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Abstract. We present a simple, effective method for solving structure from mo-
tion problems by averaging epipolar geometries. Based on recent successes in
solving for global camera rotations using averaging schemes, we focus on the
problem of solving for 3D camera translations given a network of noisy pairwise
camera translation directions (or 3D point observations). To do this well, we have
two main insights. First, we propose a method for removing outliers from problem
instances by solving simpler low-dimensional subproblems, which we refer to as
1DSfM problems. Second, we present a simple, principled averaging scheme. We
demonstrate this new method in the wild on Internet photo collections.
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1 Introduction

Recent work on the unstructured Structure from Motion (SfM) problem has had renewed
interest in global methods. Unlike sequential approaches which build 3D models from
photo collections by iteratively growing a small seed model, global (or batch) methods for
SfM consider the entire problem at once. By doing this they avoid several disadvantages
of sequential methods, which have tended to be costly, requiring a repeated nonlinear
model refinement (bundle adjustment) to avoid errors. Also, unlike global methods,
sequential SfM necessarily treats images unequally, where those considered first can
have a disproportionate effect on the final model. In practice, this behavior can sometimes
lead to cascading mistakes and can exacerbate the problem of drift.

However, global methods have difficulties of their own. A key problem is that
reasoning about outliers is challenging. Techniques from sequential methods, such
as filtering out measurements inconsistent with the current model at each step, are
not directly applicable in a global setting. It is harder to reason a priori about which
measurements are unreliable.

In this work, we present a new global SfM method; like other methods, we solve
first for global camera rotations, then translations, given a set of pairwise epipolar
geometries. As there has been significant progress on the rotations problem, we focus
on translations, and offer two key insights. The first, which we call 1DSfM, is a simple
way to preprocess a problem instance to remove outlier measurements. 1DSfM is based
on reducing a difficult problem to single-dimensional subproblems where inference
becomes a more straightforward combinatorial computation. Under this 1D projection,
a translations problem becomes an instance of MINIMUM FEEDBACK ARC SET, a well
studied graph problem. By solving for a 1D ordering, we recover information about
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which 3D measurements are likely inconsistent. Second, we describe a new, very simple
solver for the translations problem. Surprisingly, we find that non-linear optimization
with this solver—even with random initialization—works remarkably well, especially
once outliers have been removed. Hence, our 1DSfM-based outlier removal technique
goes hand in hand with our simple translations solver to achieve high-quality results.

We show the effectiveness of our two methods on a variety of landmark-scale Internet
community photo collections, covering a range of sizes and scene types. Our code and
data are available at http://www.cs.cornell.edu/projects/1dsfm.

2 Related Work

While some earlier SfM methods were global, such as factorization [21], most current
large-scale SfM systems involve sequential reconstruction [20, 2, 9]. Sequential methods
build models a few images at a time, often with bundle adjustment in between steps.
However, there has been significant recent interest in revisiting global methods because of
their potential for improved speed and decreased dependence on local decisions or image
ordering. These methods often work by first estimating an initial set of camera poses
(typically through use of estimated relative poses between pairs or triplets), followed
by a global bundle adjustment to refine this initial solution. With a few exceptions (e.g.
[12]), these methods first solve for camera rotations, and then camera translations.

Rotations. A number of methods have been proposed for solving for global rotations
from pairwise estimates of relative rotations. Some methods formulate the problem as a
linear system by relaxing constraints on rotation parameterizations [11, 17, 3, 18]. Enqvist
et al. [8] look for a best spanning tree of pairwise rotations to filter outliers in advance.
Sinha et al. [19] use vanishing point estimates as an additional cue. More recently, Hartley
et al. [13] as well as Chatterjee and Govindu [5] have presented robust l1 methods based
on the Lie algebraic structure of the manifold of rotations. Finally, Fredriksson and
Olsson [10] present an approach based on primal and dual problems which can certify if
a solution is globally optimal. We have found the method of Chatterjee and Govindu [5]
particularly effective, and use it to produce input for our method.

