
physical process of rigid-body sound generation is modeled using
three steps: (1) contact forces are estimated using rigid-body sim-
ulation, (2) surface vibrations are estimated using modal analysis,
and (3) acoustic transfer functions describing each mode’s sound
pressure field are estimated, and evaluated at the listener’s position.

Linear modal vibrations are standard in engineering [Shabana
1990], and commonly used in rigid-body sound synthesis [O’Brien
et al. 2002b; James et al. 2006]. For “rigid” objects, external forces
introduce only infinitesimal deformations. Using a finite element
model, the displacements u ∈ R3N of N nodes can be modeled by
the linear elastodynamic equation,

Mü + Cu̇ + Ku = f ∈ R3N , (13)

where f are external forces (e.g., from a rigid-body simulation),
M, C and K are mass, damping and stiffness matrices, respec-
tively, given by material properties of the object. Here K is sparse
and positive semi-definite, and M is also sparse and positive defi-
nite. The damping matrix C is approximated by Rayleigh damping,
C = αM + βK for user-chosen nonnegative coefficients α and β.
We use tetrahedral meshes, which are generated initially using Iso-
surface Stuffing [Labelle and Shewchuk 2007].

For linear modal analysis, we solve the generalized eigenvalue
problem, KU = ΛMU, where Λ = diag(ω2

i ) is the diagonal
matrix of eigenvalues, with ωi the undamped natural frequency,
and the mode shapes are given by the eigenvector matrix, U, which
is mass orthogonal, UTMU = I. In practice, we only compute
eigenvalues and eigenvectors for frequencies up to 20 kHz, which
can be done efficiently using implicitly restarted Arnoldi methods
(with “shift-and-invert” spectral transformation) in the ARPACK li-
brary [Golub and Van Loan 1996; Lehoucq et al. 1998]. Substitut-
ing the modal coordinate transformation, u = Uq into (13) yields

q̈ + (αI + βΛ)q̇ + Λq = UT f , (14)

with each row an independent simple harmonic oscillator,

q̈i + (α+ β ω2
i )q̇i + ω2

i q = Qi(t), i = 1 . . . n, (15)

where Qi(t) is the modal force. These oscillators can be solved ef-
ficiently in discrete time using an IIR digital filter [Hamming 1983;
James and Pai 2002]. Finally, object vibrations are given by the
linear superposition of all vibration modes, u(t)=Uq(t).

Acoustic transfer: The radiated sound pressure is approximated
by a linear superposition of modal sound pressure contributions. If
we denote the object domain by Ω, we can approximate the time-
dependent pressure contribution due to a single vibration mode by
|p(x)| q(t), x /∈ Ω, where q(t) is the time-harmonic solution of
(15), and the spatial part p(x) : R3 → C is the acoustic transfer
function, which captures complex diffraction and interreflection ef-
fects which are very perceptible and important for realistic sound

rendering [James et al. 2006]. For a single vibration mode of fre-
quency ω, its wave number is k = ω/c where the speed of sound
in the surrounding medium is c= 343m/s (at STP). The acoustic
transfer function (for a modal vibration u(x)e+iωt) then satisfies
the frequency-domain wave equation, or Helmholtz equation,(

∇2p(x) + k2p(x) = 0 in R3 \ Ω

∂np(x) = −iωρvn(x) on ∂Ω
(16)

where the second equation specifies the Neumann boundary condi-
tion, ∂np = ∂p

∂n
is the derivative along the surface’s outside nor-

mal direction; the air density is ρ = 1.184kg/m3 (at STP), and
vn(x) = iωun(x) is the mode’s normal vibration velocity for nor-
mal displacement un = nTu; a Sommerfeld radiation condition
for out-going waves is also needed [Morse and Ingard 1986]. We
estimate these acoustic transfer functions using the approach of §4.