Translations. Like the rotations problem, the translations problem is often formulated
as computing global camera translations from pairwise ones. Some approaches are based
on a linear system of cross product constraints [11, 3]. Others use Second Order Cone
Programming, based on the l∞ norm [16–18]. These require very careful attention to out-
liers. Brand et al. [4] use a spectral approach, but do not address outliers. Sinha et al. [19]
robustly compute similarity transformations that align pairs of reconstructions, and then
average over these transformations. Recently Jiang et al. [14] have formulated a linear
constraint with geometric, rather than algebraic meaning, based on co-planarity in triplets
of cameras. Finally, Crandall et al. [6] take a different approach to optimization, using a
complex scheme involving a discrete Markov Random Field search and a continuous
Levenberg-Marquardt refinement to robustly explore the solution space. Our translations
solver optimizes an objective function that depends only on comparing measurement
directions to model directions, as opposed to other methods [11, 3] where the objective
function is also a function of the distance between images. To avoid the resulting bias,
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Govindu proposes an iterative reweighting scheme [11], which is unnecessary in our
approach. Jiang et al. discuss the importance of geometric vs. algebraic cost functions,
as they minimize a value that has physical significance. In this sense our cost function is
also geometric (but in the space of measurements, rather than in the solution space).

Handling outliers. A key contribution of our work is a simple algorithm for removing
outliers in a translations problem. Zach et al. [24] detect outlier epipolar geometries by
looking at loop closure in graph cycles. Moulon et al. improve on this approach, and
also robustly fit trifocal tensors to find less noisy translations. Our method for outlier
removal is similar in motivation to [18], but by projecting into a single dimension we
solve tractable subproblems that reduce to a simple combinatorial graph problem.

3 Problem Formulation

The gold standard method for structure from motion is bundle adjustment—the joint
nonlinear refinement of camera and structure parameters [22]. However, bundle adjust-
ment is a largely local search, and its success depends critically on initialization. Given a
good initial guess, bundle adjustment can produce high quality solutions, but if the guess
is bad, the optimization may fall into local minima far from the optimal solution. For
this reason most SfM methods focus on creating a close-enough initialization which can
then be refined with bundle adjustment; sequential (or incremental) SfM methods are
one such approach that use repeated bundle adjustment on increasingly large problems
to reach a good solution.

Initializing bundle adjustment involves estimating a rotation matrix and a position
for each camera. In our notation, a rotation matrix Ri represents a mapping from world
coordinates to camera coordinates, and a translation ti represents a location in the world
coordinate frame (in our work, we use “location” and “translation” interchangeably, in a
slight abuse of terminology). As with other recent global methods, our input is a set of
images V , and a network of computed epipolar geometries (R̂ij , t̂

l
ij) between pairs (i, j)

of overlapping images. (We will use a hat for epipolar geometries, to emphasize that
they are our input measurements. We use a superscript l for relative translations between
two cameras, which are defined in a local coordinate system.) These epipolar geometries
are not available for all camera pairs, because not all pairs of images visually overlap.
These inputs define a graph we call the epipolar geometry (EG) graph G = (V,E) on
a set of images V , where for every edge (i, j) ∈ E we have a measurement (R̂ij , t̂

l
ij).

Given perfect measurements, global camera poses (Ri, ti) would satisfy

R̂ij = R>i Rj (1)

λij t̂
l
ij = R>i (tj − ti) (2)

where λij’s are unknown scaling factors (unique up to global gauge ambiguity).
Following a now-common approach [11, 16, 17, 6, 3, 14], we separate the initializa-

tion into two stages: a rotations problem and a translations problem. These two together
produce an initialization to a final bundle adjustment. Recent work has been successful
in solving the rotations problem robustly [13, 10, 5]; we build on this work and focus on
the translations problem. Given estimates Ri of camera rotation matrices, we can write
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our measurement of the direction from camera i to camera j as t̂ij = Rit̂
l
ij , where t̂ij

is a unit 3-vector (i.e., a point on the unit sphere) in the global coordinate system. Hence,
the translations problem reduces to the following graph embedding problem:

Given: Graph G = (V,E)

Measurements t̂ij : E → S2

Metric d : S2 × S2 → R

Minimize:
∑

(i,j)∈E

d

(
t̂ij ,

tj − ti
‖tj − ti‖

)
over embeddings: T : V → R3 i.e. T = {ti|i ∈ V }

Note that in this framework, the second endpoint j of an edge may be a point or a camera.
Camera-point constraints can be important for achieving full scene coverage, and for
avoiding degeneracies arising from collinear motion, an issue discussed in [14].

The formulation above does not specify the exact form of our objective function. It
also excludes objective functions that depend on the distance between ti and tj , rather
than only the direction. These issues will both be discussed in Section 5.

Finally, this problem is made greatly more difficult by noise. We hope that most EGs
will be approximately correct, but sometimes calculating EGs returns a wildly incorrect
solution. For the translations problem we assume a mixed model of small variance inlier
noise with a smaller fraction of outlier noise distributed uniformly over S2.

4 Outlier Removal using 1DSfM

By removing bad measurements in advance we can solve problems more accurately and
reliably. In this section, we present a new method for identifying outlier measurements
by projecting translations problems to 1-dimensional subproblems which we can solve
more easily. Our approach is related to previous work [24] which detects outliers as
measurements that cannot be consistently chained along cycles. However, there are
usually many cycles to enumerate, and inferring erroneous measurements from bad
cycles is difficult for large problems. Our method is based on many smaller, simpler
inferences that are then aggregated. This makes outlier detection tractable even for large
problems where [24] has difficulty.

The translations problem described above is a 3-dimensional embedding. One way to
approach outlier detection is to try to first simplify this underlying problem. For instance,
we could project the 3D problem onto a ground plane, resulting in a 2D graph embedding
problem. In other words, we could ignore the z component of each measurement, and
consider only the 2D projections: t̂ij 7→ t̂ij − projk̂t̂ij , where k̂ = 〈0, 0, 1〉. In this
projected problem, we would need to assign an (x, y) pair to each vertex.

In our work, we take this idea a step further and project onto a single dimensional
subspace. Consider projecting a translations problem onto the x-axis, as in the blue
problem in Figure 1. Only the x component of each translations measurement is now
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Fig. 1. A toy illustration of 1DSfM. Panel (a) is a good solution to a translations problem for
reference. Panel (b) shows the translations problem input—a set of edges with orientations. One
outlier edge has been added in red. We also show two directions for projection: î and p. Panel
(c) contains only the projected translations problems, one for each projection direction. These
problems are instances of MINIMUM FEEDBACK ARC SET. Finally, (d) contains good solutions
to the 1D problems in (c). In the lower case, not all ordering constraints can be satisfied, due to the
outlier edge. Note that outlier edges may be consistent in some subproblems but not in others.

relevant to the problem: t̂ij · 〈1, 0, 0〉 = xij , and we need to assign an x-coordinate
to each vertex. Recall that our pairwise translation measurements represent directions,
but not distances. On the x-axis there are only two directions: left and right. Hence, an
embedding is consistent with edge (i, j) if xij > 0 and i embeds to the left of j, and vice
versa for xij < 0. Figure 1 panel (d) shows such an embedding. Note that in 1D, edge
directions have become ordering constraints: all embeddings with the same ordering
are equally consistent with our problem. Hence, this 1D problem is a combinatorial
ordering problem, rather than a continuous optimization problem: we want to find a
global ordering of the vertices that satisfies the pairwise orderings as well as possible.
We can formulate this problem on a directed version of our graph G, as described below.

Figure 1 also illustrates projecting the same problem in a different direction (in
green). Notice that the outlier shown in red is inconsistent in one projection direction,
but not in another. To catch as many outliers as possible, we embed a graph in many 1D
subspaces, each defined by a unit vector p. For each subproblem only the component
of translations measurements t̂ij in the direction of p is relevant to the optimization:
t̂ij 7→ p · t̂ij = wij . By regarding the pair (i, j), wij as equivalent to (j, i),−wij , we can
form a problem with directed edges with positive edge weights. Given a directed graph
formed in this way, we try to find an ordering that satisfies as many of these pairwise
constraints as possible; the edges that are inconsistent with this ordering are potential
outliers. This is a well-studied problem in optimization called MINIMUM FEEDBACK
ARC SET (MFAS). Unfortunately it is NP-complete, but there is a rich literature of
approximation algorithms. We found that a variant of [7], as detailed in Algorithm 1,
worked very well on our problems. This algorithm greedily builds an order from left to
right. It always selects a next node that breaks no order constraints if possible. If not, it
selects the next node to maximize a heuristic: (1 + degout(v))/(1 + degin(v)), where
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Algorithm 1 MFAS ordering
1: procedure MFAS(G = (V,E), wij) . Order vertices on a line
2: Edir ← {(i, j)|wij > 0} ∪ {(j, i)|wij < 0} . Put in form of an MFAS problem
3: π = [ ] . build a permutation here
4: Vrem = V . unchosen vertices
5: G′ ← (Vrem, Edir)
6: while G′ 6= ∅ do
7: x← {v ∈ G′|v is source} . select all sources first
8: if x = ∅ then
9: x← argmaxv∈Vrem