B Sparse least-squares Ku= f solver details

Constructing P: The null space of K is spanned by rigid-body
modes, which we project out using P . Given tetrahedral node, i,
with position (xi, yi, zi), its translation and linearized rotation are
columns of Ti,

Ti =

241 0 0 0 zi −yi
0 1 0 −zi 0 xi
0 0 1 yi −xi 0

35 ⇒ T =

264T1

...
TN

375 ,
so that the rank-6 matrix T spans null(K). We compute the QR
factorization, T =QR, and cache the 3N -by-6 orthogonal matrix,
Q. At runtime, we implement force/displacement projections Pv
using Pv=v −QQTv at O(N) cost.

Constructing V: We interpret V as a vertex displacement basis
with translation and linearized rotation eliminated in a particularly
convenient way; V has 3N−6 columns corresponding to deforma-
tion degrees of freedom. While any orthogonal matrix V with size
3N × (3N − 6) which eliminates the rigid-body modes is applica-
ble to (2), in practice, sparser V can lead to sparser factorizations
of VTKV. So that VTKV construction hasO(nnz(K)) cost, our
V matrix, with only 3N nonzero elements, has the following form:

0

0

}
}
}

where t1, t2 and t3 are any three non-collinear tetrahedral ver-
tices upon which V applies the following six constraints: (1-3)
we fix t1 by imposing zero translation; then (4) to eliminate the
rotation (c.f. [Bao et al. 2007]) we constrain t2 to move along a
fixed direction, a = (a1, a2, a3) = normalize(xt2 −xt1); then
(5-6) we constrain t3 to lie on an perpendicular plane by letting
(b1, b2, b3) = normalize([a × (xt3−xt1)] × a). All other rows
match the identity matrix. By construction V is orthogonal.



C Proof of least-residual solution to (2)

Given the solution r of (2), we show that u = Vr is the least-
residual solution of the compatible system Ku=Pf . Since K is a
3N × 3N symmetric and rank-deficient matrix, we write it as K=
USUT using thin SVD, where U is the 3N×(3N−6) orthogonal
basis matrix spanning range(K), and S is an invertible (3N−6)×
(3N − 6) diagonal matrix of singular values. By compatibility, we
can write Pf =Uf̃ . Substituting these expressions into (2), we see
that r satisfies

VTUSUTVr = VTUf̃ . (17)

Since VTU is nonsingular (both U and V are orthogonal), we have
UTVr=S−1 f̃ . Therefore Vr is a least-residual solution:

KVr = (USUT )Vr = US(UTVr) = USS−1 f̃ = Pf . (18)

D Multipole Coefficient Solver

Background on Helmholtz Boundary Integral Equation: If we
denote the object domain as Ω and its surface as Γ = ∂Ω, at any
point x outside of the vibrating object the acoustic transfer function
satisfying (16) is given by the Kirchhoff integral formula

p(x) =

Z
Γ

»
G(x; y)

∂p

∂n
(y)− ∂G

∂n
(x; y) p(y)

–
dΓy (19)

where G(x; y) is the Helmholtz Green’s function. In this pa-
per, we assume each sounding object is isolated from others, and
ignore the scattering interaction between multiple sounding ob-
jects, therefore we use the free-space Green’s function, G(x; y) =

e−ik‖x−y‖/(4π‖x − y‖). Evaluating (19) requires the acous-
tic transfer function values p(y) and its outward-pointing normal
derivative ∂np(y) on the object’s surface y ∈ Γ; the normal deriva-
tive is given by the Neumann boundary condition of (16), and the
boundary transfer values are computed using the boundary element
solver. In our implementation, we obtain p(y) on Γ using the
FastBEM Acoustics implementation (www.fastbem.com) of the
fast multipole boundary element method [Liu 2009].