1+degout(v)

1+degin(v)
. heuristic

10: π.append(x)
11: Vrem ← Vrem − x
12: G′ ← restrict(G′, Vrem) . restrict graph

Algorithm 2 Combinatorial Cleaning
1: procedure CLEAN(G = (V,E), t̂, N, τ ) . Remove outlier measurements from E
2: xij ← 0 ∀(i, j) ∈ E . Accumulator for broken edge weight
3: for k ← 1, N do
4: p̂← RAND(t̂) . Sample p̂ proportional to density of t̂ on S2

5: wij ← p̂ · t̂ij ∀(i, j) ∈ E
6: π ← MFAS((V,E), wij) . Order vertices along direction p̂
7: for (i, j) ∈ E do
8: if sgn(π(j)− π(i)) 6= sgn(wij) then
9: xij ← xij + |wij |

10: E ← {(i, j) |xij/N < τ}

degin(v) and degout(v) are the sum of weights of outgoing and incoming edges of node
v, respectively. We found that this ratio heuristic performs much better on our problems
than the heuristic used in [7] (namely, degout(v)− degin(v)).

Projection from 3D to 1D necessarily loses information. Bad measurements could be
missed entirely by some choices of projection direction p. To identify outliers reliably we
aggregate the results of solving 1D subproblems projected in many different directions.
We use a kernel density estimator to sample these projection directions randomly, pro-
portional to the density of directions of measurements in the input problem. We sample
this way because outliers stand out most clearly in directions where many edges project
with high weight; picking uncommon directions (like straight up) tends to have poor
signal-to-noise ratio. For each direction, if an edge (i, j) is inconsistent with the ordering
we compute, we accumulate the weight |wij | on that edge. Edges that accumulate weight
in many subproblems are inconsistent and probably bad. After running in N sampled
directions we reject edges (i, j) which have accumulated more than a threshold τ ·N of
weighted inconsistency. This process is summarized in Algorithm 2.

5 Solving the Translations Problem

Now that we have a cleaner set of pairwise relative translations, we use them to solve for
a global set of translations. In order to make our translations problem concrete, we must
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Table 1. Common distances on S2

Name Formula Equivalent
Geodesic ∠(u,v) θ
Cross Product u× v sin θ
Inner Product 1− u · v 2 sin2 θ

2

Squared Chordal Distance ‖u− v‖2 4 sin2 θ
2

first choose an objective function to minimize. After evaluating a number of metrics, we
opted to use the sum of squared chordal distance:

errch(T ) =
∑

(i,j)∈E

dch

(
t̂ij ,

tj − ti
‖tj − ti‖

)2

(3)

dch(u,v) = ‖u− v‖2 (4)

This is a nonlinear least squares problem, with the nonlinearity coming from the di-
vision mapping vectors to directions. We minimize it using Levenberg-Marquardt, as
implemented in the Ceres software package [1]. In general, nonlinear least squares
problems are not guaranteed to have a single local minimum, so a good initialization
is critical. Surprisingly, we find that with this distance metric, our problems generally
converged well for our test datasets even from random initialization. Although the node
orderings from 1DSfM could provide an initialization, we found this no more effective
than randomization.1

Comparative Discussion. The SfM translations problem recovers coordinates in R3

from measurements on the sphere S2. Previous work has proposed objective functions
based on different combinations of these two spaces. For example, the cross product
used in [11] maps S2 × R3 → R. This biases the problem as error is proportional to
the length of the edges in a solution. To compensate, they use an iterative reweighting
framework to divide out edge length. This framework approximates a cross product map
S2 × S2 → [−1, 1].

We avoid this bias by comparing measurements (on S2) directly to edge directions
for a solution (also on S2). Table 1 shows several ways to measure the distance between
two directions. A natural distance on a sphere is the geodesic (great circle) distance,
so each distance is also given in terms of this angle θ. Note that the cross product has
both parallel and antiparallel minima, which is undesirable. The inner product and the
squared chordal distance are equivalent up to a constant, but the latter is a preferable
formulation because it is a sum of squares.

While our 1DSfM method seeks to remove outlier measurements, we note that one
could also handle outliers using robust cost functions. Crandall et al. [6] demonstrate
the utility of robust cost functions for global SfM problems, but operated within a
complex discrete optimization algorithm. In our case, within an continuous optimization
framework, we have found that the choice of robust function is very important—Cauchy

1 Formally, Eq. 5 is undefined if ever tj = ti for any edge. With a random initialization and
natural problems this is exceedingly unlikely. However, in this case a random perturbation could
allow the algorithm to continue.
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and threshold-based robust costs lead to poor convergence, but we find that a Huber loss
to be very effective. Our results will show that a Huber loss can improve solution quality
while retaining good convergence, and that the benefit is largely orthogonal to 1DSfM.

Convergence Properties. We now give a basis for confidence in minimizing our objec-
tive function. Consider two vectors x0 and x1 in R3, and a convex combination of them,
xλ = (1− λ)x0 + λx1. The chordal distance is not convex here (nor quasi-convex), but
a related (weaker) inequality holds: 2

dch

(
xλ
‖xλ‖

, t̂

)2

≤ max

{
dch

(
x0

‖x0‖
, t̂

)2

, dch

(
x1

‖x1‖
, t̂

)2
}

(5)

(In fact, this also holds without squares, so these results also apply to a robust L1 cost.)
So if T0 and T1 are embeddings (maps taking each vertex to R3), and Tλ is a convex

combination of them, then we can bound the objective function at Tλ:

errch(Tλ) =
∑

(i,j)∈E

dch

(
Tλ(j)− Tλ(i)
‖Tλ(j)− Tλ(i)‖

, t̂ij

)2

≤ errch(T0) + errch(T1) (6)

This means that in a noise-free problem (errch(T0) = 0) the error surface would be
perfectly non-decreasing away from a global minimum T0 (though note that all solutions
are only unique up to a global gauge, and ill-posed problems may have an even larger
space of global minima). With small noise we are still guaranteed that the barrier between
any solution and an optimum is no higher than the optimal value of the objective function.
This bound is not necessarily tight, and is not achieved in natural problems. In practice,
once most outliers have been removed (by 1DSfM) we consistently find good solutions.

6 Implementation

Solving for Rotations. To compute global rotations, we run Chatterjee and Govindu’s
rotations averaging method [5], with the parameters suggested in their paper.

Forming a Translations Problem. Given rotations, we form a translations problem with
both camera-to-camera and camera-to-point edges. We find camera-to-camera edges to
be crucial for accuracy and compute them from EGs. However, these camera-to-camera
edges often have areas of sparse coverage—we find that popular parts of the scene
are well represented, but less photographed areas can have many fewer measurements,
resulting in reconstructions that can break apart into disconnected submodels.

To address this problem, we augment the translations problem with camera-to-
point edges. We find that on their own these yield a noisy solution, but they increase
scene coverage and connectedness. In addition, these edges are crucial for avoiding
degeneracies when cameras are nearly collinear, as discussed in [14].

We use only some of all possible camera-to-point edges, as they increase problem
size, with diminishing returns. Similar to [6], to choose a subset of points to add to our

2 To be precise, this follows if we assume that t̂ and the geodesic from x0 to x1 lie in open
hemisphere. Since we think of errch(T0) as small, this constraint is easy to satisfy.
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problem we solve a simple graph covering problem: we greedily choose points that are
visible to the most (as-yet-uncovered) cameras, until all cameras see k points. (We use
k = 6 in our experiments.) Every camera-to-point edge in with this subset of points is
included in our translations problem.

Cleaning with 1DSfM. We run 1DSfM on N = 48 random subproblems. We then
remove all edges with accumulated inconsistency scores ≥ τ ·N from the translations
problem. We use τ = 0.10 in our experiments.

Solving a Translations Problem. We minimize our sum of squared chordal distance
objective function using Ceres Solver [1], a state-of-the-art nonlinear least squares
package. We use default solver settings, except that we set the linear solver to be
an iterative Schur method with Jacobi preconditioning. Additionally, we weight each
constraint to prevent camera-to-point edges from dominating the problem, since there are
many more of these than camera-to-camera edges. We set camera-to-camera (cc) edge
weights to 1.0 and camera-to-point (cp) edges weights to α · |cc edges| / |cp edges|. In
our experiments we use α = 0.5, so cc edges contribute twice as much to the objective
function as cp edges. For runs using a robust cost function, we use a Huber loss with
width 0.1, implemented in Ceres. After solving the translations problem, we use this
initialization, along with the camera rotations, to triangulate all points, and run a final
bundle adjustment using the standard reprojection error.