Multipole Expansion: The cost of evaluating the acoustic trans-
fer p(x) with (19) is linear in the number of surface triangles, and
becomes expensive for fine surface meshes. Unfortunately, break-
ing objects into tiny pieces almost inevitably leads to increased
geometric complexity which will slow down our sound synthe-
sis pipeline. We circumvent this issue by using a standard mul-
tipole expansion of p(x). The Green’s function can be expanded
in a series of singular and regular basis functions using the iden-
tity [Gumerov and Duraiswami 2004],

G(x; y) = ik

∞X
n=0

nX
m=−n

Smn (x− x0)R−mn (y − x0), (20)

where Smn is the singular spherical Helmholtz basis function de-
scribed previously (7); Rmn is its regular counterpart,

Rmn(r) = jn(kr)Y
m
n (θ, φ) (21)

where jn ∈ R are the spherical Bessel functions; here x0 is an
arbitrary fixed point satisfying ‖x−x0‖>‖y−x0‖ to ensure that
(20) converges absolutely and uniformly; in our implementation,
we place x0 at the object’s center of mass. Substituting (20) into
(19), we can pull the Smn out of the surface integral to obtain the
multipole expansion of p(x):

p(x) =

Z
Γ

ik

"
∞X
n=0

nX
m=−n

Smn (x− x0)R−mn (y − x0)
∂p

∂n
(y)

−p(y)

∞X
n=0

nX
m=−n

Smn (x− x0)
∂R−mn
∂n

(y − x0)

#
dΓy

=

∞X
n=0

nX
m=−n

Smn (x− x0)Mm
n

where the multipole coefficients, Mm
n , can be evaluted numerically

from the formula

Mm
n = ik

Z
Γ

»
R−mn (y − x0)

∂p

∂n
(y)− p(y)

∂R−mn
∂n

(y − x0)

–
dΓy,

(22)
with ∂np from the Neumann BC (16), and p from the BEM solver.

E Derivation of Proxy Scaling Relations

The scalings (9) follow from x→γx as follows. Since the object’s
volume and mass scale as γ3, the mass matrix scales as M→γ3M.
Since the modes are mass orthogonal, UTMU = I, it follows that
U→ γ−3/2U. Stiffness matrix scaling, K→ γK, follows from
the fact that matrix elements are integrals of energy Hessians (with
γ−2 scaling) over volumes (with γ3 scaling). It follows that the
eigenvalues scale as ω2 → ω2 scaling(K)/scaling(M) = ω2/γ2,
so that ω → ω/γ, k → k/γ, and kx → kx. Multipole Mm

n

scaling follows from (22), where it suffices to consider the term,
ik R−mn (y − x0) ∂p

∂n
(y)dΓy: k gives a γ−1 factor; R−mn is scale

invariant since it depends on kr; the dΓ area introduces a γ2 factor;
∂np is the Neumann BC, which scales with ω2un as γ−2γ−3/2 =
γ−7/2. Multiplying γ−1 · γ2 · γ−7/2 we obtain Mm

n →γ−5/2Mm
n .

F Estimation of Proxy Contact Point

Given a force fp applied to the elliptical sound proxy, we apply
it to the surface position where the surface normal direction n is
opposite to the force direction, n = −fp/‖fp‖. Let the implicit
surface for the ellipsoid be g(x, y, z) = x2

a2
+ y2

b2
+ z2

c2
− 1,

then the surface normal direction is coincident with its gradient
∇g = ( 2x

a2
, 2y
b2
, 2z
c2

)T . The surface position with matching normal
direction n satisfies the equation ∇g

‖∇g‖ =n ≡ (nx, ny, nz)
T . Let-

ting X = x2/a2, Y = y2/b2 and Z = z2/c2, we obtain a 3 × 3
linear equation,24(n2

x − 1)/a2 n2
x/b

2 n2
x/c

2

n2
y/a

2 (n2
y − 1)/b2 n2

y/c
2

1 1 1

3524XY
Z

35 =

240
0
1

35 (23)

whose solution yields the proxy’s surface contact point,

pscp =
“
sgn(nx)

√
a2X, sgn(ny)

√
b2Y , sgn(nz)

√
c2Z

”
. (24)
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