7 Results

We evaluated our algorithm on realistic synthetic scenes, as well as a number of medium-
to large-scale Internet datasets downloaded by geotag search from Flickr, as summarized
in Table 2, and shown as point clouds in Figure 3. The Notre Dame dataset is publicly
available online with Bundler [20].
1DSfM. We demonstrate that 1DSfM accurately identifies outliers in two ways. First, we
tested on synthetic problems where the error on each edge (and its inlier/outlier status)
is known. We observed that synthetic problems created with some common random
graph models are easier than real problems, so we form our synthetic problems by using
an existing reconstruction as a problem instance (reusing the epipolar graph structure
and computing pairwise translations from the sequential SfM camera positions), and
then adding known perturbations to every translation direction. We sampled a random
15% of edges, replacing them with translation directions sampled uniformly at random,
and perturbed the rest of the translation directions with Gaussian noise with standard
deviation 11.4 degrees. (We chose these numbers as representative of real problems we
have observed.) Edges with error greater than 30 degrees were deemed to be the ground
truth outliers for the purposes of analysis. We ran our 1DSfM algorithm on problem
instances generated from four scenes—Roman Forum, Tower of London, Ellis Island,
and Notre Dame. At our threshold of τ = 0.1, we found that 1DSfM classified edges
with a precision of 0.96 and an recall of 0.92 (averaged across the four datasets). This
high classification accuracy gives us confidence in the method.

We also demonstrate 1DSfM on real problems where ground truth is not known, but
for which we can still compare translation directions from pairwise EGs to a reference
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Fig. 2. Performance of 1DSfM at identifying outliers in real data. The x-axis is the error for each
input translation direction. 1DSfM classifies each of these as accepted or rejected. The lines are
cumulative distribution functions for both accepted edges (solid lines) and rejected edges (dotted
lines) for four datasets. We see that the accepted edges have many more low residual edges, and
the rejected edges contain many edges with much higher residuals.

reconstruction. Figure 2 shows cumulative distributions of errors in pairwise translation
estimates, for edges deemed inliers and outliers by 1DSfM on four of our datasets.
To approximate the inherent noisiness of the input epipolar geometries, we see how
well they agree with a good sequential SfM model built using [20]. The residuals in
each edge (the distance between the epipolar geometry translations direction and the
translation direction computed from the reference sequential SfM model, measured with
the geodesic distance) is closely tied to the noise in the input measurements. Our 1DSfM
algorithm divides these input translation edges into a set to keep, and a set to discard.
Figure 2 shows the distribution of residuals in these two sets. Notice that while most
inlier edges have low residual (are not very noisy) the edges selected to be removed are
much noisier. For example, we can see that the median error for rejected edges is around
80◦ for several datasets. 1DSfM removes a relatively small number of correct edges, but
helps significantly by getting rid of most outlier edges.

Comparison to sequential SfM. Because ground truth positions are usually unavailable
for large-scale SfM problems, we show our method gives similar results to a sequential
SfM system based on Bundler [20], but in much less time. Table 2 shows the similarity
between these sequential SfM solutions and the results of several global algorithms,
computed as mean and median distances between corresponding cameras between the
two SfM models, across all of our datasets. The units in Table 2 are approximately in
meters, as we use geotags associated with images in the collection to place each sequen-
tial SfM reconstruction in an approximate world coordinate frame, and use a RANSAC
approach to compute the absolute orientation between a candidate reconstruction and
the sequential SfM solution (using correspondences between camera centers).

In Table 2, we compare several variants of our method: with and without a final
bundle adjustment (BA), and with four combinations of outlier treatments. We see that
in all cases, we return a result with a median within several meters of the sequential SfM
solution, and often a much smaller distance. In general, bundle adjustment significantly
reduces error. The effect of 1DSfM shows up clearly in the average error, which usually
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without 1DSfM with 1DSfM Robust Loss [11]
no BA BA no BA BA BA 1DSfM+BA BA

Name Size Nc x̃ Nc x̃ x̄ x̃ Nc x̃ x̄ Nc x̃ x̄ Nc x̃ x̄ Nc x̃
Piccadilly 80 2152 3.2 1905 1.0 9e3 4.1 1932 0.6 5e1 1965 0.3 9e3 1956 0.7 7e2 1638 10
Union Square 300 789 9.9 700 3.3 3e3 5.6 702 3.5 5e2 699 3.2 2e2 710 3.4 9e1 521 10
Roman Forum 200 1084 6.9 973 1.5 3e4 6.1 981 0.3 4e1 1000 2.7 9e5 989 0.2 3e0 840 37
Vienna Cathedral 120 836 5.5 758 0.9 9e3 6.6 757 0.5 8e3 770 0.7 7e4 770 0.4 2e4 652 12
Piazza del Popolo 60 328 1.8 311 1.2 2e1 3.1 303 2.6 4e0 317 1.6 9e1 308 2.2 2e2 93 16
NYC Library 130 332 1.7 297 1.5 7e2 2.5 292 0.9 2e1 307 0.2 8e1 295 0.4 1e0 271 1.4
Alamo 70 577 1.0 528 0.2 7e3 1.1 521 0.3 7e0 541 0.2 7e5 529 0.3 2e7 422 2.4
Metropolis 200 341 6.0 282 0.5 1e3 9.9 288 1.2 9e0 292 0.6 3e1 291 0.5 7e1 240 18
Yorkminster 150 437 7.0 405 0.2 3e3 3.4 395 0.2 1e4 416 0.4 9e3 401 0.1 5e2 345 6.7
Montreal N.D. 30 450 0.9 431 0.2 4e3 2.5 425 0.9 1e0 431 0.1 4e-1 427 0.4 1e0 357 9.8
Tower of London 300 572 9.4 417 1.1 2e3 11 414 0.4 3e3 427 0.2 3e4 414 1.0 4e1 306 44
Ellis Island 180 227 4.1 211 0.4 4e0 3.7 213 0.4 4e1 213 0.3 3e0 214 0.3 3e0 203 8.0
Notre Dame 300 553 19 524 0.7 2e4 10 500 2.1 7e0 530 0.8 7e4 507 1.9 7e0 473 2.1

Table 2. Comparison of several methods to a reference sequential SfM method based on [20].
Units are approximately in meters; sizes are the number of cameras in the largest component of
the input EG graph. The methods are our translations solver combined with all four permutations
of using 1DSfM and robust cost functions. The fifth column is a baseline method [11]. Results are
given as Nc, the number of cameras reconstructed, x̄, the average error, and x̃, the median error,
where by errors are the distances to corresponding cameras in [20]. Lower error is closer to the
reference method. The lowest mean and median in each row are bolded, as well as two-way ties.

is reduced by orders of magnitude. While we see that both robust cost functions and
1DSfM improve reconstructions, they are not interchangeable—rather, 1DSfM is able
to greatly reduce average error, while robust cost functions usually increase it, while
decreasing median error. These two approaches cope with outliers in complementary
ways, and so we advocate using both 1DSfM and a Huber loss function (as mentioned
earlier, we found that other, non-convex loss functions performed poorly).

Qualitatively, our reconstructions have high quality; visualizations of many of the
results are shown in Figure 3. Finally, Figure 4 shows our largest reconstruction, Trafal-
gar, with 4591 images. This model was computed with 1DSfM and bundle adjustment.
The cameras have a median error of about 0.60 meters compared to sequential SfM, and
it took about 3.4 hours to run, compared to 8.1 hours for sequential SfM.

Table 3 shows timing information for the experiments in Table 2, comparing our
method especially with sequential SfM. All experiments were run on a machine with
two 2.53 GHz Intel Xeon E5540 quad core processors. Our method is always faster
than sequential SfM, usually 2-4 times faster, with even bigger improvements on larger
datasets such as Piccadilly. The majority of our time in each dataset is spent on bundle
adjustment, although unlike sequential SfM we only need to do a single large bundle
adjustment, rather than many repeated ones.

Comparison to [11]. We also compared our results to [11], which solves the translations
problem by minimizing the cross product of solution translations with input pairwise
translations. To avoid bias from the cross product, this linear method is wrapped in an
iterative reweighting framework. We used our own SciPy implementation, on the same
machine as the other trials. In a slight departure, we use only three rounds of reweighting
rather than four, since with each round of reweighting the underlying linear system
becomes increasingly poorly conditioned. We evaluated [11] on translations problems
produced by 1DSfM, reporting the results after bundle adjustment, since this combination
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without 1DSfM with 1DSfM using [11] using [20]

Name TR TS TBA Σ TO TS TBA Σ TS TBA Σ T
Piccadily 570 177 3252 3999 122 366 2425 3483 9497 1046 11113 44369
Union Square 17 71 401 489 20 75 340 452 277 150 444 1244
Roman Forum 37 104 1733 1874 40 135 1245 1457 290 694 1021 4533
Vienna Cathedral 98 225 3611 3934 60 144 2837 3139 1282 893 2273 10276
Piazza del Popolo 14 28 213 255 9 35 191 249 98 26 138 1287
NYC Library 9 38 382 429 13 54 392 468 21 190 220 3807
Alamo 56 96 646 798 29 73 752 910 1039 308 1403 1654
Madrid Metropolis 15 32 224 271 8 20 201 244 57 67 139 1315
Yorkminster 11 60 955 1026 18 93 777 899 81 302 394 3225
Montreal Notre Dame 17 76 1043 1136 22 75 1135 1249 25 382 424 2710
Tower of London 9 52 750 811 14 55 606 648 17 238 264 1900
Ellis Island 12 17 276 305 7 13 139 171 7 108 127 1191
Notre Dame 53 152 2139 2344 42 59 1445 1599 299 841 1193 6154

Table 3. Timing information, in seconds for the results in Table 2. Times are listed for solving
for rotations with [5] (TR), removing outliers with 1DSfM (TO), running a translations problem
solver (TS), and for bundle adjustment (TBA).

gave the best results. Median error is reported in Table 2 and timing information in Table
3. While [11] is usually faster than our method (especially on smaller problems), the
accuracy (and number of reconstructed cameras) greatly suffers.

Discussion. Our method has at its core a nonlinear optimization framework that we
have found to be particularly effective, even with random initialization (once outliers
are removed). Our analysis of convergence in Section 5 suggests reasons for this, but
understanding fully the convergence properties of translations problems is still an inter-
esting avenue for future work. As we noted previously, the same analysis extends to L1

style robust cost functions as well. We believe our work points to nonlinear optimization
being reconsidered as a tool for structure-from-motion beyond bundle adjusting a good
solution. It is also instructive to contrast ours with other global methods. In particular,
the recent linear method by Jiang et al. works on very different principles to ours, both
in addressing outliers and in its efficient linear optimization framework built on triplets.
Other recent methods use more sophisticated optimization methods (including discrete
optimization) [6]. We believe a strength of our method is its simplicity—it relies on a
well-studied combinatorial optimization problem, and a simple non-linear solver.

Limitations. Our method is based on averaging epipolar geometries to compute an accu-
rate initialization. This works well when there are many EGs to reason about. However,
sometimes EGs are sparse, such as when scenes are poorly connected. Averaging very
few measurements may not be accurate. Figure 5 shows a failure case of our method.
A correct reconstruction from [20] is on the left, and our broken solution is on the
right. The scene has a central building with smaller domed buildings on each side. This
scene is challenging because of the wide baseline between the buildings, and the similar
appearance of the domes. There are few EGs that connect cameras which view different
buildings. A second limitation is that our method does not reason about self-consistent
outliers, such as those arising from ambiguous structures in the scene. To deal with these
cases, SfM disambiguation methods could be used [24, 15, 23].
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Piccadilly Roman Forum

Union Square Ellis Island

Vienna Cathedral Tower of London Notre Dame

Yorkminster Alamo

Fig. 3. Selected renders of models produced by our method.
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Fig. 4. A large reconstruction of Trafalgar Square containing 4597 images.

Fig. 5. (a) A correct model of Gendarmenmarkt from [20]. (b) A broken model by our method.

8 Conclusion

We presented a new method for solving the global SfM translations problem. Our method
has two pieces: 1DSfM, a a method for removing outliers by solving 1-dimension order-
ing problems, and a simple translations solver based on squared chordal distance. Like
other global methods, it treats images equally and runs faster than common sequential
methods. Our method stands out by being particularly simple, and represents a different
take on the problem from previous methods which focus on linear formulations.

We have demonstrated the effectiveness of our method on a range of datasets in
the wild; these are available, along with code, at http://www.cs.cornell.edu/
projects/1dsfm. We produce models comparable to existing sequential methods in
much less time. In the future we hope to explore further ways of aggregating 1DSfM
subproblems than simple summation, which could shed light on more complicated
outliers, such as those arising from ambiguous scene structures.
Acknowledgements. This work was funded in part by NSF grants IIS-1149393 and
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